Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Fig. 6 | BMC Genomic Data

Fig. 6

From: Genomic benchmarks: a collection of datasets for genomic sequence classification

Fig. 6

CNN architecture. The neural network consists of three convolutional layers with 16, 8, and 4 filters, with a kernel size of 8. The output of each convolutional layer goes through the batch normalization layer and the max-pooling layer. The output is then flattened and passes through two dense layers. The last layer is designed to predict the probabilities that the input sample belongs to any of the given classes

Back to article page