Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 5 Variance components for traits related to heat tolerance based on models fitting non-additive genetic effects

From: Investigating the impact of non-additive genetic effects in the estimation of variance components and genomic predictions for heat tolerance and performance traits in crossbred and purebred pig populations

Traita

Modelb

\(\widehat{{\sigma }_{a}^{2}}\)

\(\widehat{{\sigma }_{d}^{2}}\)

\(\widehat{{\sigma }_{aa}^{2}}\)

\(\widehat{{\sigma }_{pe}^{2}}\)

\(\widehat{{\sigma }_{e}^{2}}\)

TVall

MAIpe

0.0626 ± 0.0107

-

-

0.1274 ± 0.0081

0.3047 ± 0.0005

MAIDpe

0.0618 ± 0.0111

0.0050 ± 0.0140

-

0.1237 ± 0.0128

0.3047 ± 0.0005

MAIDEpe

0.0616 ± 0.0121

0.0047 ± 0.0144

0.0031 ± 0.0340

0.1213 ± 0.0294

0.3047 ± 0.0005

MAIEpe

0.0618 ± 0.0120

 

0.0050 ± 0.0336

0.1231 ± 0.0290

0.3047 ± 0.0005

TV4days

MAIpe

0.0653 ± 0.0113

-

-

0.1266 ± 0.0086

0.1378 ± 0.0014

MAIDpe

0.0642 ± 0.0116

0.0068 ± 0.0145

-

0.1216 ± 0.0132

0.1378 ± 0.0014

MAIDEpe

0.0642 ± 0.0116

0.0068 ± 0.0145

3.48 × 10−9 ± 0.00000

0.1216 ± 0.0132

0.1378 ± 0.0014

MAIEpe

0.0653 ± 0.0113

-

3.48 × 10−9 ± 0.00000

0.1266 ± 0.0086

0.1378 ± 0.0014

TES

MAIpe

0.0316 ± 0.0069

-

-

0.0507 ± 0.0059

0.7287 ± 0.0074

MAIDpe

0.0316 ± 0.0069

1.84 × 10−8 ± 0.00000

-

0.0507 ± 0.0059

0.7287 ± 0.0074

MAIDEpe

0.0316 ± 0.0069

1.84 × 10−8 ± 0.00000

1.84 × 10−8 ± 0.00000

0.0507 ± 0.00589

0.7287 ± 0.0074

MAIEpe

0.0316 ± 0.0069

-

1.84 × 10−8 ± 0.00000

0.0507 ± 0.00589

0.7287 ± 0.0074

TSS

MAIpe

0.0445 ± 0.0100

-

-

0.1176 ± 0.0090

0.6119 ± 0.0062

MAIDpe

0.0437 ± 0.0104

0.0045 ± 0.0165

-

0.1145 ± 0.0145

0.6119 ± 0.0062

MAIDEpe

0.0437 ± 0.0104

0.0045 ± 0.0165

1.54 × 10−7 ± 0.00000

0.1145 ± 0.0145

0.6119 ± 0.0062

MAIEpe

0.0445 ± 0.0100

-

1.54 × 10−7 ± 0.00000

0.1176 ± 0.0090

0.6119 ± 0.0062

TRS

MAIpe

0.0276 ± 0.0063

-

-

0.0739 ± 0.0056

0.3577 ± 0.0036

MAIDpe

0.0276 ± 0.0063

9.05 × 10−9 ± 0.00000

-

0.0739 ± 0.0056

0.3577 ± 0.0036

MAIDEpe

0.0276 ± 0.0063

9.05 × 10−9 ± 0.00000

9.05 × 10−9 ± 0.00000

0.0739 ± 0.0056

0.3577 ± 0.0036

MAIEpe

0.0276 ± 0.0063

-

9.05 × 10−9 ± 0.00000

0.0739 ± 0.0056

0.3577 ± 0.0036

TTS

MAIpe

0.0283 ± 0.0067

-

-

0.0730 ± 0.0060

0.4525 ± 0.0046

MAIDpe

0.0278 ± 0.0070

0.0021 ± 0.0096

-

0.0716 ± 0.0089

0.4525 ± 0.0046

MAIDEpe

0.0278 ± 0.0070

0.0021 ± 0.0096

1.14 × 10−8 ± 0.00000

0.0716 ± 0.00889

0.4525 ± 0.0046

MAIEpe

0.0283 ± 0.0067

-

1.14 × 10−8 ± 0.00000

0.0730 ± 0.0060

0.4525 ± 0.0046

RR

MAIpe

34.7580 ± 7.0790

-

-

70.3639 ± 5.9429

442.7150 ± 4.4814

MAIDpe

34.7580 ± 7.0790

1.11 × 10−5 ± 0.00000

-

70.3639 ± 5.9429

442.7150 ± 4.4814

MAIDEpe

34.7580 ± 7.0790

1.11 × 10−5 ± 0.00000

1.11 × 10−5 ± 0.00000

70.3639 ± 5.9429

442.7150 ± 4.4814

MAIEpe

34.7580 ± 7.0790

-

1.11 × 10−5 ± 0.00000

70.3639 ± 5.9429

442.7150 ± 4.4814

PS

MAIpe

0.0551 ± 0.0185

-

-

0.1297 ± 0.0195

0.8463 ± 0.0191

MAIDpe

0.0542 ± 0.0194

0.0044 ± 0.0291

-

0.1267 ± 0.0282

0.8463 ± 0.0191

MAIDEpe

0.0298 ± 0.0204

2.14 × 10−8 ± 0.00000

0.1379 ± 0.0711

0.0137 ± 0.0623

0.8463 ± 0.0191

MAIEpe

0.0298 ± 0.0204

-

0.1379 ± 0.0711

0.0137 ± 0.0623

0.8463 ± 0.0191

HD

MAI

0.1088 ± 0.0247

-

-

-

0.3052 ± 0.0206

MAID

0.1040 ± 0.0256

0.0289 ± 0.0366

-

-

0.2854 ± 0.0324

MAIDE1

0.0795 ± 0.0278

0.0147 ± 0.0367

0.1745 ± 0.1015

-

0.1437 ± 0.0876

MAIE

0.0806 ± 0.0275

-

0.1845 ± 0.0997

-

0.1455 ± 0.0876

  1. \(\widehat{{\sigma }_{a}^{2}}\): additive genetic variance estimate
  2. \(\widehat{{\sigma }_{d}^{2}}\): dominance variance estimate
  3. \(\widehat{{\sigma }_{aa}^{2}}\): additive-by-additive epistatic variance estimate
  4. \(\widehat{{\sigma }_{pe}^{2}}\): permanent environmental variance estimate
  5. \(\widehat{{\sigma }_{e}^{2}}\): residual variance estimate
  6. aTVall: all measures (every 10 min) of vaginal temperatures during four days (°C); TV4days: four-time measures of vaginal temperatures during four days (°C); TES: ear skin temperature; TSS: shoulder skin temperature; TRS: rump skin temperature; TTS: tail skin temperature; RR: respiration rate; PS: panting score; HD: hair density.
  7. bMAIpe: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zpe}+\varvec{\upepsilon }\); MAIEpe: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zpe}+\textbf{Z}{\varvec{e}}_{\textbf{aa}}+\varvec{\upepsilon }\); MAIDpe: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zpe}+\textbf{Zd}+\varvec{\upepsilon }\); MAIDEpe: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zd}+\textbf{Z}{\varvec{e}}_{\textbf{aa}}+\textbf{Zpe}+\varvec{\upepsilon }\); MAI: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\varvec{\upepsilon }\); MAIE: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Z}{\varvec{e}}_{\textbf{aa}}+\varvec{\upepsilon }\); MAID: \(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zd}+\varvec{\upepsilon }\); MAIDE1:\(\textbf{y}=\textbf{X}\varvec{\upbeta }+\textbf{fb}+\textbf{Za}+\textbf{Zd}+\textbf{Z}{\varvec{e}}_{\textbf{aa}}+\varvec{\upepsilon }\)