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Abstract
We compare two methods to detect genetic linkage by using serial observations of systolic blood
pressure in pedigree data from the Framingham Heart Study focusing on chromosome 17. The first
method is a variance components (VC) approach that incorporates longitudinal pedigree data, and
the second method is a regression-based approach that summarizes all longitudinal measures in one
single measure. No evidence of linkage was found either using the VC longitudinal approach or the
regression-based approach, except when all time points were used from Cohorts 1 and 2 and only
subjects aged 25 and 75 years were included.

Background
Modeling becomes more complex when observations are
recorded over time. Several authors have developed and
reviewed statistical methods for longitudinal cohort stud-
ies [1]. For genetic analysis, Province and Rao [2,3] used
path analysis to estimate the genetic and environmental
effects in families in the presence of temporal trends or a
time effect, but did not include variance components
(VC) to measure effects from specific genes. Models using
structural equations have also been developed and widely
applied in the field of behavioral genetics to twin studies
[4-6], but these models, primarily directed to the estima-
tion of polygenic and environmental effects, are difficult
to use for studies of large families or extended pedigrees.
Huggins and colleagues [7] applied cubic spline methods
to analyze longitudinal data in twins, but their method
considered only additive polygenic effects. Recently, de
Andrade et al. [8] proposed an extension of the VC
approach to incorporate longitudinal family data.
Another approach to analyze longitudinal family data is

to use regression methods ignoring the family structure,
and then use the residuals as the quantitative traits. Sev-
eral authors [9,10] have proposed different variations of
this approach. The regression-based approach summa-
rizes all longitudinal measures in one single measure and
uses this summarized measure that is the regression resid-
uals, for linkage detection, i.e., each individual has one
single value that represents his/her longitudinal measures
of blood pressure. On the other hand, the longitudinal VC
approach does not summarize the longitudinal measures
and uses them all, i.e., each individual has a vector of
measures that represents his/her measure of blood pres-
sure levels at each time point. We focus our analyses pri-
marily on chromosome 17 because it was the
chromosome where Levy et al. [9] showed strong evidence
of linkage for systolic blood pressure. Therefore, the pur-
pose of this paper is to compare these two approaches, the
longitudinal VC approach proposed by de Andrade et al.
[8] and the residuals approach proposed by Levy et al. [9],
using the Framingham Heart Study data set.
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Methods
Longitudinal VCs
The longitudinal variance components (LVC) approach is
an extension of the VC approach proposed by Amos [11].
For longitudinal familial data, let Yi = (Yi1,...,YiT)' be a vec-
tor of T time point trait values for ki members of the ith

family, where Yit' = (Yi1t, ..., Yijt,..., Yikit)' for t = 1,..., T. Let

E(Yi) = µ + Xi β and Vi = A Gi + B Πi + C Ii, where 
defines the direct product of two matrices; Gi is a ki × ki

matrix of coefficient of relationship between pairs of rela-
tives; Πi is a ki × ki matrix of IBD values for the ith family; Ii

is a ki × ki identity matrix; and A, B, and C are, respectively,
polygenic, major gene, and random environment vari-
ance-covariance matrices each of dimension T × T. These
matrices are represented by A = (σa.tt'), σa.tt = σ2

a.t, B =
(σg.tt'), σg.tt = σ2

g.t, C = (τg.tt'), τg.tt' = τ2
a.t, with their typical

elements in the parentheses. We assume Yi follows a mul-
tivariate normal distribution. More details about this
method can be found in de Andrade et al. [8].

To test for genetic linkage, we construct a likelihood ratio
test. Under the null hypothesis, the major gene parame-
ters, the σg.tt for all t and t', are restricted to be equal to 0.
The distribution of the longitudinal test is a mixture of χ2

values [12]. For example, for two time points linkage anal-
ysis of an additive genetic effect, the distribution of the
bivariate test that the major-gene covariance components
are zero is a mixture of 1/4 χ2

0, 1/2 χ2
1, and 1/4 χ2

3.

The longitudinal feature was incorporated in the software
ACT [13] within the module multic, which was used to
run the analyses. The longitudinal multipoint linkage
analysis was performed only in the concordant five time
points from Cohorts 1 and 2. The trait of interest was
systolic blood pressure (SBP), and the covariates were age,
gender, and body mass index (BMI). Individuals with
missing values were eliminated from the analysis.

Residuals approach
We used the two-stage procedure described in Levy et al.
[9]. This procedure first calculates the within-subject
mean BP, and second, uses the sample-wide regressions
adjusted for age and BMI, yielding a residual for each sub-
ject. Then, these residuals are the traits used in the quanti-
tative linkage analysis. In our analyses, we consider two
cases: 1) all subjects in both cohorts regardless of age and
2) only subjects between 25 and 75 years. Each of these
analyses was then stratified by time points: 1) using all 21
time points from Cohort 1 and all five time points from
Cohort 2 and 2) using only the concordant five time
points from Cohorts 1 and 2. After the residuals were
obtained, multipoint quantitative linkage analyses were
performed for these four different scenarios using SOLAR

[14]. We also performed a multipoint quantitative linkage
analysis using the average SBP over all measurements for
each subject for additional comparison. LOD score values
were calculated by dividing the likelihood ratio statistic by
4.6 (2/log e).

Results
Figure 1 shows the summary of the multipoint linkage
analysis using the longitudinal VC approach for all possi-
ble pair-wise time points. Figure 1A,1B,1C, depicts the
multipoint LOD values for pair-wise time points at 5 years
apart, at 10 years, apart and at 15 years apart, respectively.
No evidence of linkage was found when using the longi-
tudinal family data structure. The maximum LOD was
0.96 in the surrounding region of the 114-cM position for
time points 1 and 4 (Figure 1C). Figure 2 shows the
multipoint quantitative linkage analysis using the residu-
als, i.e., the summarized measures calculated using the
regression-based approach. The only evidence for linkage
(LOD = 3) occurred when all time points (21 from Cohort
1 and 5 from Cohort 2) and only subjects with ages
between 25 and 75 were used.

Discussion
Although evidence of a gene influencing blood pressure
was reported on chromosome 17 using the Framingham
Heart Study [9], the findings (LOD = 4.7, position = 67
cM) could not be replicated in our analyses. Only when
SBP from all time points in Cohorts 1 and 2 were used and
the subjects' age were restricted to be between 25 and 75
years was a comparable finding reached (LOD = 3.0, posi-
tion = 68 cM). Slager and Iturria [10] also could not repli-
cate Levy et al.'s findings when using two other
approaches of phenotype definitions. We also expected
that the longitudinal VC approach would perform much
better because it takes into account a temporal trend
affecting the genetic variability of the SBP. However, the
maximum LOD found using this procedure was around
0.96 in the surrounding region of the 114 cM position for
time points 1 and 4 (Figure 1C). There was no consistency
among the pair-wise time points multipoint LOD values.

The reason why the results of the two approaches differ
could be several. It could be due to missing values, since
individuals with missing values were eliminated from the
analysis in the longitudinal VC but not from the regres-
sion-based approach. The amount of missing SBP values
among pair-wise time points is around 50%, where time
point 5 has more missing values than the other time
points. Another explanation could be the adjustment that
was used for treatment effect in SBP in Levy et al. [9], i.e.,
the inferred values could be larger than expected, thus
inflating the LOD values [15]. In our longitudinal VC
analysis and in our regression-based analysis we did not
adjust for treatment effect. We assume that if the
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treatment works it lowers the SBP. Therefore, the impact
of not correcting for treatment makes the linkage results
more conservative, which is preferable to false-positive
results. Finally, the departure of normality could also
inflate the LOD values, i.e., increase the false-positive rate
[16].

In summary, the longitudinal VC and the regression
approach showed similar results when all subjects were
used regardless of their age, i.e., no evidence for linkage
was found on chromosome 17. However, the evidence for
linkage was only observed when all SBP time points were
analyzed from both cohorts and when subjects' age were
restricted to be between 25 and 75. Therefore, one possi-

ble conclusion is that the linkage results depend heavily
on the phenotype. By using the residuals as a summarized
measure of the longitudinal SPB, the time point variabil-
ity and missing mechanism are not taken into account
and could therefore lead to spurious linkage results.

Three multipoint LOD scores plots using longitudinal variance components approach on chromosome 17 for pair-wise time points: at 5 years apart (A), at 10 years apart (B), and at least 15 years apart (C)Figure 1
Three multipoint LOD scores plots using longitudinal variance components approach on chromosome 17 for pair-wise time 
points: at 5 years apart (A), at 10 years apart (B), and at least 15 years apart (C).
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Two multipoint LOD scores plots using the residuals approach on chromosome 17 for three different analyses: using all 21 time points from Cohort 1 and all 5 time points from Cohort 2, only the concordant five time points from Cohorts 1 and 2, and the average SBP over all measurements for each subject: with age restriction from 25 to 75 (A), and using all ages (B)Figure 2
Two multipoint LOD scores plots using the residuals approach on chromosome 17 for three different analyses: using all 21 
time points from Cohort 1 and all 5 time points from Cohort 2, only the concordant five time points from Cohorts 1 and 2, 
and the average SBP over all measurements for each subject: with age restriction from 25 to 75 (A), and using all ages (B).
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