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Abstract
Background: Phenotype error causes reduction in power to detect genetic association. We
present a quantification of phenotype error, also known as diagnostic error, on power and sample
size calculations for case-control genetic association studies between a marker locus and a disease
phenotype. We consider the classic Pearson chi-square test for independence as our test of genetic
association. To determine asymptotic power analytically, we compute the distribution's non-
centrality parameter, which is a function of the case and control sample sizes, genotype frequencies,
disease prevalence, and phenotype misclassification probabilities. We derive the non-centrality
parameter in the presence of phenotype errors and equivalent formulas for misclassification cost
(the percentage increase in minimum sample size needed to maintain constant asymptotic power
at a fixed significance level for each percentage increase in a given misclassification parameter). We
use a linear Taylor Series approximation for the cost of phenotype misclassification to determine
lower bounds for the relative costs of misclassifying a true affected (respectively, unaffected) as a
control (respectively, case). Power is verified by computer simulation.

Results: Our major findings are that: (i) the median absolute difference between analytic power
with our method and simulation power was 0.001 and the absolute difference was no larger than
0.011; (ii) as the disease prevalence approaches 0, the cost of misclassifying a unaffected as a case
becomes infinitely large while the cost of misclassifying an affected as a control approaches 0.

Conclusion: Our work enables researchers to specifically quantify power loss and minimum
sample size requirements in the presence of phenotype errors, thereby allowing for more realistic
study design. For most diseases of current interest, verifying that cases are correctly classified is of
paramount importance.

Background
One technique used in gene localization is the case-con-
trol genetic association study [1]. In this method, geno-

type and phenotype data are collected for case and control
individuals [2]. Both genotype and phenotype data often
contain misclassification errors [3,4], adversely affecting
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statistical tests used to locate disease genes [5-9]. Though
phenotype misclassification has been widely studied in
conjunction with disease (e.g. cancer, depression, heart
disease), such studies have primarily focused on environ-
mental association, not genetic association [10-13]. We
are aware of only one recent publication considering phe-
notype misclassification for a test of genetic association
[14].

Page et al. [3] emphasize the importance of studying phe-
notype errors in the context of genetic studies. They note
that more than 1300 National Institutes of Health (NIH)-
funded studies of complex genetic diseases have yielded
fewer than 50 causative polymorphisms in humans
[15,16]. More importantly, only 16%–30% of initially
reported associations are confirmed without evidence of
between-study heterogeneity or bias [15,17,18].

The problem of phenotype misclassification is particu-
larly important, given the high error rates encountered in
some studies. Lansbury [19] reports that postmortem
pathological studies estimate that greater than 15% of
Alzheimer's Disease and Parkinson's Disease cases are
misdiagnosed in the clinic. Duffy et al. [12] report that in
a breast cancer study conducted by Press et al. [20], nearly
half (34 out of 69) of the individuals containing over
expression of the immunohistochemical marker c-erbB-2
were misclassified. Burd et al. [21] found that 5%–12% of
individuals previously diagnosed with Tourette syndrome
were misdiagnosed. They further note that in their three-
step model for linkage analysis, a 5% misclassification
rate in the first step leads to a 20% error rate by the third
step.

In the presence of random errors that are non-differential
with respect to trait status (case or control), the type I error
rate is constant [5]. That is, there is no change in signifi-
cance of the classic chi-square test of independence on 2 ×
n contingency tables (the statistic of interest in this work).
Here and elsewhere, n is the number of observed geno-
types at the marker locus. However, there is a reduction in
the power of the chi-square test and an increase in the
minimum sample size needed to maintain constant
asymptotic power at a fixed significance level [5,22,23]. A
key issue that arises then is a quantification of power loss
in the presence of phenotype errors.

Formulas allowing researchers to perform realistic power
and sample size calculations in the presence of errors ben-
efit researchers in the design of case-control studies by sav-
ing them the cost of excessive genotyping and
phenotyping due to underpowered initial conditions.
Mote and Anderson [22] computed power in the presence
of what we call genotype error (although in a more gen-
eral statistical setting) and proved that the power of the

chi-square test of independence on r × c contingency
tables (r = number of rows; c = number of columns) is
always less than or equal to the power of the test when
data are perfectly classified. Carroll et al. [24] developed
methods for estimating the parameters of a prospective
logistic model given a binary response variable and arbi-
trary covariates with case/control data when the covariates
have measurement error. Gordon et al. [6,7] developed
formulas for power and sample size calculations for the
specific situation of genotype error. They used Mitra's
equation for the non-centrality parameter [6,7,25] to
compute the power and minimum sample size both for
data with and without genotype errors. Gordon et al. [6,7]
showed that a one percent increase in the sum of geno-
typic error rates typically results in a two to eight percent
increase in the minimum sample size for the parameters
and error models considered and that the increase in min-
imum sample size is larger when the allele frequencies are
more extreme [7]. Kang et al. [8] extended this work by
determining a linear approximation for the sample size
increase needed to maintain constant asymptotic power at
a fixed significance level. Kang et al. [8] found that (i) the
cost of genotype misclassifications is a function of the true
genotype frequencies and the ratio of controls to cases; (ii)
in general, misclassifying a more common genotype as a
less common genotype is more costly than the reverse
error; and (iii) certain types of misclassification have costs
that approach infinity as the minor SNP allele frequency
approaches 0.

Our goal in this research is therefore two-fold: (i) to quan-
tify power and sample size for the chi-square test of inde-
pendence on 2 × n contingency tables in the presence of
phenotype errors; and (ii) to quantify the cost of each type
of phenotype error.

We present formulas to facilitate accurate power and sam-
ple size calculations in the presence of phenotype errors.
We perform a genotypic test of association using the Pear-
son chi-square test statistic on 2 × n contingency tables.
The degrees of freedom (in our case n-1) and the non-cen-
trality parameter completely describe the power of the chi-
square test. We express the non-centrality parameter in
terms of the case and control sample sizes, genotype fre-
quencies, and phenotype error model parameters. Rear-
ranging the equation for the non-centrality parameter
gives an equation for the minimum sample size. Addi-
tionally, this work extends Kang et al.'s [8] findings to the
cost of phenotype errors.

Results
As noted in the Methods section (Distinguishing case
from affected and control from unaffected), we use the
term case to refer to an individual who has been diagnosed
as being affected with a given disease, whether or not that
Page 2 of 12
(page number not for citation purposes)



BMC Genetics 2005, 6:18 http://www.biomedcentral.com/1471-2156/6/18
individual is truly affected. Similarly, we use the term con-
trol to refer to an individual who has been diagnosed as
being unaffected with a given disease, whether or not that
individual is truly unaffected. We use the term affected
(respectively, unaffected) to refer to an individual who is
truly affected (respectively, unaffected) with the disease of
interest.

All notation in the Results section is defined in the Meth-
ods section (Notation).

Design of simulation program – null and power 
calculations for a fixed sample size
We performed power simulations for di-allelic and tetra-
allelic loci using the parameter specifications (Table 1) in
the Methods section (Design of the simulation program).
For the null situation, we computed the proportion of rep-
licates for a given set of parameter specifications whose
chi-square statistic exceeded the cutoff determined assum-
ing the appropriate asymptotic null distribution (central
chi-square distribution with either 2 or 9 df for di-allelic
and tetra-allelic simulations, respectively). We call this
proportion the empirical significance level for a given setting
(either 5% or 1%). The median (respectively, maximum)
absolute difference observed over all parameter specifica-
tions in table 1 (di-allelic and tetra-allelic) was 0.0005
(respectively, 0.002; full results not shown). That means,
the empirical significance level was always within 0.002 of

the significance level assuming the appropriate asymp-
totic null distribution. These results confirm Bross's find-
ings [5] that non-differential phenotype misclassification
does not affect the size of the chi-square test of
independence.

For the power simulations, we compared the asymptotic
power with the simulation power using absolute differ-
ence. That is, the absolute difference in power, defined as
|simulation power - asymptotic power|, was calculated for
each simulation. In table 2, we report the minimum, 10th

percentile, 25th percentile, median, 75th percentile, 90th

percentile, and maximum differences at the 5% and 1%
significance levels. There were 27 = 128 data points for
each simulation. For the majority of simulations, the
absolute difference was very small. For both di-allelic loci
and tetra-allelic loci at both significance levels, the
median absolute difference was 0.001. For di-allelic loci,
the maximum absolute difference observed was 0.012 (at
the 1% significance level) while for the tetra-allelic loci,
the maximum absolute difference was 0.011 (also at the
1% significance level).

Although the asymptotic power is a good enough approx-
imation to the simulation power so that it can be used for
design purposes, this difference is somewhat larger than
would be expected in the event that the simulated power
followed a binomial variation with probability equal to

Table 1: Parameter settings for null and power simulations with di-allelic and tetra-allelic loci

Low High

True case and control genotype frequencies p = 0.05 p = 0.15

Pr(affected misclassified as a control) (θ) 0.05 0.15

Pr(unaffected misclassified as a case) (φ) 0.05 0.15

Disease prevalence (K) 0.005 0.05

Number of cases ( ) 500 1000

Number of controls ( ) 500 1000

Significance level 5% 1%

Genotype frequency parameter for tetra-allelic loci (power simulations)

d 1 2

This table presents the low and high parameter settings we consider for null and power simulation calculations for di-allelic and tetra-allelic loci. As 
per the 27 factorial design, null and power simulations are performed on 128 distinct sets of parameter settings. Each simulation uses 100,000 
iterations to determine empirical significance level (null) or simulation power. For di-allelic loci, case and control genotype frequencies are 
determined by the parameter p (see Methods – design of simulation program – power calculations for a fixed sample size). For tetra-allelic loci, 
genotype frequencies are determined by the parameter d (see Methods – Design of simulation program – power calculations for a fixed sample 
size).
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*
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the asymptotic power (based on computation of 95%
confidence intervals – results not shown). We discuss this
issue below (see Discussion).

Cost functions
Using the mathematics presented in the Methods section
(Cost functions), we compute the following formulas: In table 3, we present the values of these cost coefficients

for the parameters considered in table 1. One finding
becomes immediately clear. It is that the cost of misclassi-

Table 2: Percentiles for absolute difference between asymptotic power and simulation power

5% significance level 1% significance level

Di-allelic locus
Minimum 0.0000 0.0000

10th percentile 0.0002 0.0002
25th percentile 0.0005 0.0004
50th percentile 0.0010 0.0011
75th percentile 0.0028 0.0026
90th percentile 0.0065 0.0057

Maximum 0.0099 0.0119
Tetra-allelic locus

Minimum 0.0000 0.0000
10th percentile 0.0000 0.0000
25th percentile 0.0007 0.0008
50th percentile 0.0012 0.0014
75th percentile 0.0028 0.0032
90th percentile 0.0072 0.0081

Maximum 0.0102 0.0111

Power simulations are performed at 100,000 iterations for each set of parameter specifications in the Methods section. Here we report various 
percentiles of the absolute difference |simulation power - asymptotic power| for our simulations. For each locus type (di-allelic, tetra-allelic), 
percentiles are computed using 27 = 128 settings documented in table 1.

Table 3: Cost coefficients for different types of misclassification

K R* p Cθ Cφ

0.005 0.5 0.05 0.01 540.29
0.15 0.01 458.99

1 0.05 0.01 478.32
0.15 0.01 432.67

2 0.05 0.01 440.18
0.15 0.01 415.60

0.05 0.5 0.05 0.09 51.59
0.15 0.10 43.82

1 0.05 0.08 45.67
0.15 0.10 41.31

2 0.05 0.08 42.03
0.15 0.10 39.68

The column heading for this table are as follows: K = prevalence; R* = ratio of controls to cases; p = SNP minor allele frequency in affected 
population; Cθ = Cost coefficient corresponding to misclassification parameter θ – this is a lower bound of the percent increase in sample size 
necessary to maintain constant asymptotic power for every 1% increase in θ Cφ = Cost coefficient corresponding to misclassification parameter φ – 
this is a lower bound of the percent increase in sample size necessary to maintain constant asymptotic power for every 1% increase in φ. The cost 
coefficients are computed using equation (1).
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fying an unaffected as a case is much larger than the cost
of misclassifying an affected as a control. For example, for
a disease prevalence K = 0.05, the minimum cost
coefficient Cφ regarding misclassification of an unaffected
as a case is approximately 40, occurring when R* = 2 and
p = 0.15. The maximum cost coefficient Cθ for the same
prevalence is 0.10, occurring for the same values of R* and
p.

When the prevalence K = 0.005, the cost coefficient Cφ
becomes larger by an order of magnitude. The minimum
value of Cφ is 415, occurring as above when R* = 2 and p
= 0.15. That means that a 1% increase in the value of φ
requires at least a 415% increase in cases and controls to
maintain the same power at any significance level.

A second finding that becomes clear from studying equa-
tion (1) is that the cost coefficient Cφ has an infinite limit
as the prevalence K approaches 0 (for any set of fixed val-
ues of the other parameters), while the cost coefficient Cθ
has a limit of 0. This results comes from the observation
that the dominating terms for the cost coefficients Cφ and
Cθ in equation (1) are (1 - K)/K and K/(1 - K), respectively.

It should be noted that the linear Taylor approximation is
not very accurate for even small values of φ. The linear Tay-
lor approximation is useful, though, in that it serves as a
lower bound for the percentage sample size increase. That
is, percent increase in sample size is at least Cφ for any
value of φ. We illustrate this point in the next section.

Minimum sample size requirements in presence of 
phenotype misclassification – Alzheimer's disease ApoE 
example
Figure 1 presents a contour plot of the minimum sample
size necessary to maintain a constant power of 95% at the
5% significance level using the parameter values taken
from the methods section (see Methods – Minimum sam-
ple size requirements in presence of phenotype misclassi-
fication – Alzheimer's disease ApoE example). Each
approximately horizontal line represents a constant mini-
mum number of cases (as a function of the misclassifica-
tion parameters φ and θ). For two consecutive horizontal
lines, the values in between those lines (represented by
different colors) have sample sizes that are between the
sample sizes indicated by the two horizontal lines. For
example, consider the consecutive, approximately hori-
zontal lines labeled 3394.9 and 4365.9 (third and fourth
lines up, respectively, in figure 1). All values of θ and φ
whose Cartesian coordinate(θ, φ) lies between these two

lines have a corresponding minimum sample size 
between 3395 and 4365. An example of such a pair is the
coordinate (0.00,0.075). Note that the minimum sample

size  of 484 occurs when φ = θ = 0 and the maximum

sample size  of 10,187 occurs when φ = θ = 0.15.

Our results for the cost functions are consistent with the
findings here. For values of φ less than 0.02, sample size
increase appears to be constant in the parameterθ. That is,
misclassification of an affected as a control does not affect
the sample size estimates at all. However, even a 1% mis-
classification of an unaffected as a case requires a sample
size increase from 486 to 921 (φ = 0.01, θ = 0.0 in figure
1; exact results not shown) to maintain constant power,
an approximately 90% increase. As the probability of mis-
classifying an unaffected as a case φ increases, there
appears to be an interaction between the two misclassifi-
cation parameters, requiring even larger sample size
increases than would be expected if the sample size
increase were linear in each misclassification parameter
(figure 1).

Comparison of power loss for fixed sample size when only 
one misclassification parameter is non-zero
Another way of interpreting cost is by considering the
power loss for fixed sample size. We demonstrate this
point in figure 2. In that figure, we present the power in
the presence of phenotype misclassification when either
the θ or φ parameter is set to 0 and the other parameter
ranges from 0 to 0.15 in increments of 0.01. Power is cal-
culated at the 1% significance level assuming 250 cases
and 250 controls, a SNP locus with case minor allele
frequency 0.05, control minor allele frequency 0.15
(Hardy Weinberg equilibrium in both populations), and
two settings of disease prevalence (K = 0.05, 0.01). Power
is determined through calculation of the non-centrality
parameter (equation (2)).

The results of figure 2 further illustrate the importance of
distinguishing between the two types of misclassification.
When the φ parameter is 0, the asymptotic power is virtu-
ally independent of the value of the φ parameter and the
disease prevalence K. Power values for all settings of φ and
K are approximately 99%. When the θ parameter is 0, the
asymptotic power reduces to 91% when φ = 0.01, K = 0.05
and to 33% when φ = 0.01, K = 0.01. When φ = 0.02,
power reduces to 76% when K = 0.05 and to 11% when K
= 0.01. These examples further document the dominating
effect that disease prevalence has on power and/or sample
size requirements in the presence of phenotype misclassi-
fication error.

Discussion
As we noted above (Results – Design of simulation pro-
gram – power calculations for a fixed sample size), the
asymptotic power is a good enough approximation to the
simulation power so that it can be used for design pur-
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*
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poses. However, the difference is somewhat larger than
would be expected in the event that the simulated power
followed a binomial variation with probability equal to
the asymptotic power. One possible explanation may be
that our simulation studies were "under-powered" so that
the asymptotic theory did not hold. Indeed, the median
power value at the 5% significance level for our simula-
tion studies (table 1) was 13% (full results not shown).
Given such low overall power levels and also the fact that,
for the SNP minor allele frequency of 0.05, Cochran's
condition of a minimal expected cell count of 5 is not
achieved [26], it is conceivable that effective sample sizes

are not sufficient for power values based on asymptotic
theory to hold. Other authors studying misclassification
error have also observed this phenomenon [27].

While we have considered a genetic model-free frame-
work here, we note that our work easily extends to a
genetic model-based framework as well [6,7]. We will
implement calculations using a genetic model-based
framework in our web tool (next paragraph).

Given the accuracy of our method (absolute errors no
larger than 0.012, based on simulations), we conclude

Contour plot of minimum number of cases needed to maintain constant asymptotic power of 95% at a 5% significance level in the presence of phenotype misclassification for Alzheimer's disease ApoE exampleFigure 1
Contour plot of minimum number of cases needed to maintain constant asymptotic power of 95% at a 5% sig-
nificance level in the presence of phenotype misclassification for Alzheimer's disease ApoE example. We com-

pute the increase in minimum cases ( ) needed to maintain constant 95% asymptotic power at the 5% significance level 
(using a central χ2 distribution with 5 degrees of freedom) in the presence of errors. Sample sizes are computed using equation 
(3). The affected and unaffected genotype frequencies are taken from a previous publication [9, 14]. In that work, the marker 
locus considered was ApoE and the disease phenotype was Alzheimer's disease. We use the LRTae estimates from table 5 of 
that work [9]. Six genotypes are observed in most populations. The frequencies we use to perform the sample size calculations 
in figure 1 are presented in the Methods section (Minimum sample size requirements in presence of phenotype misclassification 
– Alzheimer's Disease ApoE example). We assume that equal numbers of cases and controls are collected. Also, we specify a 
prevalence K = 0.02, which is consistent with recent published reports for Alzheimer's Disease in the U. S. [32]. Sample sizes 
are calculated for each misclassification parameter θ, φ ranging from 0.0 to 0.15 in increments of 0.01. The number of cases 
ranges from 484 when θ = φ = 0 to 10,187 when θ = φ = 0.15. In this figure, each (approximately) horizontal line represents a 
constant sample size as a function of the misclassification parameters θ and φ. For two consecutive horizontal lines, the values 
in between those lines (represented by different colors) have sample sizes that are between the sample sizes indicated by the 
two horizontal lines.
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that researchers may use our method to accurately deter-
mine power and sample size calculations for case/control
genetic association studies in the presence of phenotype
misclassification. We have developed a web tool that per-
forms these calculations online. The URL for this tool is:
http://linkage.rockefeller.edu/pawe/paweph.htm.

Conclusion
In this work, we developed a method for performing real-
istic power and sample size calculations in the presence of
phenotype errors. Simulation results suggest that our for-
mulas (equations (2) and (3)) may be used to design case/
control genetic association studies incorporating pheno-
type misclassification. We confirmed that phenotype
misclassification always reduces the power of the chi-
square test of association (as was first shown by Bross [5]),
and consequently, increases the minimum sample size
needed to maintain constant asymptotic power.

Our cost calculations reveal two significant findings. The
first is that power and/or sample size is most significantly
altered by a change in disease prevalence. Specifically, the

cost coefficient for misclassifying an affected as a control
is of the order of magnitude K/(1 - K) and the cost coeffi-
cient for misclassifying an unaffected as a case is of the
order of magnitude (1 - K)/K, where K is the disease prev-
alence (equation (1)). This finding suggests that, for many
diseases of current interest, where prevalence is usually
less than or equal to 0.10, it is much more important to
insure that cases are truly cases rather than controls being truly
controls. Zheng and Tian [14] made this same observation
(without the explicit computation of cost coefficients) for
the linear test of trend applied to cases and controls geno-
typed at a SNP marker.

Methods
Distinguishing case from affected and control from 
unaffected
Throughout this work, we use the term case to refer to an
individual who has been diagnosed as being affected with
a given disease, whether or not that individual is truly
affected. Similarly, we use the term control to refer to an
individual who has been diagnosed as being unaffected
with a given disease, whether or not that individual is

Power to detect association for two different settings of prevalence when only one phenotype misclassification parameter is non-zeroFigure 2
Power to detect association for two different settings of prevalence when only one phenotype misclassification 
parameter is non-zero. In this figure, the horizontal axis refers to the misclassification probability for one parameter when 
the second parameter is 0. For example, the graphs labeled "φ = 0" provide power calculations at two settings of disease prev-
alence (K = 0.05, K = 0.01) as a function of θ values ranging from 0.0 to 0.15 on the horizontal axis. Similarly, the graphs labeled 
"θ = 0" provide power calculations at two settings of disease prevalence (K = 0.05, K = 0.01) as a function of φ ranging from 0.0 
to 0.15 on the horizontal axis.
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truly unaffected. We use the term affected (respectively,
unaffected) to refer to an individual who is truly affected
(respectively, unaffected) with the disease of interest. A
key assumption we make through the paper is that we
collect only cases and controls for our test of genetic
association.

Notation
We use the following notation:

Count parameters
a = Number of alleles at the marker locus. The number of
genotypes at the marker locus is always a(a + 1)/2 = n.

 = Number of cases; this quantity is a fixed parameter
in our design.

 = Number of controls; this quantity is a fixed param-
eter in our design.

 = Ratio of controls to cases.

Probability parameters
K = Prevalence of disease.

p0j = Frequency of genotype j at the marker locus for the
affected group, 1 ≤ j ≤ a(a+1)/2.

p1j = Frequency of genotype j at the marker locus for the
unaffected group, 1 ≤ j ≤ a(a+1)/2.

 = Frequency of genotype j at the marker locus for the

case group, 1 ≤ j ≤ a(a+1)/2.

 = Frequency of genotype j at the marker locus for the

control group, 1 ≤ j ≤ a(a+1)/2.

Error model parameters
θ = Pr (affected individual classified as control) = 1 - Se,
where Se is the sensitivity of the phenotype measurement
instrument.

φ = Pr (unaffected individual classified as case) = 1 - Sp,
where Sp is the specificity of the phenotype measurement
instrument. This notation was used by Bross [5].

A key assumption we make here is that these errors are
random and independent. Furthermore, they are non-dif-
ferential with respect to a particular genotype [14].

Cost parameters
Cθ = Cost of misclassifying an affected individual as a con-
trol. This value is the percent increase in minimum sam-
ple size necessary to maintain constant power for every
one percent increase in the value of θ.

Cφ = Cost of misclassifying an unaffected individual as a
case. This value is the percent increase in minimum sam-
ple size necessary to maintain constant power for every
one percent increase in the value of φ.

Expressing case and control genotype frequencies in terms 
of affected and unaffected genotype frequencies
We comment that the case and control genotype frequen-

cies, , , may be written in terms of the affected and

unaffected genotype frequencies, p0j, p1j, the disease prev-
alence K, and the misclassification error probabilities, θ
and φ. Using the law of total of probability, we have:

 = [p0j (1 - θ) K + p1jφ(1 - K)]/[(1 - θ) K + φ(1 - K)], 1 ≤
j ≤ a(a + 1)/2

 = [p0jθK + p1j(1 - φ)(1 - K)]/[θK + (1 - φ)(1 - K)]. 1 ≤ j

≤ a(a + 1)/2

For a derivation, see the Appendix.

It is interesting to note that determination of case and
control genotype frequencies in the presence of only phe-
notype error differs from determination of the same fre-
quencies in the presence of only genotype error in that
one needs to specify disease prevalence for phenotype
error (in addition to specifying the respective misclassifi-
cation probabilities for phenotype and genotype) [7,14].

Test statistic for genotypic association
The test statistic considered in this work is Pearson's chi-
square statistic on 2 × n contingency tables. Here, the two
rows refer to the two possible classifications (case or con-
trol) and the n columns correspond to the n different gen-
otypes, where n = a(a + 1)/2. Using this statistic on 2 × n
contingency tables, we test for association between geno-
type and disease status. We selected the genotypic test of
association because the null distribution of the allelic test
of association cannot be determined when either the case
or control group genotype frequencies deviate from
Hardy-Weinberg Equilibrium (HWE) [28,29]. Let Grc

equal the observed count of the cth genotype in the rth

group, where 1 ≤ c ≤ n and r = 0 for the case population
and r = 1 for the control population. Then, the chi-square
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statistic is given by the formula

.

In this expression, the expected cell count of the cth geno-
type in the rth group, Erc, is determined by the equation Erc

= SrDc/N, where  is the row total for the rth

group,  is the column total for the cth geno-

type, and  is the total sample size.

Under the null hypothesis of no association between the
marker locus and the disease (p0j = p1j for all j), the statistic
X2 is asymptotically distributed as a central χ2 with n - 1
degrees of freedom. We verify this statement in our simu-
lations (see Results).

Asymptotic power calculations
In this section, we describe our method for computing
asymptotic power in the presence of errors. The asymp-
totic power is summarized by a non-centrality parameter
λ, which is a function of the case and control sample sizes
and the respective genotype frequencies.

The asymptotic power is , where β is

the probability of a type II error (accepting a false null

hypothesis) and  is the cumulative distribution

function (CDF) for the non-central χ2 distribution with n-
1 degrees of freedom evaluated at the α percentile of the
null distribution, which is a central χ2 distribution with n
- 1 degrees of freedom.

Asymptotic non-centrality parameter
Mitra [25] derived the asymptotic power function for the
chi-square test for unmatched cases and controls. Under
the alternative hypothesis, the distribution is a non-cen-
tral χ2 with n -1 degrees of freedom and non-centrality
parameter λ*. Mitra [25] showed that for perfectly classi-
fied data (i.e., θ = φ = 0)), the non-centrality parameter is
given by

where the sample sizes  and  are fixed by design

and the genotype frequencies  and  are equal to p0j

and p1j respectively, for each j. In the presence of pheno-

type errors, the genotype frequencies  and  are

biased away from their true values, as indicated by for-
mula (1). We verify the accuracy of the non-centrality
parameter formula (2) using simulations (see Methods –
Design of simulation program – null and power calcula-
tions for a fixed sample size).

Increase in minimum sample size
We determine the minimum sample size needed to main-
tain constant power at a fixed significance level in the
presence of phenotype errors. The minimum sample size

for cases  can be found by rearranging equation (2)

and substituting . We obtain

Design of simulation program – null and power 
calculations for a fixed sample size
We perform simulations using 100,000 iterations to verify
(i) the nominal significance levels under the null hypoth-
esis; and (ii) the asymptotic power calculations provided
by equation (2). We use a 27 factorial design [30] in which
we set lower and upper bounds for each set of parameters.
In the simulations, we consider both di-allelic and tetra-
allelic loci. For each simulation, both the affected and
unaffected genotype frequencies are in HWE. For the
power simulations using di-allelic loci, the genotype
frequencies are specified as follows using a parameter p:
for the affected group, p01 = (1 - p)2, p02 = 2p(1 - p), p03 = p2,
and for the unaffected group, p11 = (1 - p - 0.1)2, p12 = 2(p
+ 0.1)(1 - p - 0.1), p13 = (p + 0.1)2. That is, the SNP minor
allele frequency in the unaffected population is equal to
the sum of the SNP minor allele frequency in the affected
population (p) and 0.1. For the null simulations, both the
affected and unaffected groups have genotype frequencies
as specified above for p0j, j ∈ {1,2,3}. Our parameter set-
tings for the factorial design are shown in table 1.

For the tetra-allelic loci, the parameter settings are the
same as for the di-allelic loci with the exception of the
affected and unaffected genotype frequencies. For the
tetra-allelic loci, we let p = 0.25 and specify the genotype
frequencies for power simulations as follows using a
parameter d. For the affected population, the probability
of a homozygous genotype is p2+d(0.03) and the proba-
bility of a heterozygous genotype is 2p2 - d(0.02), where d
= 1,2. For the control group, the probability of a
homozygous genotype is 0.0625 and the probability of a
heterozygous genotype is 0.125. For null simulations, we
set d = 0.

Here, we briefly describe the algorithm used to simulate
our phenotype and genotype data for each replicate of a
particular simulation. Note that a simulation is com-
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pletely described by the each of the 7 parameter settings
provided in table 1. For each individual in each replicate,
we first randomly assign the individual an affection status
(affected or unaffected) using the disease prevalence K.
We then randomly assign the individual a genotype con-
ditional on the affection status using the conditional
probabilities p0j and p1j. Once affection status and geno-
type are determined, we then randomly assign case or con-
trol status using the individual's affection status and the
phenotype misclassification probabilities. Within each
replicate, we repeat this procedure until we have the spec-
ified number of cases and controls. Because of the low
prevalence, we invariably reach our required number of
controls much more quickly than we reach our required
number of cases. In such situations, we simply ignore all
assigned control individuals after reaching our required
number, and keep collecting cases until we achieve that
required number.

Cost functions
We demonstrate how to compute the sample size cost
coefficient of phenotype misclassification to gain insight
into which type of misclassification requires the greater
increase in sample size for fixed power. Let λ equal the
non-centrality parameter when there is no phenotype
misclassification and let λ* equal the non-centrality
parameter in the presence of phenotype errors. To find the
sample size adjustment needed to maintain constant
power, we set λ = λ*. We considered this condition previ-
ously when studying the cost of genotype error [8]. Let

 and

. Then the

condition λ = λ* may be rewritten as 

or . Though the cost of misclassification for

cases is mathematically defined as the ratio /NA, we

instead consider the reciprocal ratio NA/  because the
latter allows for more straightforward computation. We

approximate NA/  using a first-order Taylor Series
expansion centered at (θ, φ) = (0,0). We obtain

. Here, (∂/∂θ)[f]|(0,0) is the partial differential operator
(with respect to θ) acting on the function f and evaluated
at the point (0,0). An identical definition holds for (∂/
∂φ)[f]|(0,0).

Since , the previous equation can be

rewritten as

, where

.

We note that because ,

. We let

.

Minimum sample size requirements in presence of 
phenotype misclassification – Alzheimer's disease ApoE 
example
We determine the minimum sample size necessary to
maintain a constant power of 95% at the 5% significance
level using formula (3) and considering estimated geno-
type frequencies from a recently published genetic associ-
ation analysis of Alzheimer's Disease (AD) cases and
controls genotyped at the ApoE marker locus [9]. In most
populations there are three alleles at the ApoE locus.
Conventionally, they are denoted ε2, ε3, and ε4 and we
label them 2, 3, and 4 respectively in this work. In a well
known and often replicated association finding, every
copy of the 4 allele in a person's genotype increases that
person's risk of getting late-onset AD by a factor of 2.5–3
[31]. Furthermore, recently published estimates of preva-
lence for Alzheimer's Disease in the US hover around the
2% range [32]. Thus, for our sample size calculations, we
assume a prevalence K = 0.02.

If we index the six genotypes as 1 = 22, 2 = 23, 3 = 24, 4 =
33, 5 = 34, 6 = 44, then the genotype frequency values we
use for our sample size calculations (taken from our pre-
vious work [9]) are:

p01 = 0.019, p11 = 0.000, p02 = 0.057, p12 = 0.118, p03 =
0.019, p13 = 0.024, p04 = 0.465, p14 = 0.699, p05 = 0.344, p15
= 0.159, p06 = 0.096, p16 = 0.000.

As it has been documented that phenotype misclassifica-
tion in Alzheimer's Disease may run as high as 15% or
more [19], we consider phenotype misclassification val-
ues 0 ≤ θ, φ ≤ 0.15, in increments of 0.01. It is assumed
that there are equal numbers of cases and controls (R* =
1).
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Appendix
Here, we derive formulas for the case and control geno-

type frequencies, , , in terms of the affected geno-

type frequencies p0j, the unaffected genotype frequencies
p1j, the disease prevalence K, and the misclassification
error probabilities, θ and φ. Zheng and Tian derived simi-
lar results in a genetic-model based framework [14].

 = Pr(genotype = j | case) = Pr(genotype = j, case)/

Pr(case)

= [Pr(genotype = j, case, affected) + Pr(genotype = j, case,
unaffected)]/Pr(case)

= [Pr(genotype = j | case, affected) Pr(case | affected)
Pr(affected) + Pr(genotype = j | case, unaffected) Pr(case |
unaffected) Pr(unaffected)]/[Pr(case | affected)
Pr(affected) + Pr(case | unaffected) Pr(unaffected)]

= [p0j (1 - θ)K + p1jφ(1 - K)]/[(1 - θ)K + φ(1 - K)].

 = Pr(genotype = j | control) = Pr(genotype = j,

control)/Pr(control)

= [Pr(genotype = j, control, affected) + Pr(genotype = j,
control, unaffected)]/Pr(control)

= [Pr(genotype = j | control, affected) Pr(control |
affected) Pr(affected) + Pr(genotype = j | control, unaf-
fected) Pr(control | unaffected) Pr(unaffected)]/[Pr(con-
trol | affected) Pr(affected) + Pr(control | unaffected)
Pr(unaffected)]

= [p0jθK + p1j(1 - φ)(1 - K)]/[θK + (1 - φ)(1 - K)].
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