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Abstract
Population-based case-control association is a promising approach for unravelling the genetic basis
of complex diseases. One potential problem of this approach is the presence of population
structure in the samples. Using the Collaborative Study on the Genetics of Alcoholism (COGA)
single-nucleotide polymorphism (SNP) datasets, we addressed three questions: How can the
degree of population structure be quantified, and how does the population structure affect
association studies? How accurate and efficient is the genomic control method in correcting for
population structure? The amount of population structure in the COGA SNP data was found to
inflate the p-value in association tests. Genomic control was found to be effective only when the
appropriate number of markers was used in the control group in order to correctly calibrate the
test. The approach presented in this paper could be used to select the appropriate number of
markers for use in the genomic control method of correcting population structure.

Background
Unraveling the genetic basis of psychiatric diseases such as
alcoholism is becoming the major challenge and focus of
genetic studies, and large-scale case-control association
studies at the genomic level are a promising approach.
One potential problem for association studies is the pres-
ence of population structure in the samples, which raises
the potential for confounding and spurious results. For
example, if the samples come from several subpopula-
tions with different allele frequencies, and if the propor-
tions of cases and controls sampled from each
subpopulation are not matched, differences in allele fre-
quencies between cases and controls will appear, mimick-
ing a statistical signal of association and leading to false-
positive results. However, there has been much debate
over how much population structure exists and how seri-
ous a problem it poses to association studies. With the
advances in genotyping techniques, association studies
can now be carried out at the genomic level using thou-
sands of genetic markers. There have been few studies of

the effects of population structure on association studies
using such data. Recently, Marchini et al. performed such
a study [1]; however, their results were based on simulated
samples using a Bayesian model extrapolated from a very
limited dataset. Even though the Bayesian model fit their
data quite well, it would be of interest to compare their
results with those from a study that uses a large set of real
data. Therefore, we used the Collaborative Study on the
Genetics of Alcoholism (COGA) data from Genetic Anal-
ysis Workshop 14 (GAW14) to assess the effects of popu-
lation structure on large-scale association studies. Three
questions were addressed by our study. How can the
degree of population structure be quantified, and how
does the population structure affect association studies?
How accurate and efficient is the genomic control method
for correcting for population structure?
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Methods
Data
The COGA single-nucleotide polymorphism (SNP) data
from GAW14 was used in this study. The data consisted of
two sets of SNP genotype data, one from Affymetrix, the
other from Illumina. The datasets contained individuals
from 143 extended families. A total of 304 unrelated indi-
viduals were selected from these families, including the
founders and marry-ins from each family. When the gen-
otypes of both founders were not available, one of the
children of the founders was randomly selected. Among
these 304 unrelated individuals, 265 were White, 30 were
Black, and 9 were others. The Affymetrix dataset contained
genotypes at 10,810 SNP markers, while the Illumina
dataset contained genotypes at 4,596 markers.

Quantifying population structure

To quantify the population structure, we used the statistic
FST, which measures variation in allele frequency between

populations. We used the unbiased estimator of FST at a

bi-allelic SNP described by Weir and Cockerham [2] (see
also Weir [3]). Specifically, suppose samples are drawn
from S populations and there are two alleles, A and a, at
any given SNP. Let the frequency of allele A in the ith pop-
ulation be pi, the average allele frequency across popula-

tions be , and the sample size from the ith population be

ni. Then the observed mean square errors of allele fre-

quency within a population, denoted as MSI, was com-
puted as

and the observed mean square errors of allele frequency
between populations, denoted as MSP, was computed as,

FST can then be estimated as,

where nc is the average sample size across populations. To
correct for the different sample sizes from each popula-
tion, and is given by

It is possible for this unbiased estimator to result in values
below zero; therefore, because FST must be a value
between 0 and 1, FST is set to 0 in such situations. We esti-
mated values of FST for each SNP in our sample of 304
individuals.

Measuring association at an SNP locus
In order to quantify the effects of population structure on
tests for association in our sample, we randomly assigned
case/control status while keeping the population structure
observed in the total sample. We randomly chose 152
Whites to be cases, and the remaining individuals were
assigned to be controls. For each SNP locus, 1,000 such
random assignments were performed. The association for
each assignment was measured using Armitage's trend test
under an additive genetic model [4], which has been
shown to be robust against deviations of genotype fre-
quencies from Hardy-Weinberg equilibrium [5]. Suppose
the two alleles at an SNP locus are denoted as A and a,
then this test statistic is given by

where N is the total sample size, R is the number of cases,
n1 and n2 are the number of individuals with genotypes Aa

and AA in the sample, respectively, and r1 and r2 are the

number of cases with genotypes Aa and AA, respectively.
Under the null hypothesis of no association, and assum-
ing no population structure, Y2 should follow asymptoti-

cally a χ2 distribution with 1 degree of freedom. For each
locus, 1,000 random assignments were performed, and Y2

was computed for each assignment. Thus, using the Affy-
metric data set we generated 10,810,000 samples from the
distribution of Y2 with the specific level of population
structure observed in the COGA data. For the Illumina
data set, we generated 4,596,000 such samples. The
empirical distribution of the test statistic Y2 was compared

with the  distribution to study the effects of popula-

tion structure under the null hypothesis.

Genomic control

Recently, several statistical methods have been proposed
to perform association studies in the presence of popula-
tion structure. One popular method is genomic control, in
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which a set of unlinked markers is selected to correct for
population structure [6]. The idea is that population struc-

ture inflates the test statistic Y2 by some constant value, λ,
which can be estimated by the L unlinked markers in the
genomic control group. Here we examined the perform-
ance of genomic control with a large sample size and
small nominal p-value from the real COGA dataset. The L
markers were chosen randomly from all the markers in
each dataset by assuming a uniform distribution over the
markers, with the constraint that the genetic distance
between neighboring markers was greater than 1 cM. This
selection strategy leads to loci in genomic control that are
unlikely to be correlated [7]. As in the study by Bacanu et

al. [8], a robust estimator of λ was used, which is given by

. As in another recent

study [1], any estimate of λ below 1 was set to 1.

Results
The mean of FST in the Affymetrix data set was 0.085 with
a variance of 0.013. The mean of FST in the Illumina data
set was 0.070 with a variance of 0.006. These results indi-
cate that there is a substantial amount of population struc-
ture in our samples. The results are similar to values
reported in major human races [9].

The effects of population structure on association studies
were assessed by comparing the actual p-value from the
empirical distribution of Y2 with its nominal p-value from

the  distribution. The multiplicative change of the

resulting p-value is defined as the actual p-value divided by
the nominal p-value. The results from the Affymetrix and
Illumina datasets are given in Figure 1, in which the mul-
tiplicative change in p-values is graphed on a log10 scale.

Figure 1 indicates that the level of population structure in
our sample would cause problems for conventional asso-
ciation studies. The actual p-value was inflated owing to
population structure. This suggests that the presence of
population structure produces an empirical distribution
of p-values with heavier tails than the theoretical distribu-
tion, which leads to more false-positive results. Also, the
problem posed by population structure becomes more
and more serious as the nominal p-value decreases. When
nominal p = 10-5, the actual p-value was inflated by more
than 2 orders of magnitude as it is shown on a log10 scale.

The magnitude of this inflation was different in the 2 data-
sets, which could be due to the differences in the number
of markers and allele frequencies of the markers.

Genomic control was performed with various numbers of
markers, L, examined in the genomic control group.
Results from the Affymetrix dataset are shown in Figure 2.
The results from the Illumina dataset were quite similar,
and are not shown. These results indicate that genomic
control can be an effective approach to correct for popula-
tion structure. Compared to the corresponding values in
Figure 1, the actual p-value in Figure 2 decreased substan-
tially. However, the effectiveness of genomic control var-
ies depending on L, the number of markers examined.
When L is small (e.g., L = 50), the actual p-value will still
be inflated compared to its nominal p-value, most obvi-
ously when the nominal p-value is very small. When L is
large (e.g., L = 500 or 1,000), the effects of population
structure can be over-corrected, especially when the nom-
inal p-value is small. For example, when L = 1,000, the
actual p-value after correction can be more than 2 orders
of magnitude smaller than the nominal p-value when p =
10-5, which makes the test unacceptably conservative,
leading to the loss of power to detect a true signal. There-
fore, it is not always true that the more loci in the genomic
control group, the better its correction. The number of loci
L used for genomic controls has to be carefully selected. In
our case, L = 100 consistently resulted in good correction
at various levels of p-values. It took an average of 2 hours
to perform the marker selection and genomic control for
each L on our Sun Sparc system with a 750 MHz CPU.

Discussion
Figure 1 indicates that the amount of population structure
in our sample of unrelated individuals drawn from the
COGA families could well inflate the p-values of genetic
association studies. This result is the opposite of that
obtained by Marchini et al. [1], as illustrated in their Fig-
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Multiplicative changes in p-values due to population structureFigure 1
Multiplicative changes in p-values due to population struc-
ture.
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ure 3, where population structure was shown to decrease
p-values. The discrepancy could be due to the small sam-
ple sizes used in their study.

The results in Figure 1 also indicate that as the nominal p-
value decreases, the problem posed by a given amount of
population structure becomes more and more serious.
This could have important implications for genetic studies
in which very large numbers of markers are used. Owing
to the thousands of markers tested in such studies, correct-
ing for multiple testing would mean that any "significant"
result would have a much lower p-value in order for the
association results to be considered "significant." Usually,
the genome-wide significance level is set in the very low
range of 10-4 to 10-8 [10]. Our results indicate that in this
range, the problem posed by population structure
becomes very serious indeed. As a consequence, the effects
of population structure cannot be safely ignored for
genome-wide association studies, and steps must be taken
to correct for the effects of population structure.

One popular method for correcting the effects of popula-
tion structure is the genomic control approach, wherein
several unlinked markers are genotyped to correct for the
observed level of population structure in the sample at
hand. The performance of genomic control was assessed
in our samples for a variable number of independent
markers. The performance of genomic control does vary,
depending on the number of markers L examined in the
genomic control group. When L is small (e.g., L = 50), the
correction is incomplete, resulting in a lax test and false-
positive results. When L is large, there is over-correction,

resulting in a conservative test, which would lead to miss-
ing real signals. The conclusion by Marchini et al. [1] that
"If enough loci are used, then the test will typically be
approximately calibrated" does not seem to be true
according to our analysis. Therefore, choosing the appro-
priate L becomes critical for correctly calibrating tests for
association. The exact reason for this result is unclear, and
further validation is required. Simulation studies have
suggested that linkage disequilibrium is not likely to
extend beyond 5 kb, even in relatively isolated popula-
tions [7]. Since in our study, the genetic distance between
neighboring markers was at least 1 cM, using the approxi-
mation 1 cM = 1 Mb, it is unlikely that correlation
between markers could be the reason. Therefore, one pos-
sible explanation is that in our dataset, there could be
much variation in λ across the genome, which is not
accounted for in the estimation of λ. Following the proce-
dure proposed in this report, a grid search could be per-
formed for the appropriate L at a specific level of
significance.

Conclusion
Through our analysis based on real datasets, we have
shown that population structure inflates the p-values in
genetic association studies, especially in cases of very
small p-values. Therefore, the effects of population struc-
ture cannot be safely ignored in large-scale association
studies at the genomic level, where the p-value is usually
required to be very small in order to achieve statistical sig-
nificance. Genomic control is an effective way to correct
for the effects of population structure, but only when the
appropriate number of markers is used. The approach
proposed in this paper could be used to select the appro-
priate number of markers. However, caution must be
taken because the exact underlying reason for varying the
number of loci in genomic controls may be dependant on
several other factors that were not considered here.
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COGA: Collaborative Study of the Genetics on Alcohol-
ism

GAW14: Genetic Analysis Workshop 14

MSI: Mean square errors of allele frequency within a pop-
ulation

MSP: Mean square errors of allele frequency between a
population

SNP: Single-nucleotide polymorphism
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