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Abstract

Background: This paper deals with the detection of significant linkage for quantitative traits using
a variance components approach. Microsatellite markers were obtained for the Genetic Analysis
Workshop 14 Collaborative Study on the Genetics of Alcoholism data. Ethnic heterogeneity, highly
skewed quantitative measures, and a high rate of missing values are all present in this dataset and
well known to impact upon linkage analysis. This makes it a good candidate for investigation.

Results: As expected, we observed a number of changes in LOD scores, especially for
chromosomes 1, 7, and 18, along with the three factors studied. A dramatic example of such
changes can be found in chromosome 7. Highly significant linkage to one of the quantitative traits
became insignificant when a proper normalizing transformation of the trait was used and when
analysis was carried out on an ethnically homogeneous subset of the original pedigrees.

Conclusion: In agreement with existing literature, transforming a trait to ensure normality using
a Box-Cox transformation is highly recommended in order to avoid false-positive linkages.
Furthermore, pedigrees should be sorted by ethnic groups and analyses should be carried out
separately. Finally, one should be aware that the inclusion of covariates with a high rate of missing
values reduces considerably the number of subjects included in the model. In such a case, the loss
in power may be large. Imputation methods are then recommended.

Background

The purpose of this paper is to illustrate the impact of
three factors: robustness to non-normality, population
admixture, and covariates with a high rate of missing val-
ues, on the linkage detected using a variance components
approach. The effect of these factors has been well studied
in linkage analysis. As we shall see, the Collaborative
Study on the Genetics of Alcoholism (COGA) dataset
offers a very good illustration of the dramatic changes
observed when such aspects are not considered carefully.

Variance components approaches determine whether
genetic variation at a specific chromosomal location can
explain the variation in the phenotype [1]. This nonpara-
metric approach is based on the difference of LOD score
of the likelihood under the null and alternative hypothe-
sis, where likelihoods are computed under a multivariate
normality assumption of the trait under study. This
method is known to have optimal power when the model
is well specified [2] but is also known as lacking robust-
ness to the normality assumption of the trait [3].
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Population admixture is another phenomenon that has
been studied [4]. It is known, for example, that the differ-
ence in the allele frequencies or disease rates between sub-
populations may lead to violation of the key assumptions
of Hardy-Weinberg equilibrium (HWE) and linkage equi-
librium (LE) between markers. For example, as Grigul et
al. [5] showed, linkage results can be greatly affected by
clustering families from an admixed population using
pedigree-specific marker allele frequencies.

The last aspect considered in this work deals with the
inclusion of covariates in the model with a high propor-
tion of missing values. Several methods of imputation for
missing values are available, and we refer for example to
Fridley et al. [6] regarding the polygenic model. Despite
this fact, many genetic analysis packages still ignore indi-
viduals with missing covariates in the model. This can
have a very strong impact on the results, because the sam-
ple size is considerably reduced, affecting the power of the
analysis in most cases.

Methods

Genome-wide scan analysis was performed on 329 micro-
satellite markers obtained for 1,350 of the 1,614 individ-
uals in the Genetic Analysis Workshop 14 (GAW14)
COGA pedigree data.

Selecting the quantitative traits

We first sought candidate traits that could be used as an
illustration of the impact of the factors studied. After per-
forming genome-wide scan analyses on different electro-
physiological quantitative phenotypes, we selected three
traits, named ttth1, ttdt3, and ttdt4 in the COGA data, that
expressed significant linkage in some regions of the
genome. These traits are also commonly referred to as
event-related potential (ERP) traits.

Preparing the pedigrees

In order to measure the influence of ethnicity of pedigrees
on quantitative trait locus (QTL) linkage detection, we ran
a genome-wide scan analysis on two sets of COGA pedi-
grees. The first set contained all pedigrees as in the
GAW14 COGA data (1,614 individuals distributed in 143
families) and the second set contained 105 pedigrees
extracted from the initial set of pedigrees, namely those
whose members claimed ethnicity = 6 (non-Hispanic
White, 1,237 individuals). These last pedigrees are called
the White pedigrees through this paper. Note that some
pedigrees were truncated in order to preserve the unity of
the self-reported ethnicity.

Detecting linkage

All the statistical linkage analyses were carried out using
the software SOLAR (Sequential Oligogenic Linkage Anal-
ysis Routines) [1,7], which determines whether genetic

variation at a specific chromosomal location can explain
the variation in the phenotype. This statistical method is
an extension of the strategy developed by Amos [8].

Following the variance components method, a quantita-
tive genetic analysis with covariate screening was per-
formed. The best model was chosen by iteratively adding
the covariates to the model, and by estimating the differ-
ent parameters, such as the total additive genetic heritabil-
ity (H2r) and the covariates regression coefficients, by
maximum likelihood. Only significant covariates were
kept in the model.

Identity-by-descent (IBD) probabilities and multipoint
identity-by-descent (MIBD) matrices (for multipoint
analysis) were computed using allele frequencies either
provided with the COGA data (not ethnicity-specific) or
estimated by SOLAR using a maximum likelihood
approach (as in the White pedigree case). In multipoint
linkage analysis, the Kosambi map function was used as
supplied with the GAW14 data.

Transformation of the trait to ensure normality
Preparing the quantitative trait for QTL analysis is a cru-
cial step. Normality of the trait is the basic requirement of
the statistical method we used. It is important to ensure
that the empirical distribution of the trait considered fol-
lows this requirement. Skewness and kurtosis are good
measures that allow the identification of a potential viola-
tion of the normality assumption. Skewness is a measure
of the asymmetry of the distribution while kurtosis is an
indicator of how close the distribution matches a bell
shape. If the distribution is normal, both measures should
be zero. A common approach in regression-type models
uses the logarithmic transformation. Such a transforma-
tion is often effective in reducing skewness and kurtosis.
More generally, a Box-Cox transformation (see [9]) can be
used in order to maximize the closeness to normality for
the transformed data. Data is then transformed to a power
A, where A is chosen to be optimal. In the case of the
COGA dataset, a value A = 1/4 was found to be optimal for
the traits ttth1, ttdt3, and ttdt4, regardless of the type of
pedigree used.

Covariates

If not specified otherwise, the covariates included in the
polygenic model (after a screening of all the covariates)
involving the transformed trait and the White pedigree
were sex, erpage (age at ERP examination), ALDX11 (alco-
hol dependency) for trait ttth11/4, erpage, ALDX12 for trait
ttdt31/4 and erpage, ALDX12 for trait ttdt41/4,

Covariates were taken as provided in the COGA dataset,
except in the case of ALDX1, ALDX2 that were trans-
formed into a number of indicator variables in order to
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Table I: QTL LOD score, per pedigree and per type of transformation

Chr Trait [skewness; kurtosis] Maximum LOD score and location (cM)
Whole pedigree White pedigree
| tede3 [0.57; 0.25] 1.4 (65 cM) 1.07 (65 cM)
In(ttdt3) [-0.2; 0.083] 2.79 (64 cM) 2.24 (64 cM)
ttdt3!/4 [-0.0006; -0.076] 2.37 (63 cM) 2.03 (65 cM)
| ttde4 [0.55; 0.129] 1.14 (67 cM) 1.2 (69 cM)
In(ttdt4) [-0.23; 0.19] 2.29 (65 cM) 2.02 (67 cM)
tede4!/4 [-0.01; -0.069] 1.99 (66 cM) 1.86 (66 cM)
18 ttdt3 [0.57; 0.25] 3.63 (54 cM) 3.05 (54 cM)
In(ttdt3) [-0.2; 0.083] 42 (54 cM) 4.2 (54 cM)
teede3 /4 [-0.0006; -0.076] 4.67 (54 cM) 38 (55 cM)
18 tede4 [0.55; 0.129] 1.6 (53 cM) 1.69 (55 cM)
In(ttdt4) [-0.23; 0.19] 2.26 (53 cM) 2.26 (53 cM)
tede4!/4 [-0.01; -0.069] 2.39 (49 cM) 2.29 (52 cM)
7 tethl [0.62; 0.27] 4.08 (154 cM) 3.49 (160 cM)
In(tethl) [-0.25; 0.55] 3.55 (16l cM) 2.67 (160 cM)
teth | 14 [-0.0053; 0.156] 3.87 (161 cM) 1.19 (112 cM)

use them as categorical covariates. For instance, ALDX12
represents ALDX1 = 5 (affected) and ALDX12 = O repre-
sents ALDX1<5.

Results

Linkage detection

Pedigree-based analyses demonstrated three QTLs on
chromosome 1 (between markers D1S1598 and
D1S2134; 1p34-1p33), chromosome 18 (between mark-
ers D18A535 and D18A877), and chromosome 7
(between markers D7S1804 and D7S509; 7q32-7q34).
The first two QTLs appear to be linked to the traits labelled
ttdt3 and ttdt4. As mentioned in Table 1, the correspond-
ing LOD scores range from 1.07 up to 4.67, depending on
the type of transformation used on the traits as well as the
set of pedigrees.

Findings on chromosome 7 show a strong linkage signal
for the other measure, ttth1, with a maximum LOD score
of 4.08. However, this linkage seems to be strongly related
to the self-reported ethnicity of the pedigrees as well as the
skewness and kurtosis of the trait.

Influence of the non-normality of the trait

Figure 1 shows the LOD scores across the loci for the traits
ttth1, In(ttth1), and ttth1Y/4, on chromosome 7 for the
White pedigree. Dramatic changes in the LOD scores can
be observed when different transformations are applied.
The trait ttth1 in its original form appears to be strongly
linked to a QTL around 160 <M (LOD = 3.49). The loga-

rithmic transformation of this trait gives only suggestive
linkage to the same QTL (LOD = 2.67). However, the Box-
Cox transformation of ttth1, i.e., ttth1/4, does not show
any linkage result at this locus (LOD = 0.06). A maximum
LOD score of 1.19 is obtained at location 112 ¢M. In this
case, not only has the significance of the LOD peak has
been dramatically reduced, but it has also been moved by
48 cM.

Clearly, such changes are not systematic across traits,
chromosomes, and pedigrees. However, we illustrate here
an extreme situation. Table 1 gives information on
changes to LOD scores according to the transformation
used on traits ttth1, ttdt3, and ttdt4 for chromosomes 1,
7, and 18. This table illustrates a number of different
changes in LOD scores when transformations are applied.
From this it can be observed that an appropriate transfor-
mation on the trait (normality improved) causes changes
in the linkage detected (increases of LOD score, as in chro-
mosome 1 and 18, or decreases, as in chromosome 7).

Influence of ethnicity

Table 1 also illustrates the impact of the segregation of the
pedigrees by ethnic groups. Overall linkage findings
appeared to be slightly more significant when ethnic
admixture is present (note however that the size of popu-
lation is increased by 30% in this case). Another effect of
ethnicity admixture can be noticed in chromosome 7 for
trait ttth1. The fact that a QTL is detected and preserved
along the transformations in the whole pedigrees only
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Figure 2

LOD scores for chromosome | (White pedigree) using dif-
ferent polygenic models on the trait ttdt3!/4.

may suggest that it occurs in reality mainly in the non-
White pedigrees. Due to the small number of these fami-
lies available and due to their ethnic heterogeneity, we
could not confirm this hypothesis by a statistical analysis.

Adding more covariates in the polygenic model

As an illustration of the impact that the addition of covari-
ates has in the linkage detected, we study the case of chro-
mosome 1 using the White pedigrees and the trait ttdt3/
4. Figure 2 presents the changes in LOD scores when dif-
ferent covariates are added in the polygenic model. Note
that the optimal model includes two variables, erpage and
ALDX12, with a total of 680 individuals. If the variable cig-
pkyrs (number of packs of cigarettes per day for one year)
is also included in the model (for a total of 445 individu-
als), we observe a deviation from the optimal model,
regarding the significance of the LOD score, along the
chromosome. If the variable cigpkyrs is replaced by the var-
iable ageonset1, which contains 59.5% of missing values,
the number of subjects included in the model drops to
348 individuals and we can observe extreme changes in
the significance of the LOD score.

Discussion and conclusion

As we have seen, the COGA dataset provides a very clear
illustration of the effects that ethnicity, covariates, and the
normality of the trait have on the linkage observed. One
should be aware that mixing different ethnic groups may
introduce some noise, leading to the failure to detect
strong linkage that may be present in one or more of the

groups. As a result, populations admixtures should be
avoided if no evidence suggests that the different ethnic
groups behave similarly in terms of the trait and markers
considered. Note that in the case studied, the preliminary
multivariate analysis of the traits considered showed
highly significant segregation by the self-reported ethnic-

ity.

When adding covariates in the model, one should pay
special attention to the trade-off between the gain of
information due to the covariate and the loss of informa-
tion due to the reduction of the sample size. If possible,
imputation methods should be considered.

Finally, any statistical models are built on data assump-
tions, such as the normality of the trait. Again, being
aware of these assumptions and trying to guarantee their
validity is key in the success of an analysis. Note that many
other factors could be discussed, such as the impact of a
violation of some other model assumptions such as
Hardy-Weinberg equilibrium and linkage equilibrium.
The type of map used is also crucial in fine mapping stud-
ies. Some inconsistencies in the maps lead to great differ-
ences in the location of the linkage detected, especially
when high density SNPs are used.

Abbreviations
COGA: Collaborative Study on the Genetics of Alcohol-
ism

Page 4 of 5

(page number not for citation purposes)



BMC Genetics 2005, 6:S52

ERP: Event-related potential

GAW: Genetic Analysis Workshop
HWE: Hardy-Weinberg equilibrium
IBD: Identity by descent

LE: Linkage equilibrium

MIBD: Multipoint identity by descent
QTL: Quantitative trait locus
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