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Abstract
Using the Genetic Analysis Workshop 14 simulated datasets we carried out nonparametric linkage
analyses and applied a log-linear method for analysis of case-parent-triad data with stratification on
parental mating type. We proposed and applied a random effect modelling approach to explore the
impact of population heterogeneity on tests of association between genetic markers and disease
status. The estimated genetic effect may appear to be strongly significant in one population but
nonsignificant in another population, leading to confusion about interpretation. However, when
results are interpreted in the light of a random effects model, both studies may be making similar
statements about a genetic effect that varies depending on environment and background.

Background
It has proven to be very difficult to validate linkage and
association findings for complex diseases. Part of the rea-
son for the inconsistency may be due to real differences in
effect sizes across populations and studies. Methods that
explicitly model potential heterogeneity across popula-
tions are useful in clarifying reasons behind this variabil-
ity as well as in estimating model parameters accurately.
The objective of our study is to use the Genetic Analysis
Workshop 14 (GAW14) simulated datasets to explore the
impact of population heterogeneity on tests of association
between genetic markers and disease status, and to use
random effects models to account for this heterogeneity.
We were also interested in estimating gene × covariate
interactions and heterogeneity associated with these
effects. We adopted a three-stage analytical approach
without knowledge of the generating model: 1) linkage
analysis to find "interesting" regions, 2) association anal-
ysis for selected markers in separate populations, and 3)
use of random effects models to combine the association

test results across populations and to examine heterogene-
ity.

Methods
We conducted a combined linkage and association analy-
sis using GAW14 simulated datasets. The simulated data
consists of phenotypic as well as genotypic information
from four populations: Aipotu, Danacaa, Karangar, and
New York City for the study of Kofendred personality dis-
order (KPD). Twelve disease symptom traits were also
included. Microsatellite and single-nucleotide polymor-
phism (SNP) markers were available for 10 chromo-
somes.

We first carried out a nonparametric linkage (NPL) analy-
sis [1] within each population for the first replicate, using
the given affection status. Both the microsatellite and SNP
marker data for the 10 chromosomes were used in the
linkage analysis. We then repeated these analyses in an
additional two randomly selected replicates (replicates 11
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and 78) from each population to assess consistency of
results.

We used a log-linear model for estimating association that
was designed for the analysis of case-parent-trios [2,3],
and estimates log-relative risk parameters for a single var-
iant allele. Using appropriate parameterizations allows
modelling of different modes of transmission (additive,
dominant, or recessive). Likelihood-ratio tests of linkage
can also be obtained. The model includes six intercept
terms that estimate baseline disease risk by parental mat-
ing type, where mating type is defined by the configura-
tion of risk alleles in the parents. This stratification on
parental mating types protects against bias in the esti-
mates of the genetic-association parameters due to popu-
lation stratification. The model can be extended to
include gene × covariate interactions. It should be noted
that the estimates of the main covariate effect are not iden-
tifiable. The model was implemented in the SAS statistical
software, version 8.02 (SAS Institute Inc., Cary, NC).

Based on the linkage analysis results, we selected a small
number of interesting regions for association mapping
using "purchased" fine-mapping markers. From each pop-
ulation, we selected 300 independent case-parent trios.
One affected child was randomly selected from each ped-
igree, with his/her parents. For populations Aipotu, Dan-
acaa, and Karangar, replicates 1, 11, and 87 were used. For
New York, where replicates contained only 50 pedigrees,

trios were also selected from replicates 2, 3, and 4. Associ-
ation analysis was carried out for selected markers with
covariates based on gender and the anxiety-related sub-
phenotype.

A generalized linear mixed modelling (GLMM) frame-
work was used to explore variability across populations
and to combine risk estimates [4]. This framework is an
extension of the normal mixed model that accommodates
non-normal error distributions. In our case, the genetic-
association parameters were assumed to be normally dis-
tributed across populations, while the six intercept terms
were held fixed. Conditional on the random effects, the
count outcome has a Poisson distribution with condi-
tional mean µ = E(Y|b) = h(η) with η = X β + Zb, where h
is the logarithmic link function, X is a design matrix cor-
responding to the fixed-effect parameters β, and Z is a
design matrix associated with the random-effect parame-
ters b. Detailed notations and formulation of the basic
Poisson model of Weinberg are given elsewhere [2,3]. The
resulting Poisson generalized linear mixed model was fit-
ted using a SAS macro called GLIMMIX [5].

All analyses were conducted without knowledge of the
generating model.

Results
The NPL analyses using data from replicate 1 showed that,
of the 10 chromosomes, only chromosomes 1, 3, 5, and 9

Table 1: Peak NPL score along with peak locations for chromosomes with suggestive and/or strong linkage signals by population and 
marker type (Microsatellite versus SNP)

Microsatellite Map SNP Map

Chromosome Population Marker* NPL Location† Marker* NPL Location†

1 New York S0026 2.878 187.5 R0055 2.746 162
Danacaa S0023 4.484 165 R0052 5.190 153
Aipotu S0010 2.566 67.5 R0023 2.472 66
Karangar S0023 1.689 165 R0050 1.810 147

3 New York S0127 4.523 307.5 R0280 3.217 276
Danacaa S0127 2.947 307.5 R0280 2.177 276
Aipotu S0127 4.362 307.5 R0279 3.763 273
Karangar S0127 3.998 307.5 R0280 4.682 276

5 New York S0176 3.479 30 R0387 3.218 27
Danacaa S0180 1.710 60 R0455 1.905 231
Aipotu S0173 1.957 7.5 R0380 1.329 6
Karangar S0172 4.587 0 R0380 4.829 6

9 New York S0368 1.687 157.5 R0812 1.176 147
Danacaa S0372 3.090 187.5 R0820 2.234 171
Aipotu S0364 1.565 127.5 R0832, R0856 1.414 207, 279
Karangar S0347 4.583 0 R0764 4.283 3

*Marker names have been shortened to save space (e.g., S0026 stands for D01S0026 and R0055 is C01R0055, where in this case 01 indicates the 
markers are on chromosome 1).
†Peak locations are in centiMorgans.
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contained statistically significant regions, in at least one of
the four populations (Table 1). For the Danacaa popula-
tion, strong evidence for linkage was found on chromo-
some 1 from both the microsatellite (marker: D01S0023;
NPL score = 4.48) as well as SNP (marker: C01R0052;
NPL score = 5.19) data. We found regions on chromo-
some 3 with strong linkage signals in three populations
(Aipotu, Karangar, and New York). For the Karangar pop-
ulation, the strongest signals were observed on chromo-
somes 5 and 9 (both for microsatellite and SNP). After
repeating the NPL analyses with two other randomly
selected replicates (replicates 11 and 87), we found con-
sistent significant findings on chromosomes 1, 3, 5, and 9.

Fine mapping packages were purchased for chromosome
3 and 5 near the linkage peaks. We chose these regions in
order to contrast linkage findings that appeared consistent
across populations (chromosome 3) with a region dem-
onstrating variability in the strength of the linkage evi-
dence across populations (chromosome 5); we hoped
that the generating models for this chromosome 5 region
might vary across populations. We obtained packages 152
and 153 for chromosome 3 and packages 207–211 for
chromosome 5.

We did not find significant allelic association for markers
on chromosome 5, and therefore no results are reported.
For chromosome 3, Table 2 summarizes results from the

log-linear modelling of selected markers. An additive
genetic model was assumed. One of the markers
(B03T3056) shows significant association with disease as
well as gene × environment interaction with the anxiety-
related covariate. The association results appear consistent
across the four populations, but the magnitude of the
gene × environment interaction varied significantly. An
adjacent marker (B03T3057) also showed a significant
association (for all populations) and gene × environment
interaction for only 2 of the four populations. Likewise
the next SNP, B03T3058, showed significant interaction
with the binary covariate (anxiety-related symptoms) for
three of the populations (with the exception of Aipotu).
Thus in some populations the disease-marker associations
in the affected children with anxiety-related symptoms are
significantly different from the associations in those with-
out the symptoms. We also included sex as a covariate, but
we did not find any significant interactions.

SNPs B03T3057 and B03T3056 are used to illustrate the
results from the mixed model where we assumed that the
allelic and interaction risk estimates, under an additive
genetic model, were random across populations (a GLMM
framework). After combining across populations, the p-
value for marker B03T3057 for the gene × anxiety interac-
tion was less striking but still significant (estimate = 0.24;
SE of estimate = 0.06; p-value = 0.0345) while the p-value
for the main effect of testing association with the variant

Table 2: Log-linear model results for four adjacent markers on chromosome 3 (package 152) for different populations

LD without covariates G × E interaction, anxiety as a covariate

Marker Population Estimate (SE) p-value Estimate (SE) p-value

B03T3055 Aipotu 0.0940 (0.1160) 0.4175 - 0.0137 (0.0827) 0.8687
Karangar -0.1552 (0.1164) 0.1824 0.2440 (0.0873) 0.0052
Danacaa -0.0261 (0.1143) 0.8191 0.0962 (0.0862) 0.2645

New York 0.2513 (0.1222) 0.0398 0.2315 (0.0819) 0.0047

B03T3056 Aipotu 0.799 (0.1242) <0.0001 0.0266 (0.0730) 0.7152
Karangar 0.7584 (0.1284) <0.0001 0.2658 (0.0755) 0.0004
Danacaa 0.8183 (0.1265) <0.0001 0.1624 (0.0741) 0.0285

New York 0.7233 (0.1231) <0.0001 0.3222 (0.0761) <0.0001

B03T3057 Aipotu 0.4773 (0.1254) <0.0001 0.0769 (0.1049) 0.4637
Karangar 0.4675 (0.1282) 0.0003 0.3937 (0.1171) 0.0008
Danacaa 0.6061 (0.1196) <0.0001 0.1543 (0.1019) 0.1302

New York 0.4317 (0.1208) 0.0004 0.3608 (0.1037) 0.0005

B03T3058 Aipotu 0.4282 (0.1193) 0.0003 0.0093 (0.0789) 0.9058
Karangar 0.5460 (0.1221) <0.0001 0.2114 (0.0787) 0.0072
Danacaa 0.6826 (0.1259) <0.0001 0.1728 (0.0753) 0.0217

New York 0.3452 (0.1224) 0.0048 0.3154 (0.0793) <0.0001
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allele increased to p = 0.0170 (estimate = 0.36; SE of esti-
mate = 0.07). The random-effect variance components are
not significantly different from zero.

For the adjacent marker B03T3056, the gene × anxiety
interaction effect appeared non-significant (estimate =
0.19, SE of estimate = 0.07; p = 0.0791); however, the
main effect remained significant (estimate = 0.67; SE of
estimate = 0.08; p = 0.0043). In this model the random
effect variance components are significantly different
from zero.

Discussion
Valid and powerful statistical methods are useful in the
discovery of genes involved in disease susceptibility and
detection of gene × environment interactions. We have
conducted a combined linkage and association analyses
using the GAW 14 simulated datasets. We identified sev-
eral interesting regions using linkage analysis and further
investigated some of the regions with fine mapping
approaches. Our results suggest that there may be signifi-
cant variation in the four populations, especially in gene
× environment interactions. Our analyses were performed
without knowledge of the generating model.

We adopted a log-linear model to investigate allelic asso-
ciations for selected markers. This modelling approach
can be extended to include parameters for several desira-
ble quantities such as imprinting effects and gene-envi-
ronment interactions. As a member of the family of
generalized linear models, the usual optimal asymptotic
properties apply and it can be implemented using widely
available statistical packages. This approach can also be
regarded as a generalization of the approach proposed by
Schaid and Sommer [6], as a maximum-likelihood
method conditional on parental genotypes.

In the presence of gene × covariate interactions, the log-
linear model must include separate intercept terms for
each level of the covariate in order to ensure protection
against hidden population stratification. However, for
small datasets, the counts in the contingency table
become sparse and it can become difficult to estimate all
the required parameters (12 intercept parameters for one
binary covariate). Therefore, a trade-off becomes neces-
sary between full-immunity to population stratification
and reliable estimates. All models fitted here used only
one set of intercept parameters (6 intercepts). These mod-
els will give unbiased estimates of the genetic associations
if either the covariate frequency (gender or anxiety) does
not vary across any hidden population substructure, or
the covariate is not associated with the genetic effect. In
the GAW simulation, there was no hidden population
substructure within each of the four stated populations,

and therefore the more parsimonious models were appro-
priate.

Validation of association studies is a continuing problem,
and part of the difficulty is attached to inadequate power
in the various studies, as well as, of course, genetic model
heterogeneity in different populations or samples. By esti-
mating genetic risk parameters using the Weinberg model,
we can see whether the estimates of genetic risk are similar
in different populations, rather than just comparing
parameters. The Poisson GLMM approach we applied
here allows exploring differences across populations (var-
iability in risk estimates) as well as combining estimates
meta-analytically. The estimated genetic effect may appear
to be strongly significant in one population but non-sig-
nificant in another population, leading to confusion
about interpretation. However, when results are inter-
preted in the light of a random effects model, both studies
may be making similar statements about a genetic effect
that varies depending on environment and background.

The estimates of association from the GLMM were smaller
than from the separate Poisson models. This may be due
to inflation in the estimates of the association parameters
from the individual populations due to small sample bias,
or to parameter shrinkage associated with the incorpora-
tion of extra sources of variability. Further investigation of
this effect is warranted.

Our approach of combining results across populations is
an implementation of a meta-analysis strategy to under-
stand and summarize results across independent studies.
Meta-analysis can also be used to identify factors that may
explain heterogeneity. Such an approach may prove use-
ful in genetic studies where results vary across popula-
tions. A further extension to our mixed model approach
may be developed in a fully Bayesian framework.

Conclusion
We identified several regions showing evidence for link-
age and association in the GAW14 simulated data. We
also proposed a strategy for examining heterogeneity of
association test results by using models that can include
covariates, and implemented mixed models to allow for
genetic effects to vary across populations. Although there
is still a long way to go to dissect the genetics of complex
diseases, data integration approaches such as our multi-
level modelling framework might help elucidate genetic
and environmental contributions to the risk of diseases.

Abbreviations
GAW: Genetic Analysis Workshop

GLMM: Generalized linear mixed model
Page 4 of 5
(page number not for citation purposes)



BMC Genetics 2005, 6:S59
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

KDP: Kofendred personality disorder

NPL: Nonparametric linkage

SNP: Single-nucleotide polymorphism

Authors' contributions
JY carried out the linkage and log-linear association anal-
yses. JB wrote the manuscript and carried out the mixed
model analyses, using ideas developed by himself
together with CMTG. CMTG assisted in editing the manu-
script.

Acknowledgements
We thank the anonymous reviewers for very helpful comments. This work 
is supported by the Canadian Institutes for Health Research Grant NPG-
64872 (to CMTG and JB). The Samuel Lunenfeld Summer Student program 
at the Hospital for Sick Children and the Ontario Genomics Institute 
(Genome Canada) supported Jun Yan.

References
1. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES, et al.: Parametric

and nonparametric linkage analysis: a unified multipoint
approach.  Am J Hum Genet 1996, 58:1347-1363.

2. Weinberg CR, Wilcox AJ, Lie RT: A log-linear approach to case-
parent-triad data: assessing effects of disease genes that act
either directly or through maternal effects and that may be
subject to parental imprinting.  Am J Hum Genet 1998,
62:969-978.

3. Weinberg CR: Methods for detection of parent-of-origin
effects in genetic studies of case-parents triads.  Am J Hum
Genet 1999, 65:229-235.

4. Breslow NE, Clayton DG: Approximate inference in general-
ized linear mixed models.  J Am Stat Assoc 1993, 88:9-25.

5. Littell RC, Milliken GA, Stroup WW, Wolfinger RD: SAS System for
Mixed Models Cary, NC: SAS Institute Inc; 1996. 

6. Schaid DJ, Sommer SS: Genotype relative risks: methods for
design and analysis of candidate-gene association studies.  Am
J Hum Genet 1993, 53:1114-1126.
Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8651312
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9529360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8213835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8213835
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Discussion
	Conclusion
	Abbreviations
	Authors' contributions
	Acknowledgements
	References

