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Abstract
Haplotypes, the combination of closely linked alleles that fall on the same chromosome, show great
promise for studying the genetic components of complex diseases. However, when only multilocus
genotype data are available, statistical approaches need to be employed to resolve haplotype phase
ambiguity. Recently, we have proposed an approach to testing and estimating haplotype/disease
association that is invariant to any existing genetic structure in the population. Here we evaluate
this approach by applying it to the Genetic Analysis Workshop 14 simulated data.

Background
Single-nucleotide polymorphism (SNP)-based haplotype
association studies show great potential for dissecting
genetic influences on complex diseases. Haplotype-based
methods incorporate linkage disequilibrium information
from many markers and, hence, may be more powerful
than traditional linkage disequilibrium methods that
focus on a single SNP. Haplotype-based methods also
have the promise of being able to identify unique seg-
ments of DNA containing sequences predisposing indi-
viduals to disease. In addition, when multiple alleles at a
single disease locus influence disease susceptibility, single
marker tests can be under-powered relative to haplotype-
based association methods [1]. In the Genetic Analysis
Workshop 14 (GAW14) simulated dataset, multilocus
genotypes were constructed using haplotypes at 2 of the 4
disease loci.

A major problem when conducting haplotype studies is
that the available marker genotype data (often SNPs) are
unphased, resulting in haplotype ambiguity. This fact has
stimulated the development of a number of statistical
techniques designed to reconstruct haplotype phase. Most
of these methods treat the haplotypes as missing data and
apply the expectation-maximization (EM) algorithm [2]

to infer haplotype frequencies by assuming these frequen-
cies are in Hardy-Weinberg equilibrium (HWE) [3-5]. This
assumption results in estimates and tests that are sensitive
to the genetic structure of the sampled population, poten-
tially leading to biased estimates and incorrect inferences
[6]. Recently, we have developed an approach to testing
haplotype/disease association that does not vary based on
the distribution of haplotypes in the population [7]. In
this work, we give an overview of this approach and apply
it to triad datasets extracted from the GAW14 simulated
data.

Methods
Model and projection approach
We assume a case-parent sampling design in which indi-
viduals with disease (D = 1) or trait of interest and their
parents are sampled. At a locus of interest, let the
proband's genotype be denoted Go and let Gp denote the
parents' genotypes. Let O =(Go, Gp) denote the observed
data (realizations are denoted by go, gp, o). Let the
proband's haplotypes be denoted Ho and let Hp denote the
parents' haplotypes (again, realizations are denoted by ho,
hp). As a first step, note that we can write the ith family's
contribution to the observed-data likelihood as
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Result of overall haplotype score test with windows of 1 to 6 lociFigure 1
Result of overall haplotype score test with windows of 1 to 6 loci. Upper and lower horizontal lines correspond to 
Bonferroni-corrected and uncorrected 0.05 significance levels, respectively. Vertical line corresponds to location of disease 
locus.
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where γ (q-dimensional) is the haplotype relative risk
parameters of interest, η (r-dimensional) is nuisance
parameters describing the distribution of parental haplo-
types, and H(o) is the set of all ho, hp consistent with o. The
model for Pr(Ho, i = ho | Hp,i = hp, D = 1;γ)| can be parame-
terized in a manner analogous to genotype relative risk
models for case-parent designs [8]. We assume this model
is correct (see below). This assumption is unnecessary
when testing against the simple null hypothesis that no
haplotype affects disease, but is required for valid param-
eter estimation or for tests that have a composite null
hypothesis. The model for Pr(Hp, i = hp | D = 1;η) is prob-
lematic since: 1) a nonparametric model (i.e., saturated
multinomial) is both computationally challenging and
nonidentifiable, and 2) an incorrectly specified paramet-
ric model (i.e., HWE) can lead to significant bias in
parameter estimates.

Our approach is to find the efficient score (U) for the
parameter of interest by projecting the observed data score
onto the nuisance tangent space [9] assuming a saturated
multinomial model for the distribution of parental haplo-
types (note: HWE is not assumed). Computation of U is
complicated by the fact that one must estimate Pr(Hp, i =
hp | D = 1;η) and the nuisance parameter, η, is not identi-
fiable in the saturated multinomial model. However, we
have shown that U has mean zero regardless of the model
used to estimate Pr(Hp, i = hp | D = 1;η) in the construction
of the projection [7]. Hence, one can use an identifiable
(but possibly incorrect) parametric model to estimate
Pr(Hp, i = hp | D = 1;η) and use this estimate to compute U,
secure in the knowledge that U will still have mean zero.
This leads to tests and estimators of haplotype effects that
are robust to the misspecification of the distribution of
parental haplotypes. Note that both parameter estimates
and their estimated variances are robust to misspecifica-
tion of the distribution of parental haplotypes. Further, if
the parental haplotype distribution is correctly specified,
these estimators and tests will be optimal, having mini-
mum variance among all estimators that are robust to
misspecification of the parental haplotype distribution
(for complete details see [7]).

Parameter estimates using our model depend on correct
specification of the haplotype relative risk model Pr(Ho, i =
ho | Hp, i = hp, D = 1;γ). However, the availability of unbi-
ased tests and estimators makes it possible to select a
model that fits the observed data without having to spec-
ify correctly the parental haplotype distribution. In one
special situation, our tests (but not estimators) are robust
to misspecification of the relative risk model: when testing
the simple "global" null hypothesis that no haplotype

affects disease risk. In this case, correct specification of the
risk model only affects the power of the test, not its size.

Application to GAW14 data
We applied this method to a hypothetical candidate gene
study in which triads were ascertained from replicates 1–
10 by the presence of subclinical phenotype c in an off-
spring. Only triads in the Aipotu, Karangar, and Danacaa
populations were sampled (one triad per nuclear family).
The genomic region and phenotype of interest were
guided by consulting the answers throughout our analy-
ses. For each replicate a region of the genome spanned by
markers B09T8321–B09T8360 (known to contain trait
locus D4 as well as linkage disequilibrium) was analyzed.
Our goal was to study the effects of varying haplotype size
on localization of a disease locus as we scanned across a
region known to contain a disease locus. Because the D2
locus (the only other trait locus in a region of linkage dis-
equilibrium) was at the end of a chromosome beyond the
last visible SNP, we did not analyze on this region. We fit
a multiplicative haplotype relative risk model in which we
included a parameter for all haplotypes with frequencies
greater than 5%. The haplotype with the highest fre-
quency was used as a reference. The resulting score test is
invariant to this reference choice, but parameter interpre-
tation would be affected. We report -log10(p-values)
derived by an overall score test formed by evaluating the
efficient score at γ = 0. Note the degrees of freedom for our
test varied both with the number of SNPs per haplotype
and the specific loci included, depending on how many
haplotypes had frequency greater than 5%.

Results
Figure 1 presents the results of haplotype analyses of data
replicate 1 using haplotype windows of 1 through 6 loci.
Analyses with longer haplotypes seem to have higher -
log10-transformed p-values with the 6 loci analysis having
an order of magnitude smaller p-values than the single
locus analysis. Interestingly, this increase in -log10-trans-
formed p-values in the region of the disease loci was also
accompanied with a suppression of a secondary (false)
peak in the region of markers 30–40. It also appears that
the analyses of longer haplotypes localize the disease
locus better than the single locus analysis.

These are observations on a single simulated dataset. To
determine a general pattern, we analyzed 9 other replicate
datasets (datasets 2–10). Figure 2 presents a summary of
the -log10-transformed p-values by size of analysis window
for all 10 datasets. The solid line denotes the mean value
of the maximum -log10(P-value) (maximum is taken over
the region). The upper and lower dotted lines represent
the 80th and 20th percentiles of maximum -log10-trans-
formed p-values, respectively. Larger analysis haplotype
size does seem to lead to increased -log10-transformed p-
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values. We confirmed this trend statistically by using gen-
eralized estimating equations (GEE) to regress maximum
-log10-transformed p-values on the size of the haplotype
window (GEE was used to account for correlation
between analyses on the same dataset). We found that the
trend for larger haplotype windows to have larger maxi-
mum -log10-transformed p-values, shown in Figure 2, was
significant (p < 0.0001).

We also investigated the effect of haplotype size on dis-
ease locus localization. For each replicate we averaged the
locations of significant marker loci (or midpoint of signif-
icant haplotypes) and then computed distance (cM)
between this average and the disease locus. We then aver-
aged this bias over the replicated datasets. The results of
this exercise are presented in Figure 3.

In the simulated datasets we analyzed, use of larger haplo-
types does seem to better localize the disease locus. Again,
we confirmed this trend by using GEEs to regress the aver-
age bias of significant loci on the size of the haplotype
window. We found that the trend for larger haplotype
windows to exhibit smaller bias, illustrated in Figure 3,
was significant (p = 0.0141).

Conclusion
Though we attempted to approximate candidate gene
studies of the various phenotypes, it is difficult to interpret
the results because the data were certainly not generated
with this intent in mind. For example, the haplotypes
structure was only used to generate linkage disequilibrium
and was not specifically related to phenotype. Neverthe-

less, the analyses we conducted do suggest a few patterns
that merit further exploration. Analyses of longer (more
SNPs) haplotypes seem to both result in smaller p-values
in the disease region relative to single locus analyses and
result in better localization of the disease loci. In addition,
the longer haplotype analyses seemed to suppress second-
ary (false) peaks, resulting in fewer false positive signals.

Abbreviations
EM: Expectation maximization

GAW14: Genetic Analysis Workshop 14

GEE: Generalized estimating equations

HWE: Hardy-Weinberg equilibrium

SNP: Single-nucleotide polymorphism
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