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Abstract
We explored the power and consistency to detect linkage and association with meta-analysis and
pooled data analysis using Genetic Analysis Workshop 14 simulated data. The first 10 replicates
from Aipotu population were used. Significant linkage and association was found at all 4 regions
containing the major loci for Kofendrerd Personality Disorder (KPD) using both combined analyses
although no significant linkage and association was found at all these regions in a single replicate.
The linkage results from both analyses are consistent in terms of the significance level of linkage
test and the estimate of locus location. After correction for multiple-testing, significant associations
were detected for the same 8 single-nucleotide polymorphisms (SNP) in both analyses. There were
another 2 SNPs for which significant associations with KPD were found only by pooled data
analysis. Our study showed that, under homogeneous condition, the results from meta-analysis and
pooled data analysis are similar in both linkage and association studies and the loss of power is
limited using meta-analysis. Thus, meta-analysis can provide an overall evaluation of linkage and
association when the original raw data is not available for combining.

Background
Identifying the susceptibility genes for human complex
traits, such as obesity, diabetes, and hypertension, repre-
sents a challenging task for human geneticists. Due to the
moderate effect of each gene on the trait, it is difficult to
acquire enough power to detect all disease susceptibility
genes in one study with a moderate sample size. One
potential solution to this challenge is to combine the pri-
mary studies to increase the power to identify the genes
with small effects. When the raw data is available, pooling
raw data should be the most powerful method to combine
studies. However, in practice, raw data is usually hard to
obtain and the alternative is to pool the results (meta-
analysis) of the primary studies instead.

Although meta-analysis has been widely used in clinical
trials and epidemiological studies, it is a relatively new
approach in linkage studies. Methods for meta-analysis of
linkage analysis can be roughly divided into two catego-
ries. In the first category, individual effect size and its var-
iance are available for each study and can be combined
using a fixed-effects or random-effects model to obtain an
overall effect. Li and Rao [1] proposed to use regression-
coefficient estimates from the Haseman-Elston (HE)
regression [2] as effect size and combine them using a ran-
dom-effects model in sib-pair analysis. Gu et al. [3] devel-
oped a similar approach. They used the proportion of
alleles shared identical by descent (IBD) among selected
sib pairs as their effect size. The advantage of using such
methods is that heterogeneity among studies can be esti-
mated and tested, and an overall effect size then esti-
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mated. The second category includes methods for
combining significance levels, such as p-values or LOD
scores. The advantage of such methods is that it does not
require a common effect size, only that every study tests
the same null hypothesis. Thus, these methods are quite
general and flexible to use. The very first method for com-
bining results from different studies to obtain consensus
was developed by R. A. Fisher in 1925 [4]. Fisher's method
of combining p-values is remarkably general and easy to
use. Wise et al. [5] developed a nonparametric meta-anal-
ysis method for genome scans (GSMA) that is based on
either p-value or LOD score ranks. In this method, each
chromosome is separated into independent bins with
equal spacing, and the linkage evidence for each bin is
ranked in each study. To combine the linkage evidence
from different studies, an average rank is calculated for
each bin across the studies.

The main aim for this analysis is to identify the underlying
genetic factors responsible for Kofendrerd Personality Dis-
order (KPD) using pooled data analysis and meta-analysis
and to further compare the power to detect linkage and
association with these two methods.

Methods
Data selection
The analysis was performed in the Aipotu population. The
diagnosis for KPD in this population is based on all 3 dif-
ferent criteria, which is the most heterogeneous compared
with the other 3 populations and represents the most real-
istic case. Replicates 1–10 were selected for the analysis,
which represents a reasonable sample size for the meta-
analysis of genome scans in reality.

Combined linkage analysis
Fisher's method of combining p-values was used in our
analysis considering that 1) in practice, the designs and
applied statistical methods are usually different in linkage
analyses and it is difficult to obtain a common effect size
for combining; 2) we can combine significance level at
every marker location using Fisher's method, but only at
every bin (~30 cM) using GSMA.

Linkage analysis with microsatellite markers was per-
formed using a nonparametric allele-sharing method [6]
implemented in software ALLEGRO [7] in each of the 10
replicates and also in the pooled data. This method evalu-
ates linkage by testing excessive IBD sharing within
affected relatives. We chose Zlr [6] as the test statistic for

linkage. Under the null hypothesis of no linkage, Zlr

asymptotically follows a normal distribution. We then
combined the results of the 10 primary genome scans
using Fisher's method of combining p-values [4]. This
method is based on the observation that if n independent

tests are made of the same hypothesis, then we can calcu-

late a combined p-value for all n tests by ,

where pi is the significance level for study i. The combined

p-value is asymptotically distributed as a chi-square distri-
bution with 2xn degrees of freedom. Under the null hypo-
thesis of no linkage, 4.6 × LOD follows a chi-square
distribution with 1 degree of freedom. In practice, the test

is one-sided because it is only declared significant when 

< 1/2, where  is the estimated recombination rate. The
combined p-value was transformed to LOD scores by cal-
culating the quantile of the chi-square distribution.

Combined association analysis
Hardy-Weinberg equilibrium (HWE) was tested in found-
ers using software package ARLEQUIN [8]. Pair-wise link-
age disequilibrium (LD) was calculated as D' and r2 [9]
using ldmax routine in software GOLD http://
www.sph.umich.edu/csg/abecasis/GOLD in each repli-
cate as well as in pooled data. The p-values were corrected
for multiple testing for the number of single-nucleotide
polymorphisms (SNPs) tested for association. To account
for the non-independence between these SNPs, a spectral
decomposition method was used to obtain the effective
number of independent SNPs [10]. This method has been
implemented in the software SNPSpD http://
genepi.qimr.edu.au/general/daleN/SNPSpD/. SNPs with
allele frequency less than 5% were excluded from the
analysis.

To further narrow down the regions containing the
genetic variants for KPD, we applied family association
test implemented in software package FBAT (version
1.5.1) [11] for all of the SNPs within the 1-LOD intervals
of linkage peaks from fine mapping study. FBAT builds on
the original TDT method [12] and in particular puts tests
of different genetic models, tests of different sampling
designs, tests involving different disease phenotypes, tests
with missing parents, and tests of different null hypo-
thesis all in the same framework. Because our association
tests were performed in the regions showing linkage evi-
dence, our null hypothesis is linkage but no association.
To account for the correlation among relatives caused by
linkage, we used the empirical variance [13] in calculating
test statistic. The results of FBAT analyses at each SNP were
combined using Fisher's method as described above.

Results
Four regions were found showing significant evidence for
linkage (LOD > 3.6 [14]) in the meta-analysis of initial
genome scans. The markers with highest LOD score at
these regions are: D01S0023 (LOD = 7.7) on chromo-
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some 1, D03S0127 (LOD = 19.0) on chromosome 3,
D05S0173 (LOD = 13.9) on chromosome 5, and
D09S0348 (LOD = 11.2) on chromosome 9. Significant
evidence for linkage was also found with the same mark-
ers in the pooled data analysis: D01S0023 (LOD = 9.8),
D03S0127 (LOD = 20.2), D05S0173 (LOD = 15.6), and
D09S0348 (LOD = 11.6).

Fine mapping of KPD by linkage analysis was further per-
formed at these regions by analyzing additional SNP
markers. The results from meta-analysis and pooled data
analysis are presented in Table 1. To further narrow down
the regions containing the disease loci, SNPs within 1-
LOD intervals were tested for association using FBAT. A
total of 17, 26, 20, and 20 SNPs were tested at linkage
regions on chromosomes 1, 3, 5, and 9. In the HWE tests,
only one SNP, B01T0564, significantly deviated from the
equilibrium (p = 0.0001) after adjustment for multiple
testing in pooled data. LD was calculated around the link-
age regions on chromosomes 1, 3, 5, and 9. The LD meas-
urements from individual replicate and pooled data are
similar. We defined strong LD as D' > 0.90 or r2 > 0.30
[15]. No strong LD was found at the linkage region on
chromosome 1 (maximum D' = 0.683 and maximum r2 =
0.024). Strong LD was found around B03T3063-
B03T3065 region on chromosome 3, B05T4141-B054143
region on chromosome 5, and B09T8337-B09T8339
region on chromosome 9.

The FBAT results for markers with nominal significance (p
< 0.05) in either meta-analysis or pooled data analysis are
presented in Table 2. Analyses using SNPSpD showed that
the overall correlations across all SNPs in each region are
weak and could be ignored. Thus multiple testing was
adjusted using Bonferroni correction, which gave α =
0.05/83 = 0.0006 as the adjusted significance level. Signif-
icant association was detected for 8 SNPs (B03T3056,
B03T3037, B03T3058, C03R0281 on chromosome 3;
B05T4136 on chromosome 5; B09T8331, B09T8333 and
B09T8340 on chromosome 9) in both analyses based on
α = 0.0006. Two SNPs on chromosome 9 achieved signif-
icance only in pooled data analysis. They are C09R0765 (p
= 0.0004) and B09T8341 (p < 0.0001).

No significant association was detected based on α =
0.0006 for chromosome 1 in either analysis. This could be
caused by the small genetic effect, low frequency of causal
disease mutation, or low LD between causal SNP with
other SNP markers.

Table 1: Fine mapping results from meta-analysis and pooling raw data

LOD

Chromosome Marker Meta-analysis Pooled raw data 1-LOD Region

1 C01R0052 11.6 13.2 D01S0023-C01R0053
3 C03R0281 19.0 20.9 C03R0279-C03R0281
5 C05R0380 14.6 16.9 C05R0379-C05R0381
9 C09R0765 14.3 15.0 C09R0764-C09R0766

Table 2: Result of family-based association test using FBAT

SNPa p-meta p-all

Chromosome 1
B01T0545 0.0138 0.1447
B01T0549 0.0341 0.0293
B01T0551 0.1946 0.0398
B01T0558 0.3482 0.0487
C01R0052 0.0316 0.3425

Chromosome 3
B03T3052 0.0329 0.0043
B03T3056 <0.0001 <0.0001
B03T3057 <0.0001 <0.0001
B03T3058 <0.0001 <0.0001
C03R0281 <0.0001 <0.0001
B03T3066 0.0584 0.0021

Chromosome 5
B05T4136 0.0006 <0.0001
B05T4143 0.0021 0.0171
B05T4145 0.5868 0.0409
B05T4146 0.0016 0.0065

Chromosome 9
B09T8331 <0.0001 <0.0001
B09T8333 <0.0001 <0.0001
C09R0765 0.0449 0.0004
B09T8337 0.1199 0.0010
B09T8338 0.5018 0.0439
B09T8340 <0.0001 <0.0001
B09T8341 0.0074 <0.0001
C09R0766 0.4118 0.0373

aSNPs are highlighted in bold if the p-values are less than 0.0006 in 
both combined analyses.
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Discussion
All 4 regions containing the major loci were correctly
identified in the 2 combined linkage analyses, although
no single replicate showed significant linkage evidence at
all the regions. However, no significant linkage was found
for the 2 modified loci on chromosome 2 and 10 even
with combined analyses. This is most likely caused by the
small effects of these 2 loci on the disease phenotypes. The
linkage results are consistent for both analyses with the
similar 1-LOD interval and significance level. However,
the maximum LOD scores at the linkage regions are con-
sistently lower in the meta-analysis than those in the
pooled raw data analysis, which means that we may lose
some power to detect linkage using meta-analysis
although the loss is limited in our case.

We concentrated on single-SNP analysis in our associa-
tion studies. The results of association analyses are quite
consistent in both combined analyses. Significant associ-
ation (p < 0.0006) was detected in both analyses for 8 out
of 10 SNPs showing significant association in either anal-
ysis (Table 2). Two SNPs achieved significance only in
pooled data analysis, which suggests that the power to
detect association may be also higher in pooled data anal-
ysis.

An important assumption of meta-analysis using Fisher's
method of combining p-values is that the primary studies
are independent from each other. Bias could be caused by
including studies with overlapping samples in the meta-
analysis. This could be avoided by a careful check of
authorship of the publications and detailed information
about these studies. However, this may not be possible to
do under some circumstances. If a serious overlap is
found, an easy solution to prevent such bias is to leave
some studies out. However, we may waste useful informa-
tion by doing this. New statistical methods will be needed
to incorporate such dependency in the meta-analysis.

The 10 replicates we chose for this analysis differ only in
sampling and no heterogeneity exists among them. Our
results show that meta-analysis has a similar power to
detect linkage and association compared with pooled data
analysis under homogeneous condition. In reality, differ-
ent studies could differ in study design, marker set, statis-
tical analysis and etc., further investigation need to be
done to evaluate the effect of these factors on meta-analy-
sis.

Conclusion
Our analysis showed that, under homogeneous condi-
tion, the results from meta-analysis with Fisher's method
and pooled data analysis are similar and the loss of power
to detect linkage and association is limited for meta-anal-
ysis. Thus, meta-analysis can provide an overall evalua-

tion of linkage and association when the original raw data
is not available under this condition. More studies need to
be done to investigate the power of meta-analysis when
heterogeneity exists among primary studies.
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