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Abstract
We consider 12 event-related potentials and one electroencephalogram measure as disease-
related traits to compare alcohol-dependent individuals (cases) to unaffected individuals (controls).
We use two approaches: 1) two-way analysis of variance (with sex and alcohol dependency as the
factors), and 2) likelihood ratio tests comparing sex adjusted values of cases to controls assuming
that within each group the trait has a 2 (or 3) component normal mixture distribution. In the
second approach, we test the null hypothesis that the parameters of the mixtures are equal for the
cases and controls. Based on the two-way analysis of variance, we find 1) males have significantly
(p < 0.05) lower mean response values than females for 7 of these traits. 2) Alcohol-dependent
cases have significantly lower mean response than controls for 3 traits. The mixture analysis of sex-
adjusted values of 1 of these traits, the event-related potential obtained at the parietal midline
channel (ttth4), found the appearance of a 3-component normal mixture in cases and controls. The
mixtures differed in that the cases had significantly lower mean values than controls and significantly
different mixing proportions in 2 of the 3 components. Implications of this study are: 1) Sex needs
to be taken into account when studying risk factors for alcohol dependency to prevent finding a
spurious association between alcohol dependency and the risk factor. 2) Mixture analysis indicates
that for the event-related potential "ttth4", the difference observed reflects strong evidence of
heterogeneity of response in both the cases and controls.

Background
Disease-related traits (DRTs) may provide more powerful
phenotypes than the disease itself for identifying alcohol
dependency genes. For example, an alcohol DRT pheno-
type might be due to a single major gene with high pene-
trance, while alcohol dependency may result from the
action of several genes and environmental factors. In char-
acterizing a DRT, we first compare affected to unaffected
individuals. If the DRT is due to 1 of many disease predis-
posing genes, then the responses in both affected and
unaffected individuals may be a mixture with 2 or 3 com-

ponents depending on the effect of genotype on the DRT
in affected individuals and unaffected individuals. Lo et
al. [1] successfully applied this idea in their study of work-
ing memory, a schizophrenia-related trait. Assuming a
within-group mixture of an exponential and a normal dis-
tribution, they found significant differences between nor-
mal controls and relatives of patients with schizophrenia.
These results had not been noted when they compared
these two groups using traditional 2-sample tests compar-
ing means or medians.
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Methods
The sample
We considered Collaborative Study on the Genetics of
Alcoholism (COGA) family data provided by Genetic
Analysis Workshop 14 (GAW14) Problem 1 [2]. One
affected individual was sampled at random from each of
the 105 families providing data on the electrophysiologi-
cal measures. We then randomly sampled one "purely
unaffected" individual from those families, when such a
person was available. The result was a sample of 105 cases,
the alcohol-dependent affected individuals, and 50 con-
trols, the purely unaffected individuals. Seventy-three per-
cent of the affected individuals were male, and 22% of the
unaffected individuals were male.

Variables
The 12 event-related potentials (ERPs), phenotypes ttth1,
ttth2, ttth3, ttth4, ttdt1, ttdt2, ttdt3, ttdt4, ntth1, ntth2,
ntth3, and ntth4, and one electroencephalogram (EEG)
phenotype, ecb21, were considered, as well as the sex of
the individual.

Statistical methods
The 2-way analysis of variance used sex, disease status
(affected vs. unaffected), and the sex-disease status inter-
action as factors.

A mixture model analysis incorporated the findings on sex
obtained in the 2-way analysis of variance, and was done
on sex-adjusted values for those traits in which we found
a difference between males and females. The adjustment

was YAdj = Y - df, where  for females and df =

0 for males.

This analysis assumed that conditional on whether an
individual is a case or control, the distribution of the trait
has a 2-component normal mixture distribution. If we let
X = 1 when an individual is a control and X = 2 when an
individual is a case, then the density of the trait, Y, is

fx(y) = π1x φ(y; µ1x, σ) + π2x φ(y; µ2x, σ) for x = 1, 2,  (1)

where φ(y; µ, σ) denotes the normal density with mean, µ,
and standard deviation, σ and π1x + π2x = 1. Without loss
of generality, µ1x < µ2x and 0 < πix < 1 for x = 1, 2.

The null hypothesis

H00: µi2 = µi1 and πi2 = πi1 for i = 1, 2  (2)

can be tested against the alternative of equal component
means and unequal mixing proportions

H01: µi2 = µi1 and πi2 ≠ πi1 for i = 1, 2  (3)

using a likelihood ratio test (LRT) statistic. Under the null
hypothesis, the LRT statistic has an asymptotic chi-square
distribution with 1 df. We can also consider an alternative
of unequal means and equal mixing proportion, i.e.,

H10: µi2 ≠ µi1 and πi2 = πi1 for i = 1, 2.  (4)

Finally we also consider an alternative of unequal means
and unequal mixing proportions

H11: µi2 ≠ µi1 and πi2 ≠ πi1 for i = 1, 2.  (5)

If we reject H00 we might want to consider the alternative
H11 given in (5) versus H01 using a 2 df chi-square test or
H10 using a 1 df chi square test.

Following the same logic, we considered a set of 3-compo-
nent normal mixture models for cases and controls. Simi-
lar to model (1), we considered 3 component mixtures
with equal within component variances. Thus the general
equation for the mixture density is

fx(y) = π1x φ(y; µ1x, σ) + π2x φ(y; µ2x, σ) + π3x φ(y; µ3x, σ) for
x = 1, 2,  (6)

where π1x + π2x + π3x = 1 and 0 < πix < 1 for x = 1, 2, i = 1,
2, 3. We again set µ1x < µ2x < µ3x, and refer to the compo-
nent having mean µix as the ith component. As in compar-
ing cases to controls assuming a 2-component normal
mixtures, we estimate the parameters and test hypotheses
under various 3-component normal mixture models.
These include 1) equal parameter values for cases and
controls (6 parameters); 2) unequal mixing proportions,
but equal component means (8 parameters); 3) unequal
component means but equal mixing proportions (9
parameters); 4) equal first component means and equal
first component mixing proportions (9 parameters); 5)
unequal mixing proportions and unequal within compo-
nent means (11 parameters).

The expectation-maximization algorithm (EM) [3], a gen-
eral approach to maximum likelihood estimation (MLE),
is applied to estimate parameters πix, µix and σ for i = 1, 2
(or 3) and x = 1, 2.

A method of Maller and Zhou [4] allows us to test specific
hypotheses using the LRT. However, when the mixing pro-
portions are on the boundary of the parameter space and
the parameters are not identifiable under the null model,
the LRT does not follow the usual asymptotic chi-square
distribution with degrees of freedom equal to the differ-
ence in the number of parameters between the 2 hypoth-
eses. In this case, to select the model, we considered both
the Akaike information criterion (AIC) [5] and the Baye-
sian information criterion (BIC) [6]. In using AIC and

df = −Y YF m
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BIC, we selected the model with the smallest AIC or BIC
value. We used both because in many model selection
studies, it is found that AIC tends to select more complex
models, while BIC tends to penalize complex models
heavily, giving preference to simpler models. This appears
to hold in selecting the number of components in the
mixture analysis [7].

Results
2-way analysis of variance
Table 1 shows the results of 2-way analysis of variance. In
each of the 13 DRTs, the sex-disease interaction was non-
significant (all p > 0.17). For 7 traits, sex was a significant
factor; disease was a significant factor for only 3 traits. This
was unexpected, because based on the data description,
we expected to observe differences between cases and con-
trols on all measures. In Table 1 we report the confidence
intervals for the means on comparing cases to controls
and on comparing males to females.

Mixture analysis
The means observed for males were slightly lower than
those observed for females wherever there was a signifi-
cant sex difference. Thus the adjusted values for females
were slightly smaller than the original values. The values
of the adjustment used in the females for the electrophys-
iological measures, when there was a significant sex differ-
ence, range from 0.32 to 2.00, with the sex adjustment
value for the ERP obtained at the parietal midline chan-
nel, ttth4, equal to 0.45.

We failed to reject H00 for the alternative H01 (equal
means, unequal mixing proportions) for every DRT con-
sidered. We rejected H00 at the 0.05 level for alternative

H10 (equal mixing proportions, unequal means) in the
case of trait ttth2 (χ2 = 6.3, df = 2, p-value = 0.04). In the
case of ttth4, the DRT obtained at the parietal midline
channel, we reject H00 (χ2 = 8.9, df = 3, p-value = 0.03),
H01 (χ2 = 7.1, df = 2, p-value = 0.03), and H10 (χ2 = 4.4, df
= 1, p-value = 0.04) for H11, indicating that we may have
both unequal mixing proportions and unequal means for
cases and controls. Thus, while the analysis of variance
shows that the controls have a higher mean value of ttth4,
the mixture analysis indicates more complex distribution
differences. Both component means are higher in the con-
trols than the cases (3.83 vs. 3.33 and 6.00 vs. 4.64),
whereas the estimated proportion of controls in compo-
nent with the higher mean is lower than that for the cases
(0.04 vs. 0.31).

Applying similar methods we used LRTs to find the most
parsimonious 3-component normal mixture distribution
for ttth4. Upon doing this we rejected hypotheses of equal
mixing proportions for cases and controls (χ2 = 12.6, df =
2, p-value = 0.002) and of equal component means for
cases and controls (χ2 = 13.4, df = 3, p-value = 0.004).
Upon exploring further, we could not reject a hypothesis
that cases and controls had equal means and proportions
in the first component, i.e., the component with the low-
est mean (χ2 = 0.2, df = 2, p-value > 0.9).

Using AIC and BIC, we compared the likelihoods of our
most parsimonious models accounting for the differences
in cases and controls. That is, we compared the likeli-
hoods of a 1-component normal density model (with
cases and controls having unequal means and equal vari-
ances), to a 2-component normal mixture model (with
cases and controls having unequal mixing proportions

Table 1: Two-way ANOVA of disease-related traits in probands and siblings

Confidence interval (mean ± SE) p-Value

Trait Case (n = 105) Control (n = 50) Male (n = 88) Female (n = 67) Disease Sex

ttth1 2.47 ± 0.07 2.42 ± 0.10 2.44 ± 0.07 2.47 ± 0.08 0.71 0.62
ttth2 4.01 ± 0.10 4.20 ± 0.14 3.97 ± 0.11 4.20 ± 0.12 0.27 0.29
ttth3 4.22 ± 0.10 4.56 ± 0.14 4.12 ± 0.11 4.61 ± 0.12 0.06 0.02a

ttth4 3.85 ± 0.08 4.26 ± 0.12 3.79 ± 0.09 4.24 ± 0.10 0.01b 0.03a

ttdt1 2.98 ± 0.09 2.71 ± 0.13 2.88 ± 0.09 2.93 ± 0.11 0.08 0.17
ttdt2 3.64 ± 0.10 3.85 ± 0.14 3.44 ± 0.10 4.06 ± 0.12 0.20 0.00b

ttdt3 4.10 ± 0.10 4.49 ± 0.14 3.85 ± 0.11 4.71 ± 0.12 0.03a 0.00b

ttdt4 4.51 ± 0.12 5.07 ± 0.17 4.39 ± 0.13 5.08 ± 0.15 0.01b 0.02a

ntth1 1.90 ± 0.05 1.84 ± 0.07 1.88 ± 0.05 1.87 ± 0.06 0.52 0.82
ntth2 2.78 ± 0.07 2.81 ± 0.10 2.70 ± 0.08 2.89 ± 0.09 0.81 0.10
ntth3 2.99 ± 0.07 3.08 ± 0.10 2.84 ± 0.08 3.26 ± 0.09 0.50 0.00b

ntth4 3.00 ± 0.07 3.12 ± 0.10 2.90 ± 0.08 3.22 ± 0.09 0.33 0.01b

ecb21 13.87 ± 0.53 15.17 ± 0.79 13.43 ± 0.58 15.42 ± 0.68 0.17 0.07

a Significant at 0.05
b Significant at 0.01
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and unequal component means), and to a 3-component
normal mixture model (with cases and controls having
unequal mixing proportions and unequal means for 2 out
of 3 of the components). The AIC values of the single nor-
mal density, 2-component mixture model and 3-compo-
nent mixture model are 381.2, 380.8, and 371.5,
respectively. The BIC values for the above three models are
390.3, 402.1, and 398.8, respectively. AIC leads to a 3-
component mixture model, while a single density model
is indicated by BIC. When there are inconsistencies in
model selection based on AIC and BIC, Leroux [8] recom-
mends the choice of the number of components might be
based on a direct comparison of the fitted frequency dis-
tributions. Figure 1(A, B) contains the density histograms
in cases and controls for this trait, ttth4. It shows that a
single normal density does not appear to be sufficient.
Based on this, we have selected the 3-component mixture

model as most appropriate. Thus our selected model for
the distribution of ttth4 is

f1(y) = 0.19 φ(y; 2.76, 0.41) + 0.77 φ(y; 4.09, 0.41) + 0.04
φ(y; 6.05, 0.41) for controls

and

f2(y) = 0.19 φ(y; 2.76, 0.41) + 0.52 φ(y; 3.52, 0.41) + 0.29
φ(y; 4.78, 0.41) for cases.

Figure 1(C, D) plots these mixtures.

Discussion
In the case of ttth4, the first component mean and corre-
sponding mixing proportion are the same for cases and
controls, and there is a general shift, in the direction that

Density polygons for alcohol-related trait ttth4: cases vs. controlsFigure 1
Density polygons for alcohol-related trait ttth4: cases vs. controls.
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the mean ttth4 is lower for alcohol-dependent individuals
than their unaffected relatives in the other 2 component
means. From the final model, we can see that the explana-
tion for a lower mean in the cases is the lower mean and
a lower estimated proportion in the second component
compared to the control group.

An interesting result is that, with sex controlled, there are
few significant differences between cases and controls,
namely ttth4, ttdt3, and ttdt4. For moderate estimated

effect size , with a sample size n = 50 in

each group, power is equal to or larger than 0.50. Thus we
have reasonable power to detect differences between cases
and controls. Whenever our alcohol-dependent sample
has a larger percentage of males than our control sample,
any differences observed between cases and controls may
reflect these sex differences rather than differences in the
disease groups. Regardless of the sample makeup, taking
sex into account should always be done when studying
factors related to alcoholism. Another reason we do not
see large differences between our controls and the cases
may be that these controls all have a family history of
alcoholism.

In this study we report significant findings observed on
investigating 13 correlated measures. As in any study in
which a large number of tests have been done, we would
expect some significant findings due to chance. Thus the
results here must be considered as preliminary. On the
other hand, given that these measures were included in
the COGA dataset [2] as being potential alcohol risk fac-
tors, it is rather surprising that so few significant findings
are observed on comparing cases to controls.

Conclusion
Two-way analysis of variance (sex and disease) indicates
that controlling for sex there is a significant difference
between alcohol-dependent cases and controls for only 3
ERPs, namely ttth4, ttdt3, and ttdt4. Comparison of both
the 2-component and 3-component normal mixture
parameters for ttth4, the ERP obtained at the parietal mid-
line channel, indicate these differences may reflect the
same mixing proportion and mean in the component
having the lowest mean, but unequal mixing proportions
and unequal component means in the other 2 compo-
nents.
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