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Abstract

Empirical studies and evolutionary theory support a role for rare variants in the etiology of complex traits. Given this
motivation and increasing affordability of whole-exome and whole-genome sequencing, methods for rare variant
association have been an active area of research for the past decade. Here, we provide a survey of the current literature
and developments from the Genetics Analysis Workshop 19 (GAW19) Collapsing Rare Variants working group. In
particular, we present the generalized linear regression framework and associated score statistic for the 2 major types of
methods: burden and variance components methods. We further show that by simply modifying weights within these
frameworks we arrive at many of the popular existing methods, for example, the cohort allelic sums test and sequence
kernel association test. Meta-analysis techniques are also described. Next, we describe the 6 contributions from the
GAW19 Collapsing Rare Variants working group. These included development of new methods, such as a retrospective
likelihood for family data, a method using genomic structure to compare cases and controls, a haplotype-based meta-
analysis, and a permutation-based method for combining different statistical tests. In addition, one contribution
compared a mega-analysis of family-based and population-based data to meta-analysis. Finally, the power of existing
family-based methods for binary traits was compared. We conclude with suggestions for open research questions.

Background
Rare variants have increasingly become a focus in studies
of complex traits. There are many reasons for this increas-
ing interest. Accessibility, both in cost and technology, of
next-generation sequencing has led to the discovery of a
plethora of rare variants. Nelson et al. [1] estimated that
95 % of variants were rare with a minor allele frequency
(MAF) of less than 0.5 %. This is in stark contrast to pre-
vious research suggesting that nearly one-third of variants
have a frequency below 5 % [2]. Furthermore, evolutionary
theory suggests that deleterious variants are selected
against and thus should be rare [3]. Recent research has
supported this theory, observing that a large proportion of
deleterious variants are indeed rare [4, 5]. Despite the
effects of this purifying selection, the 1000 Genomes
project estimates that individuals carry 76 to 190 rare
nonsynonymous variants predicted to be deleterious [6].

A more contentious argument for focusing genetic
research on rare variants pertains to the so-called
phenomenon of “missing heritability”. Genome-wide
association studies (GWAS) have successfully identified
numerous common variants associated with complex traits;
however, the common variants tend to have relatively small
effects and explain only a fraction of the overall heritability
[7]. Human height serves as an excellent example with
estimates of heritability near 80 %. GWAS variants with
genome-wide significant associations explain only ap-
proximately 5 % of overall variation in height whereas
models that use all high-quality GWAS variants with a
MAF of more than 1 % explain approximately 45 % of
the variation [8, 9]. Even though the latter is a substantial
improvement, it is still well shy of 80 %.
There is emerging evidence that rare variants are in-

volved in complex disease, including Alzheimer disease
[10], lipids and coronary artery disease [11], irritable
bowel disease [12], prostate cancer [13], and many
others [11, 14–16]. Despite these encouraging results,
many studies continue to be underpowered to detect
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association to disease-associated rare variants. Contin-
ued development of methods is needed to help increase
the power to detect these associations. This is particu-
larly true given that tests of individual rare variants are
underpowered without exceptionally large sample sizes
[14]. Combining variants based on a gene or region is a
popular strategy. Other strategies for improving power for
detecting rare variants include using family samples or iso-
lated populations to increase the frequency of a variant that
is rare in the general or nonisolate population [17, 18].
Ascertaining phenotypic extremes can also increase the
likelihood of sampling individuals with disease-associated
rare variants, thus increasing the power of rare variants
tests [19, 20]. Finally, incorporating biological knowledge
and genomic annotation to exclude, or downweight, vari-
ants in analyses is also an effective strategy, focusing tests
on variants more likely to be deleterious [21].
Here, we provide a summary of the current literature

with respect to the association of rare variants and ways
to increase the power of these tests. We then provide re-
sults from the Collapsing Rare Variants Working Group
of Genetic Analysis Workshop 19 (GAW19) and conclude
with recommendations and open problems.

Current literature
Although there is no formal definition for a rare variant,
variants with a MAF between 5 % and 50 % are generally
considered common. Variants with a MAF in the range
of 1 % to 5 % [15] or 0.5 % to 5 % [22] are considered
low frequency or less common. Rare variants have a
MAF falling below these ranges, whereas a private vari-
ant is specific to probands and their relatives.

Basic association models for collapsing rare variants
The 2 major types of methods for collapsing rare vari-
ants within a meaningful genetic region, such as a gene,
consist of burden tests and variance component tests.
Burden tests measure the burden of variants within a
genetic region and range from a simple indicator of
whether a genetic region contains at least 1 rare variant
(eg, CAST [cohort allelic sums test] [23]), to a sum of
the rare variants within a region (eg, ARIEL [accumulation
of rare variants integrated and extended locus-specific
test] [24], CMC [combined multivariate and collapsing]
[25], and MZ [Morris and Zeggini] [26]), to a weighted
sum of the rare variants in a region (eg, WSS [weighted
sum statistic] [27] and aSum [data-adaptive sum] [28]).
A general formula for the burden of rare variants

within a region is shown in Eq. (1).

Bi ¼
XM

m¼1
Gi;mwm ð1Þ

where Gi,m is the genotype coding based on a genetic
model (eg, recessive, dominant, or additive) for individual

i and variant m, wm is the weight for variant m, and M is
the total number of variants in the region. This model is
applicable to nearly all burden tests mentioned above. For
example, the CAST is often written in terms of an indica-

tor function such as Bi ¼ I
PM

m¼1Gi;mwm

� �
where Gi,m is

either 1 or 0, depending on whether the subject has or
does not have variant m, respectively, and wm = 1.
However, we can use Equation (1) directly by making
wm ¼ 1XM

m¼1
Gi;m

to ensure that Bi is 1 for subjects who

have at least 1 variant in the gene and 0 otherwise. For a
simple count of the number of variants within a region, a
weight of 1 for each variant is used. Others have proposed
more informative weights. Madsen and Browning [27]
proposed a weight that increases as MAF decreases while
Asimit et al. [24] weighted genotypes by their quality.
Even though several tests were first developed outside of

the regression framework [23, 25, 27], nearly all can be eas-
ily implemented in a generalized regression framework
(Eq. 2) by incorporating Bi as a covariate in the regression
model. This greatly generalizes the statistical framework
allowing for many types of outcome variables (eg, continu-
ous, binary, survival, etc.), and the incorporation of add-
itional possible confounders and covariates:

f μð Þ ¼ γ0 þ γ 0X þ βB ð2Þ

where f(μ) is a function that links a linear combination
of the predictors and the mean, μ, of the outcome (eg,
disease or trait); γ0 is the intercept; γ ' is a vector of
parameters for the covariates, X; β is the regression par-
ameter for the burden of rare variants within a region,
B; and bolded symbols denote a vector. For a quantita-
tive trait f (μ) = μ is used within a linear regression
framework, and for a qualitative trait f (μ) = logit(μ) is
typically used within a logistic regression framework. Al-
though several test statistics can be implemented within
the generalized regression format, we focus on the score
statistic, U, testing whether β = 0. The burden score statis-
tic is shown in Equation (3) and under the null hypothesis
of no association has a chi-square distribution with 1 degree
of freedom (df). Note that the burden score statistic can be
written as a weighted sum of the marginal score statistics,
Sm, for each genetic variant where, Sm ¼ Pn

i¼1Gi;m yi−μ̂ ið Þ
for n individuals, with μ̂ i being the estimated mean for
individual i, which includes the effects of covariates as
estimated through generalized regression.

Uburden ¼
Xn
i¼1

Bi yi−μ̂ið Þ
" #2

¼
XM
m¼1

wm

Xn
i¼1

Gi;m yi−μ̂ið Þ
" #2

¼
XM

m¼1
wmSm

h i2eχ21
ð3Þ
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As marginal score statistics can first be calculated on
each variant, this alternative form lends itself nicely to
extensions such as meta-analysis as described later.
Instead of calculating the burden of variants within a

genetic region, variance component tests (eg, sequence
kernel association test [SKAT] [29], C-alpha [30] and
SumSqU [31]) evaluate the similarity of the variants
within the region. Simply, we expect the distribution of
variants to be more similar for subjects with similar trait
values than for subjects with different trait values. Like
with the burden test, a general equation for the score
statistic of the variance component test can be written
and is shown in Eq. (4).

UVC ¼
XM

m¼1
wmSmð Þ2 ð4Þ

where Sm is the previously defined marginal score sta-
tistic. UVC follows a mixture chi-square distribution.
Because the marginal score statistic is squared, both
negative and positive effects can be included in the
statistic. This is a notable advantage of variance component
tests over burden tests, for which effects of different direc-
tions can cancel each other out. For both C-alpha [30] and
SumSqU [31], the weights equal 1. C-alpha is further re-
stricted to scenarios where the phenotype is dichotomous,
and there are no covariates. The SKAT statistic [29] is iden-
tical to UVC, accommodating a variety of weights; as such,
C-alpha and SumSqU are special cases of SKAT.
Burden tests tend to be most powerful when the majority

of variants have an effect in the same direction [25, 29, 32].
Variance component tests are more powerful when the
variants have different effects (ie, many variants with no
effect or effects in opposite directions) [29, 32]. To com-
bine the different strengths of the burden and variance
component tests, Lee et al. [32] developed an optimal uni-
fied approach called the SKAT-O, where the burden and
SKAT tests are combined with a weighting parameter, ρ
(Eq. 5). Note that the optimal test is equivalent to the bur-
den test and SKAT (ie, variance component test) when ρ is
1 or 0, respectively.

Uoptimal ¼ 1−ρð ÞUSKAT þ ρUburden; 0 ≤ ρ ≤ 1 ð5Þ
Others have explored combining the burden and variance

components tests as well [33, 34]. Finally, more recently the
EC test [35] was developed under a Bayesian framework
with an alternative hypothesis prior that gives a higher
probability to only 1 causal variant per genetic region.
Here, we provide a basic overview of general methods;

others have done this as well in more detail [22]. In
addition, Derkach et al. [36] have provided an excellent re-
view and comparison (both empirical and theoretical) of
existing methods. Important conclusions and results in-
clude: weighting variants inversely to the MAF does not
always increase power even under scenarios where rare

variants where simulated to have a larger effect; as the
sample size increases the variance component statistic
tends to have a higher power than the burden statistic;
uniformly optimal tests are difficult to achieve in practice.

Incorporating additional information
There have been many extensions to the basic frameworks
and models to include and account for additional informa-
tion. Various weights can be defined based on the MAF
[27], quality of genotype calls [24], previous evidence for
association, direction of effect (eg, aSum [28]), evolutionary
conservation (eg, phastCons [phylogenetic analysis with
space/time models conservation] [37], and GERP [genomic
evolutionary rate profiling] [38]), probability of being
functional, and likelihood of being deleterious. There exists
several algorithms/software that predict whether a variant
is likely to be deleterious, including CONDEL (consensus
deleteriousness) [39], SIFT (sorting intolerant from toler-
ant) [40], PolyPhen (polymorphism phenotyping) [41],
CADD (combined annotation-dependent depletion) [42],
and several others (see Castellana and Mazza [43]).
Although the predictions of these programs can differ
greatly [39, 43, 44], variants that have consistent predic-
tions of either being benign or deleterious across all pro-
grams may be more likely to be truly benign or deleterious.
Variants can be removed entirely from the model by using
a weight of 1 and a weight of 0 for variants fulfilling or not
fulfilling a requirement or threshold, respectively. It is often
difficult to know the true or best threshold to use when
determining which variants to include in the model.
Adaptive methods implement the region-based methods
over a variety of thresholds (such as various MAF
thresholds) and then adjust for multiple comparisons using
permutation [28, 45].
It is worth emphasizing that the proportion of variants

in the collapsing test with association to the outcome is
directly related to the power [46, 47]. As such, choosing
which variants to include is extremely important. When
choosing variants, various factors should be considered
such as the likely penetrance of the variants, the pre-
valence of the disease or trait, and the predicted dele-
teriousness of the variants. As discussed in the previous
paragraph, instead of weighting variants, only a subset of
variants can be kept, such as those predicted to be dele-
terious or to result in loss of function.
Once a gene or region has been identified as being asso-

ciated to a disease or trait, an important next step is to
identify the causal variants within the region. Expe-
rimental studies to determine the functional effects are
often costly both in effort and money. In a recent paper,
Ionita-Laza et al. [48] proposed and compared 2 methods
to identify likely causal variants within gene regions.
Unlike rare variants, the parameter estimation for

common variants is generally stable. Including disease-
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associated common variants within a gene region could
help to identify genetic regions associated with a trait as
well as to help determine if a collapsed set of rare vari-
ants produces an independent signal above that from
the common variants. Determining which common
variants to include in the model is not always straightfor-
ward as too many variants will dilute the signal and de-
crease the power by using up valuable degrees of freedom,
while including too few variants may miss a signal all
together. Penalized regression methods, such as LASSO
(least absolute shrinkage and selection operator), have
been proposed [49] as well as an extension to the SKAT
framework that incorporates common variants [50].
More recently, methods have been developed to com-

pare the observed number of filtered variants within a
genetic region to that expected genome- or exome-wide
[51] or expected by an estimated mutation rate [52]. These
methods are most often implemented in a case-only
framework, and are thus sensitive to the estimates of
comparison (eg, genome-/exome-wide averages, mutation
rates, etc.). These methods are discussed further below.

Study design considerations
Although sequencing costs continue to decline, the cost
of sequencing continues to impose a limit on the num-
ber of samples that can be sequenced. There is increas-
ing evidence that the power to detect an association to
rare variants is low regardless of the type of test or stat-
istic used [46, 47]. As such, study design is of utmost im-
portance and includes, among others, family-based, trio,
case-only, case–control, and population cohort designs.
Study design affects the power and generalizability of

the study. Certain study designs may increase the power
to detect an association in certain situations while de-
creasing the ability to detect other genetic associations.
For instance, sampling families with a particular rare
disease increases the likelihood of observing multiple
copies of the causal rare variant, thus increasing power
to detect an association to that particular variant [53].
However, this sampling framework may reduce the num-
ber of detected genetic variants, making it more difficult
to discover the variety of genetic variants that would be
seen when sampling the general population. Recently,
several methods have been developed or extended to ac-
commodate related samples [54, 55]. Probably the most
widely used of these is famSKAT (family-based sequence
kernel association test) developed by Chen et al. [56],
which extends SKAT by using a linear mixed effects
model to account for the family structure in tests of
quantitative traits. For GAW19, Wang et al. [57] studied
the type 1 error and power of current family-based
methods for rare variant association tests for dicho-
tomous phenotypes. It is also important to note that
valid permutation to assess significance in the context of

dependent samples (such as with related samples or
population stratification) is not straightforward. Others
have explored permutation in this setting and have pro-
posed modified permutation procedures [58].
For extremely rare, highly penetrant disorders, re-

searchers have had success sequencing a set of cases
[59, 60] or trios where the offspring has an extremely rare
disorder and the parents are unaffected [61–63]. Specific
software exists for detecting de novo mutations within trio
designs [64]. For more complex and common diseases or
traits, study designs such as a case–control or population-
cohort are often used [21, 65, 66]. Although many case–
control studies are retrospective, few incorporate the
retrospective ascertainment of the sampling design into
the statistical framework. Such methods were included in
GAW19 contributions [57, 67]. Unfortunately, detecting
rare genetic associations in complex diseases has con-
tinued to prove difficult and much larger sample sizes are
needed to achieve adequate power. Some study designs
use extreme sampling either of cases [68] or of quantita-
tive phenotypes [21] to increase power. For complex traits,
extreme sampling can lead to an increase in the number
of rare variants detected and subsequently an increase in
power [69]. However, not accounting for the trait-
dependent sampling when analyzing quantitative traits
can lead to biased estimates, inflated type 1 error, and
even a decrease in power [70]. In 2013, Barnett et al. [69]
and Lin et al. [70] each developed novel statistical me-
thods to appropriately analyze quantitative traits with
extreme sampling study designs.
Within the study design of sequencing a unique and

homogeneous set of cases, case-only statistical frame-
works exist for detecting exceedingly rare or de novo and
highly penetrant variants [51, 52]. Statistical frameworks
also exist to incorporate external population controls with
the unique set of cases in a case–control analysis [71], al-
though more research in this area is needed.
As previously discussed, most methods can be ex-

pressed within a regression framework. Many of the bur-
den methods are within a generalized linear regression
framework while the variance component methods, such
as SKAT, are implemented within a mixed effects regres-
sion model. The original regression frameworks of these
methods required large enough sample sizes to reach an
asymptotic distribution of the test statistics and inde-
pendent observations. Few methods have been devel-
oped specifically for small samples, although Lee et al.
[72] extended SKAT for use with small sample sizes.

Meta-analysis
Meta-analysis of test statistics across multiple studies is
widely used in GWAS and other genetic studies of com-
mon variants to replicate, confirm, and find new associa-
tions. Meta-analysis is arguably even more important for
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studies of rare variants where extremely large sample
sizes are important for achieving adequate power. Many
simple meta-analysis frameworks that combine informa-
tion about the test statistic or p value (such as Fisher’s
and Z-score methods [73]) can be applied to test statis-
tics from current region-based methods. (Although it
should be noted that, as there is no direction of effect
for variance component tests, only weights based on
sample size and not direction of effect can be incorpo-
rated into Z-score meta-analysis for variance component
tests.) Although simple and easy to implement, these
meta-analysis methods do not account for different vari-
ants that may be included in the region-based statistics
for each study.
Lee et al. [74] developed a meta-analysis framework

for rare variants that achieves nearly identical empirical
power as analyses based on combined individual level
data (sometimes called mega-analysis). This framework
uses single-variant score statistics and the corresponding
between-variant covariance matrix. Importantly, the
framework allows for variants to be monomorphic (ie,
the alternate allele is not seen) in some of the individual
studies. To be included in the meta-analysis statistic, a
variant only has to be polymorphic in at least 1 study.
Further, meta-analysis has other advantages such as eas-
ier sharing of data (given consent or computational bar-
riers to sharing raw data) and controlling for potential
confounders or population stratification specific to each
study. For instance, one study may adjust for 5 principal
components whereas another study may adjust for 3
principal components and recruitment center. In ad-
dition to being able to include different study-specific
covariates, one can also further account for possible het-
erogeneity in study statistics in the meta-analysis statistic
itself as described below.
Here, we briefly outline Lee et al’s [74] meta-analysis

framework. If we define the single-variant (ie, marginal)
score statistics as Sk, m for study k and variant m, we can
then rewrite the burden score statistic as a combination
of the single-variant statistics over all studies:

Uburden meta ¼ ΣM
m¼1Σ

K
k¼1wk;mSk;m

� �2
:

We can also square the single-variant score statistics
summed over the studies and then summed over vari-
ants to produce a meta-analysis score statistic for the
variance component region test:

UVC meta hom ¼ ΣM
m¼1 ΣK

k¼1wk;mSk;m
� �2

:

The above variance component statistic requires the
additional assumption of homogeneous genetic effects
across all studies. If we believe that the genetic effects
are instead heterogeneous, the meta-analysis score

statistic for the variance component region test can be
written as follows:

UVC meta het ¼ ΣM
m¼1Σ

K
k¼1 wk;mSk;m

� �2
:

If we believe the heterogeneity can be isolated to clus-
ters of studies, such as ethnicity, the statistics can be
combined, first over the studies in each cluster and then
over each cluster and marker. Note that the burden and
variance component meta-analysis test statistics can be
combined in an optimal way similar to that shown for
single studies in Equation (5). More details are in Lee et
al. [74]. Others have explored meta-analysis for rare vari-
ants as well [75].

Contributions from the collapsing rare variants
working group
GAW19 provided real human sequence and phenotype
data for data sets of Mexican American families and
unrelated individuals. In addition, 200 simulated data sets
were provided based off the real sequence data for pheno-
types with true underlying genetic associations as well as a
null polygenic trait. Family data (for 959 individuals
in 20 pedigrees) consisted of whole genome sequencing
calls and GWAS single-nucleotide polymorphisms (SNPs)
for odd-numbered chromosomes, as well as longitudinal
real phenotype data for systolic and diastolic blood pres-
sure, age, sex and indicators of hypertension, antihyper-
tensive medication use, and cigarette smoking, collected
at up to 4 time points. Family data also included genome-
wide measures of gene expression for a smaller set of indi-
viduals; however, no contribution in our group utilized
this data nor did any contribution utilize the longitudinal
nature of the data. The data set of 1943 unrelated individ-
uals contained exome sequence calls and the same pheno-
types as the family data, at a single time point. More
detailed information on the GAW19 data sets is available
in Blangero et al. [76].
The 6 contributions from the Collapsing Rare Variants

Working Group of GAW19 extend upon the current
literature and reflect varied goals, including the creation of
new statistical tests, developments of meta-analytic tech-
niques and a comparison of existing statistical tests. Table 1
provides overall characteristics of each contribution.

New statistics
Green et al. [77] developed a general framework for
combining different statistical tests of association of rare
variants with a continuous trait in family-based studies.
A linear mixed model was used to derive residuals by
adjusting for covariates as well as a random effect for
familial correlation. These residuals were then permuted
to create data sets reflective of the null hypothesis of no
association, allowing for the derivation of empirical
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p values that combine information over a set of rare
variant tests yielding a single overall test of association. In
the Green et al. formulation [77], evidence was combined
over 4 burden tests and 4 variance–component tests
representing different powers of the marginal score statis-
tics (U, U2, U3 and U4) as well as over 2 weight functions,
one based on the Beta distribution [29], and the other
based on the inverse standard deviation of the allele count
[45]. With increasing powers of the marginal score statis-
tics, the contribution of noncausal variants to the overall
statistic is lessened, and the use of the Beta distribution
more severely down weights common variants compared
to those based on the inverse standard deviation of the
allele count. By utilizing all combinations of weight func-
tion with powers of the score statistic, a variety of models
are included within the test. However, given the per-
mutation framework, their method can be generalized to
any set of statistical tests. In evaluating their method,
Green et al. [77] focused on the GAW19 simulated data
set of 30 genes on chromosome 3 that have at least 1 cas-
ual variant; type 1 error and power were estimated for the
combined approach, as well as for each of the 4 burden
tests and 4 variance-component tests. Type 1 error was
controlled at the 0.05 level based on the null trait, Q1,
provided with the simulated data. The combined approach
consistently yielded intermediate power relative to the
power of the four burden and four variance-component
tests. Given there is no single best test and that the opti-
mal statistic is unknown a priori, the combined approach
allows for proper control of type 1 error and is an ap-
proach that is robust to differing genetic architectures.
Further research is needed to determine an optimal com-
bination of tests, ones that are uncorrelated, reflecting dif-
ferent patterns of association, and that maximize power.
Zhu et al. [67] derived a score test, OW-score, based

on the retrospective likelihood for a continuous trait
formed by conditioning on observed phenotypes. The
resulting test is a function of a weighted combination of
genotypes over the variants included in the test, where
the weighting is derived to maximize the score statistic.
Power for the OW-score method was compared to that

of famSKAT [56] for the 14 genes with the largest simu-
lated signal for diastolic blood pressure in the GAW19
data at a significance level of 0.05. Only 4 genes, yielded
power that was greater than 40 % for either method; of
these, the OW-score test was more powerful for 3 genes
and the famSKAT was more powerful for 1 gene. It is
important to note that the distribution of the weights by
MAF differs between the OW-score test and famSKAT,
with famSKAT more highly weighting variants with a
MAF within (0.01, 0.05). This aligned with the simula-
tion results and performance of the OW-score test com-
pared to famSKAT: when causal variants fell within this
MAF range, the famSKAT was more powerful than the
OW-score method. Thus, more research is needed to
determine if the retrospective nature of the OW-score
test or the varied weighting structure is leading to
increased power in certain scenarios.
Jadhav et al. [78] used a method, from the branch of sta-

tistics called functional data analysis, which is based on
analysis of curves, surfaces, or functions [79]. Specifically,
a functional analysis of variance (ANOVA) model com-
pared the difference in the genetic structure of a genomic
region between cases and controls. To do so, a continuous
function was fit to each individual’s genotype using cubic
B-splines over a 30-kb region, and the resulting mean
function was compared between cases and controls using
an ANOVA test. Results were compared with a burden
test that weighted minor allele counts by the inverse
standard deviation for the minor allele count in controls
[27], as well as to a burden test that incorporates linkage
disequilibrium through a genetic covariance matrix [80].
Simulations were conducted for a 1.4-Mb region of
chromosome 3 where causal variants were randomly se-
lected to be 1 % to 50 % of the region, and phenotypes
were simulated using both unidirectional and bidirectional
effects. The functional ANOVA test had greater power, up
to 0.135 higher, compared to the burden test (with or
without incorporation of linkage disequilibrium) over all
but 1 scenario, in which 50 % of the variants in the region
were causal and with unidirectional effect. In this scenario,
power was comparable.

Table 1 Contributions from the GAW19 Collapsing Rare Variants working group

Goal Reference Trait Data type Statistic type

New statistic Green et al. [77] Quantitative Family simulated Combined burden and
variance component

Jadhav et al. [78] Dichotomous Unrelated, simulated Burden and Variance component

Zhu et al. [67] Quantitative Family simulated Variance component

Meta-analysis Katsumata and Fardo [81] Quantitative Family and unrelated simulated Variance component

Wang et al. [82] Quantitative Family and unrelated real data Variance component,
haplotype model

Method comparison Wang et al. [57] Dichotomous Family simulated Burden, variance component and
an optimal combination
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Developments in meta-analysis
Katsumata and Fardo [81] applied the famSKAT statistic
to each of the GAW19 family- and population-based
data sets, as well as to the combined set of data, result-
ing in a mega-analysis. These 3 analyses were compared
against a meta-analysis of the family- and population-
based data sets for the 15 most causal genes influencing
each of diastolic and systolic blood pressure in the
GAW19 simulation model (23 genes in total, given over-
lapping causal genes). They found that mega-analysis
could be substantially more powerful than meta-analysis
(NRF1, LEPR, LRP8, GAB2 with systolic blood pressure
[SBP]) with meta-analysis resulting in discernibly higher
power compared to mega-analysis for only one of the
top genes (TNN with both SBP and diastolic blood pres-
sure [DBP]). However, when the power to detect associ-
ation to a gene-region was considerably lower within the
family-based sample versus the population-based sample,
the power of the mega-analysis was much lower than the
analysis based on the population-based sample alone,
while the meta-analysis had a less-severe power loss. This
suggests that the mega-analysis may be better when there
is sufficient power to detect an association in both sam-
ples, but a meta-analysis might be more suited to situa-
tions where one study is underpowered and/or there is
heterogeneity in the genetic associations between study
samples. Both meta-analysis and mega-analysis indicated
elevated type 1 error with estimates based on the 200 sim-
ulated data sets of the null trait Q1 ranging from 0.055 to
0.130 and 0.050 to 0.135, respectively, for the 23 genes.
Wang et al. [82] also considered a meta-analysis of the

famSKAT statistic applied to the family- and population-
based data sets for DBP. These results were compared to
a meta-analysis of results from a haplotype-based associ-
ation model. For haplotype analysis, a mixed linear model
was fit, allowing for covariates, fixed effects of haplotypes
(with haplotypes with frequency of less than 0.5 %
collapsed into 1 group) and random components for
family structure and error. Haplotypes were coded using
dosages estimated from genotypes using the expectation–
maximization algorithm. Models were fit separately for
the family-based and population-based samples, and the
weighted-least squares method of meta-analysis was
followed by a Wald test of equal haplotype effects. Type 1
error for the haplotype model was found to be elevated
for genes with more than 14 haplotypes; hence, results on
the real data set were given for only genes with fewer than
14 haplotypes. None of the genes were significant for
famSKAT after correcting for multiple testing; however,
multiple genes did achieve statistical significance using the
haplotype model indicating a potentially more powerful
method for association testing. As these results are from
real data, further study is needed to understand relative
performance of the 2 methods over a range of models.

Method comparison
Finally, Wang et al. [57] compared existing family-based
methods for binary traits including the rare variant
transmission disequilibrium test (RV-TDT) [55], the gen-
eralized estimating equations–based–kernel association
(GEE-KM) test [83], an extended CMC test for pedigree
data known as PedCMC [84], a gene-level kernel and
burden association tests for pedigree data (PedGene) [80],
and the family-based rare variant association test
(FARVAT) [85]. Through simulation based on the 6 genes
with the largest effects on both simulated SBP and DBP,
they found that the FARVAT method based on optimal
weights (that adaptively use the data to combine burden
and variance component tests) was more powerful than
the PedCMC, GEE-KM, or any of the RV-TDT tests. The
power for the PedGene method was comparable with that
of FARVAT; however, FARVAT required substantially less
computing time. Based on dichotomization of the simu-
lated null trait Q1 to correspond to a prevalence of
22.6 %, type 1 error was demonstrated to be deflated for
the RV-TDT and inflated for the GEE-KM test, while the
PedCMC, PedGene, and FARVAT had reasonable control
of type 1 error across a range of significance levels.

Discussion and conclusions
Over the last 10 years, there has been considerable
methods development for association tests of rare vari-
ants. Tests have been proposed that are ideal for unidir-
ectional and bidirectional effects, as well as an optimized
combination of the 2 types of effects. Methods have
been proposed for binary as well as normally distributed
traits, for population-based and family studies. Most
tests allow for the use of different weighting schemes
(eg, based on MAF or genomic annotation), and meta-
analysis procedures have also been developed.
Contributions to the GAW19 Collapsing Rare Variants

group expanded upon the literature in several ways.
Green et al. [77] provided a method that could be used
to combine any collection of statistics for rare variant as-
sociation. This is particularly important given there are
numerous types of annotation that could be used as
weights and these weights could be implemented in a
burden model, variance component model, or combin-
ation of the 2 models. While an oft-used strategy is to
conduct all tests separately, the method proposed by
Green et al. would allow for an empirical combination in
a statistically rigorous framework while controlling for
total type 1 error.
New statistical tests were developed to allow for a

retrospective likelihood based on optimized variant
weights [67] and to incorporate genomic structure into
the test of rare variants [78].
Katsumata and Fardo [81] provided guidance regarding

design and meta-analysis. Based on GAW19 simulated
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data, they found that mega-analysis generally led to higher
power than a meta-analysis; however, if there were large
differences in power between the family-based and
population-based studies, a mega-analysis could have
power less than that of the studies being combined, meta-
analysis was less affected by this scenario. Wang et al. [82]
compared meta-analysis based on haplotypes to meta-
analysis based on famSKAT statistics, demonstrating the 2
approaches to be complementary by detecting associations
to different genes.
Finally, Wang et al. [57] compared existing family-

based methods for rare variant association to binary
traits and demonstrated PedGene and FARVAT to be
powerful methods for rare variant association, with
FARVAT being more computationally efficient.
Although much work has been done, there are still

many open research areas pertaining to the analysis of
rare variants. We mention a number of these areas;
however, this list is by no means exhaustive. For ex-
ample, great care has been taken in studies of common
variants to control for population substructure. These
have included the use of genetic principal components,
genomic matching and linear mixed models; see, eg, the
review by Price et al. [86]. Given rare variants are con-
founded with population ancestry, it is not clear how to
best control for this substructure. Although there has
been some work in this area in showing that population
substructure is indeed different for common and rare
variants [87, 88], more work, especially in method devel-
opment, is needed.
It often makes sense to focus on the gene region as

the unit for collapsing methods, especially given analyses
within the coding regions of the genome. However,
GWAS associations are often in intergenic regions, and
there is building evidence that much of the noncoding
region of the genome is indeed functional [89, 90]. Thus,
there is an interest in testing noncoding regions of the
genome for association with rare variants and how best
to define the regions is an open question. A sliding-
window based approach is often used to group regions
of the genome for testing. There are many additional
questions when using sliding windows such as number,
size of window, and size of overlap between windows.
Genomic windows will need to be large enough to cap-
ture the causal region without being too large so as to
include too much noise. There is likely to be a tradeoff
between multiple testing adjustments necessary to ac-
count for many small windows versus the potential
power loss from using fewer windows that are too large.
In addition, as the functionality of the noncoding regions
continues to be discovered and defined, it is likely that
there will be useful information to use when building or
defining the windows or meaningful genetic units within
the non-coding regions.

As we have detailed, methods exist for incorporating
genomic annotation as weights in region based methods.
The choice of the best weight and, in fact, which informa-
tion to consider at all, remain somewhat open questions.
Currently, MAF, functionality, consequence, evolutionary
conservation and many other metrics can be used as
weights and the list continues to grow, especially in non-
coding regions as functional research continues at a rapid
pace. Thus, there is a need to further develop efficient
methods of deriving the most appropriate weight. This
can be done to some extent through the adaptive methods
discussed previously. However, the adaptive methods,
which often rely on permutation, may become computa-
tionally infeasible given the increasing amount of informa-
tion on which to weight, increasing sample size, and
analysis on the entire genome. Thus, there will continue
to be a need for computationally efficient methods of de-
termining the weights while retaining the appropriate type
1 error.
To date, most collapsing of rare variants is done on a

contiguous region of the genome, whether it is a gene or
a genomic window. Alternative approaches include the
use of pathways or gene sets developed, for example,
from expression studies or protein-protein interaction
studies. Recent studies have found some success with
this approach [91], but more research is needed.
Finally, given the continued struggle to adequately

power studies of rare variants, more work is needed on
ways to improve power. One approach is to continually
increase the sample size of the studies, perhaps through
including publically available population controls. An-
other, perhaps more feasible approach may require re-
focusing the phenotype through use of multidimensional
phenotypes or homogeneous subphenotypes.
Given this relatively brief discussion of remaining

areas of research for the association of rare variants,
there is little doubt that this will continue to be an active
area of research for several more years.
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