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Abstract

For Genetic Analysis Workshop 19, 2 extensive data sets were provided, including whole genome and whole exome
sequence data, gene expression data, and longitudinal blood pressure outcomes, together with nongenetic covariates.
These data sets gave researchers the chance to investigate different aspects of more complex relationships within the
data, and the contributions in our working group focused on statistical methods for the joint analysis of multiple
phenotypes, which is part of the research field of data integration. The analysis of data from different sources poses
challenges to researchers but provides the opportunity to model the real-life situation more realistically.
Our 4 contributions all used the provided real data to identify genetic predictors for blood pressure. In the
contributions, novel multivariate rare variant tests, copula models, structural equation models and a sparse matrix
representation variable selection approach were applied. Each of these statistical models can be used to investigate
specific hypothesized relationships, which are described together with their biological assumptions.
The results showed that all methods are ready for application on a genome-wide scale and can be used or extended
to include multiple omics data sets. The results provide potentially interesting genetic targets for future investigation
and replication. Furthermore, all contributions demonstrated that the analysis of complex data sets could benefit from
modeling correlated phenotypes jointly as well as by adding further bioinformatics information.
Introduction
For Genetic Analysis Workshop (GAW) 19, a large
collection of different types of data were provided [1].
Researchers were able to use both systolic (SBP) and
diastolic blood pressure (DBP) phenotypes, measured at
multiple time points, gene expression measures, and
sequencing data, as well as single nucleotide polymor-
phisms (SNPs) from families and unrelated individuals.
This enabled participating researchers to investigate a
multitude of complex questions, which often involved
combining data from various sources.
As a clarification at the beginning of this overview,

phenotype is commonly used in the literature and the
GAW19 contributions as a synonym of any measured
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nongenotypic variable, and we subscribe to this use in the
following. The analysis of multiple phenotypes has been a
recurring topic in past GAWs [2–4], and has caught more
widespread interest in recent years as a result of techno-
logical advances that enable the collection of multiple
phenotypes and multiple omics data at a larger scale. Re-
cent reviews [5–7] provide an overview of statistical and
computational methods for the integration of different
omics data sets, for example, genomics, transcriptomics,
epigenomics, proteomics, metabolomics, and phenomics.
The methods are commonly referred to as data integra-
tion approaches, which aim at integrating the informa-
tion of multiple levels of molecular measures—that is,
multiple phenotypes—into 1 analysis. Possible ways to
classify the existing approaches are to distinguish mul-
tistaged and meta-dimensional approaches [5], where
multistaged analysis refers to a sequential analysis of
associations between different data sources that are
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overlayed in a final analysis step. Meta-dimensional ap-
proaches, on the other hand, could be described by the
attempt to build a joint model of all available data. In
both approaches to data integration, efficient computa-
tional approaches to combine the large amount of data
are necessary, and as a result, a large part of the meth-
odological development stems from the bioinformatics
community. This is illustrated by the results of a litera-
ture search for published articles describing specific
forms of joint analysis of multiple phenotypes (Fig. 1).
This data integration was addressed by the contributions in
the GAW19 working group on the joint analysis of multiple
phenotypes, but also aspects of the analysis of dependent
variables were used. In this summary paper, we highlight
the statistical methods presented in this working group,
and discuss their contribution and value, in addition to the
predominantly bioinformatics-driven perspective, on the
analysis of multiple phenotypes.

Blood pressure and gene expression as multiple
phenotypes
A first question for the analysis of multiple phenotypes
can be: What are the multiple phenotypes that are investi-
gated, and what is the motivation for a joint analysis? This
can then be followed by more detailed questions as to
how the multiple phenotypes are analyzed statistically,
and whether, for example, they are considered as
dependent outcome variables or as covariates on the same
level as genotypes. Common to all contributions of this
working group [8–11] was the search for functional single
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Fig. 1 Results of PubMed literature search. Results of a literature search
January 1, 1990 and June 1, 2015, containing any of “(data integration O
multivariate model OR multivariate statistics)” as well as “(omics OR NGS
omics measures from genomics, transcriptomics, epigenomics, proteom
keywords. The number of retrieved articles in 2015 (left panel) is multip
with the most publications are shown in the right panel
nucleotide variants (SNVs) influencing the blood pressure
phenotypes, with different motivations and approaches for
integrating multiple phenotypes into the analysis. SBP and
DBP show a high correlation, with correlation coefficients
between 0.5 and 0.8, depending on the adjustment applied
for covariates. When searching for a common underlying
genetic background, pleiotropic SNVs [12] influencing
both blood pressure measurements, or different SNVs in
the same gene, which are in high linkage disequilibrium
and influencing either blood pressure (BP), can explain
some of the dependence between SBP and DBP. In
addition, the dependence between SBP and DBP might be
partially explained by genetic effects, which are mediated
by intermediate phenotypes such as, for example, gene
expression. Hence, the available gene expression measures
can be seen and were used as a further phenotype, which
is also correlated with BP [13, 14], and the search for
pleiotropic SNVs could target to identify variants influen-
cing both BP and the gene expression of their gene (or
another gene). Alternatively, gene expression level can be
investigated as another predictor in addition to SNVs, to
identify more complex biomarkers based on both SNVs
and gene expression, and again to build more biologically
meaningful models. SNVs and biomarkers identified from
such analyses might be especially helpful to understand
parts of the complex biological processes how genetic
factors can affect BP. With BP being an important clinical
and easily measurable variable with relevance for cardio-
vascular disease and other diseases, such as stroke or
kidney damage, investigating longitudinal BP profiles and
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Fig. 2 Simplified sketches of the underlying biological models and assumptions of the working group papers. BPi, BP measure at the ith

visit; DBP, diastolic blood pressure; GE, gene expression; LBP, latent variable affecting both systolic and diastolic blood pressure; MURAT,
multivariate rare-variant association test; SBP, systolic blood pressure; SEM, structural equation modeling; SNV, single nucleotide variant;
SRVS, sparse representation-based variable selection. For a more detailed presentation of the models, please refer to the original articles
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their underlying genetics is another relevant aspect of mul-
tiple phenotypes analysis, which was considered in the con-
tributions. Figure 2 shows a simplified illustration of the
underlying biological models of the working group papers.
Building on the above arguments, it is intuitive that a

joint analysis of multiple BP and gene expression pheno-
types together with the underlying genotypes may allow
building a biologically more meaningful model. This can
help to not only increase the face validity and confidence
in findings from the analyses, but can also allow estimat-
ing the genetic effects more efficiently with higher power.
Investigated phenotypes, transformations, and
adjustments
All 4 contributions looked at BP as an end point. However,
1 group applied a log-transformation [11] to BP; 2 groups
[8, 11] applied standard adjustments for the nongenetic co-
variates age, sex, and smoking; and the other 2 groups
[9, 10] adjusted BP for the effect of antihypertensive medi-
cation and other nongenetic covariates using a censored re-
gression model [15]. Furthermore, 1 group [10] looked at
longitudinal effects, and 2 groups [8, 9] considered SBP
only but included gene expression measures, which made a
comparison of identified SNVs difficult. Table 1 provides a
brief overview of the analyzed samples and data, and shows
the employed statistical models, implementation, and main
findings of all contributions.
Dealing with the high dimensionality of the data
For genome-wide association studies (GWAS) in
general, a paramount question is how to approach the
high dimensionality of SNVs, with solutions of either
testing SNVs or sets of SNVs sequentially, or by using
some dimension reduction approach or penalized
model to analyze all the data simultaneously. Whether
a statistical method is applicable to high dimensional
data, is dependent on whether it is computationally fast
enough to fit a large number of models, sequentially
testing each SNV, or whether it is both computationally
fast enough and able to fit 1 very high-dimensional
model including all SNVs (in the genome or in a
chromosome, for example). This challenge is amplified
when multiple phenotypes are considered, which in-
creases the dimensionality problem further. Three of
the contributions [9–11] approached this issue by
restricting the analysis to prespecified models (see
Fig. 2) with assumed relationships between phenotypes
and SNVs. These models were then fitted sequentially
for different SNVs or sets of SNVs with copula models
[9], structural equation models (SEM) [10], or multi-
variate linear mixed effect regression [11]. As another
novel approach to the high dimensionality, Cao et al.
[8] used a sparse representation based variable selection
(SRVS) to extract relevant genes based on signatures
from the entire data, including all SNVs and all gene
expressions. In this regard, all approaches could be
described as different forms of meta-dimensional ap-
proaches, with either using a sparse statistical model
and analyzing all the SNP and gene expression data
simultaneously, or by posing hypothesis-based restric-
tions and testing triplets of SBP, DBP, and SNVs or of
SBP, gene expression, and SNVs sequentially. In more
detail, Cao et al. [8] analyzed 11,522 gene expression



Table 1 Overview of the analyzed sample and data in the contributions

Ref. # Contribution Sample BP data GE and genetic data Method Software Main findings

[8] Cao et al.
[2015]

n = 397 individuals
in 46 families, from
family data set

Real data: SBP
at time point 3

GE and SNP data:
k = 11,522 transcripts,
l = 354,893 SNPs

SRVS Matlab-toolbox
SRVS

Of top 1000 variables associated with
BP, 575 are SNPs and 425 are GE, 302
have plausible relevance for BP, 173
are associated with body weight, and
84 associated with left ventricular
contractility

[9] Konigorski
et al. [2015]

n = 81 unrelated
individuals, from
family data set

Real data: SBP
at time point 1

GE and WGS data
on chromosome 19:
k = 848 transcripts,
l = 68,727 SNVs

Copula R functions,
available upon
request

Higher power of bivariate copula
models compared to univariate
regression and univariate SKAT, SKAT-O

Identification of 5 SNVs in CEACAM5
gene relevant for SBP, and 1075
cis-eQTLs relevant for GE

[10] Song et al.
[2015]

n = 1389 individuals
from family data set

Real data: SBP
and DBP at
time points 1–3

SNP data:
l = 460,359 SNPs

SEM R-package
strum

The 2 tested models (autoregressive
and latent growth curve) show similar
ranking of relevant SNPs

Identification of 10 SNPs related to
both SBP and DBP, mostly on
chromosome 1

[11] Sun
et al. [2015]

n = 1851 unrelated
individuals, from
unrelated data set

real data: SBP
and DBP

WES data:
l = 152,337 SNVs

MURAT R functions,
available upon
request

Multivariate tests tend to give smaller
p values than the univariate SKAT, and
can improve power

Identification of 2 SNPs in CYP4A22
and near APOC4, which were
previously reported to be associated
with BP

BP blood pressure, eQTL expression quantitative trait locus, GE gene expression, MURAT multivariate rare-variant association test, SBP/DBP systolic/diastolic blood
pressure, SEM structural equation modeling, SKAT sequence kernel association test, SKAT-O optimal sequence kernel association test, SNP single nucleotide
polymorphism, SNV single nucleotide variant, SRVS sparse representation variable selection, WES whole exome sequence, WGS whole genome sequence
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measures, 354,893 SNPs and 6 nongenetic variables simul-
taneously. Konigorski et al. [9] and Song et al. [10], each
tested models incorporating multiple phenotypes (SBP
and 1 gene expression measure [9], or 3 longitudinal SBP
and 3 DBP measures [10]) together with 1 SNV/SNP, se-
quentially for 68,727 SNVs [9] and 460,359 SNPs [10]. Fi-
nally, Sun et al. [11] tested SBP and DBP conditional on
the nongenetic covariates for the association with 152,337
SNVs sequentially, and with multimarker tests allocating
these SNVs into 10,886 genes or 13,094 windows and test-
ing them sequentially.
As another view on the approaches, Konigorski et al.

[9], Song et al. [10], and Sun et al. [11] applied new
methodologies and implementations for models of
multiple dependent outcome measures to integrate BP
and gene expression as phenotypes in the analysis. On
the other hand, Cao et al. [8] looked at gene expression
at the same level as genotypes to derive joint signatures
relevant for BP, and applied a new approach to extend
the literature on how to integrate and mine multiple co-
variates for interesting structures. Hence, the approaches
focus on slightly different aspects of transcriptional and
translational processes.
Additional hypothesis-based restrictions were some-

times used to decrease the number of tested hypotheses
and the number of estimated parameters; for example,
the assumption that the effects of the same variant on
different phenotypes have the same correlation [11] or
the restriction to analyze cis-acting SNVs with respect to
gene expression and disregard trans-acting SNVs [9].

Classical multiple phenotype analysis
A multivariate method in the classical sense was applied
by Sun et al. [11]. Motivated by the search for pleio-
tropic genetic variants, which might help to shed more
light on the genetic architecture of complex traits, they
used their recently developed multivariate rare-variant
association test (MURAT) to test for associations be-
tween BP and genetic variants. The underlying model of
MURAT relates multiple phenotypes to a group of geno-
types and covariates with a multivariate linear mixed
effect model, assuming that the phenotypes are ran-
domly distributed yet correlated and that effect of the
genetic variants is normally distributed. Restrictions to
the correlation structure involve the assumption that ef-
fects of different variants are uncorrelated but that the
effect of the same variant on different phenotypes may
be correlated. In the analysis, Sun et al. used SBP and
DBP as highly correlated phenotypes to be associated
with the sequencing data of unrelated individuals. They
applied MURAT to the sequence data of the 1943 unre-
lated individuals and log-transformed BP measurements,
which showed a correlation of r = 0.542. In their analysis,
the authors compared the results with the frequently
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used sequence kernel association test (SKAT) [16]. Both
tests were first used as single-variant tests, restricted to
exomic variants on odd-numbered chromosomes with at
least 4 carriers. For the application as region-based tests,
they used 10,866 gene regions based on the hg19 anno-
tations and also 13,094 nonoverlapping windows of
30 kb. Additionally, the authors looked at 15 candidate
genes known to be associated with hypertension. A score
type statistic with analytically computable p values al-
lows the application in genome-wide analyses. Besides
identifying potentially interesting candidate SNPs for
hypertension, the authors found evidence for an in-
creased power when applying the multivariate test, com-
pared to the univariate SKAT method.
Song et al. [10] used a SEM method for pedigrees [17]

allowing for measurement error of the observed BP
values, to search for SNPs which affect the BP changes
over time. In the measurement part of the model, SBP
and DBP are assumed to be linearly related to the SNP
and the latent variable, as illustrated in Fig. 2, assuming
multivariate normality [17]. In the structural part of the
model, the relationship between the 3 latent variables
was modeled in 2 ways, with a first-order autoregressive
model as well as a latent growth curve model. More spe-
cifically, in the first-order autoregressive model, the
genotype affects only the first latent variable and all fol-
lowing variables depend only on their respective prede-
cessor, and in the latent growth curve model, the effect
of the SNP on the latent variables is constant. With a
score test developed from their original R package strum
[18], the authors tested the effect of each SNP separately
on the BP traits. Because of a vast amount of missing
data, Song et al. excluded the fourth time point from
their analysis. In their analysis, the authors found weak
associations signals for 10 SNPs in both models. The
SNPs have not been reported in previous GWAS and
could be investigated further in future studies. These re-
sults indicate that with the computationally efficient
score test, SEMs of complex relationships between mul-
tiple phenotypes can be investigated with strum on a
genome-wide scale.

Data integration methods of multilevel biological
data
Two of our groups incorporated data from different
omics technologies in the form of genotypes and gene
expression to make use of more information. Both used
the provided family data set as it contained both geno-
type and gene expression data.
Konigorski et al. followed up on their work from

GAW18 [15] and extended their analysis to gene expres-
sion data [9] for a more biologically meaningful model,
and to the analysis of rare variants. In their model, the de-
pendence between the gene expression of a transcript with
BP is used for building joint models of both phenotypes
conditional on genetic variants. The relationship between
gene expression and BP is assumed to be undirected, be-
cause it is not clear a priori whether for a particular tran-
script, the effect is from gene expression on BP or vice
versa. For example, the mRNA expression of some genes
can be expected to influence BP levels through complex
translational processes, but also, BP could be thought of
as an indicator of, for example, the stress level of an indi-
vidual, which can be characterized by changes in the blood
level of different hormones and proteins. These hormone
levels could in turn interact with mRNA transcripts and
modulate gene expression, resulting in an “effect” of BP
on the gene expression levels. The authors used copula
functions to model the joint distribution of SBP and gene
expression conditional on SNVs, separately for all SNVs
within the gene boundaries, to investigate genetic effects
on both phenotypes while considering their dependence
structure. In the marginal models, the SNV is linearly re-
lated to the phenotype. They restricted their analysis to
chromosome 19, as it contains the transcript/gene with
the highest association with SBP and hence a joint model
could benefit the most compared to a univariate model.
Genetic variants had to have at least 3 copies and must be
located within 5 kb of a gene to be considered. Hence, for
the effect on gene expression, only cis-acting effects were
considered. They compared their results with results from
single-marker univariate models of SBP and gene expres-
sion and also the gene-based SKAT [16] and SKAT-O (op-
timal sequence kernel association test) [19]. While there
was no indication for inflated type 1 errors under the pro-
posed copula approach, the results indicate that joint
models using copula functions can estimate the genetic ef-
fects of both common and rare variants more efficiently
and with higher power compared to standard univariate
regression models as well as the popular multimarker tests
of SKAT and SKAT-O.
Cao et al. applied their previously developed SRVS [20]

to identify signatures from SNPs and mRNA expression
which are associated with BP [8]. After regressing out the
nongenetic covariates from the observed BP, the resulting
residuals are related to all SNPs and transcripts in a linear
regression model. This high-dimensional model is solved
with their SRVS algorithm to select SNPs or transcripts. In
the approach, combinations of SNPs and transcripts are re-
peatedly randomly selected and used for a least-squares
optimization for minimal regression coefficients. Variables
with nonzero regression coefficients are considered as se-
lected. For the top 1000 selected variables, they performed
a bioinformatics analysis to investigate the potential bio-
logical relevance of these variables. For each selected SNP
or gene they looked for associations with BP (logarithm of
odds [LOD] score >3) using the rat genome database tool
[21] based on the Human Genome Assembly GRCh37.
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Approximately 56 % of the SNPs were identified as BP re-
lated and could be interesting targets for follow up in
future studies. These results show the applicability of the
SRVS algorithm to a large data set including multiple
data sources with the potential to identify interesting
biomarkers.

Discussion
When summarizing insights from the 4 contribu-
tions, it was demonstrated that substantially different
joint statistical models of multiple phenotypes are
available for analysis, that their implementation is
computationally efficient enough for an analysis on a
genome-wide scale, and can be applied to multiple
omics data sets without modification [8] or by pos-
ing further hypothesis-based constraints or through
extensions of the approaches [9–11]. Complex mo-
lecular relationships of interest can be hypothesized
from previous knowledge and investigated, or also,
the entire data can be explored as a starting point to
deriving meaningful signatures relevant for BP. All
approaches analyzed the real data with the focus on
applying new methodologies, showing their potential
usefulness, and comparing the results to established
approaches. In all comparisons to standard univariate
approaches, promising results were described which
suggest that using the information from multiple
phenotypes can increase the power for identifying
relevant genetic variants, even when considering a
power decrease in joint models because of a smaller
sample size with complete information on all pheno-
types. For example, when using gene expression data
from unrelated individuals of the San Antonio family
study, the sample size available for analysis was n = 81 [9].
Future work in this area could investigate adapted imput-
ation models and extend the approaches to model the
family structure, to increase the available sample size for
analysis. Because the simulated phenotypes weren’t used
in the analyses, future studies are also needed to evaluate
the empirical type 1 error and power of the proposed test
statistics.
As Cao et al. [8] demonstrated, subsequent bioinfor-

matics analysis can help in the interpretation of the ob-
tained results, and complement both model-based
statistical approaches and unsupervised methods. Start-
ing from identified associations of genetic variants, using
causal models or developing appropriate goodness-of-fit
tests for effects in different directions could each be very
interesting roads for future extensions and future work
for the fine-mapping of effects in the complex biological
systems.
Finally, in addition to the methodological development of

multivariate statistical approaches, an inherent premise in
all contributions was that a careful selection, adjustment,
and statistical modeling of each of the multiple phenotypes
is essential for obtaining reliable results. With this, what
can be more intuitive than to recall the classical genetic
definition of a phenotype, and model the multiple observed
traits of a phenotype jointly, which each contribute and ex-
plain parts of the entire organism.
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