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Abstract

Background: The utilization of biological data to infer the geographic origins of human populations has been a
long standing quest for biologists and anthropologists. Several biogeographical analysis tools have been developed
to infer the geographical origins of human populations utilizing genetic data. However due to the inherent complexity
of genetic information these approaches are prone to misinterpretations. The Geographic Population Structure (GPS)
algorithm is an admixture based tool for biogeographical analyses and has been employed for the geo-localization of
various populations worldwide. Here we sought to dissect its sensitivity and accuracy for localizing highly admixed
groups. Given the complex history of population dispersal and gene flow in the Indian subcontinent, we have employed
the GPS tool to localize five South Asian populations, Punjabi, Gujarati, Tamil, Telugu and Bengali from the 1000 Genomes
project, some of whom were recent migrants to USA and UK, using populations from the Indian subcontinent available
in Human Genome Diversity Panel (HGDP) and those previously described as reference.

Results: Our findings demonstrate reasonably high accuracy with regards to GPS assignment even for recent migrant
populations sampled elsewhere, namely the Tamil, Telugu and Gujarati individuals, where 96%, 87% and 79% of the
individuals, respectively, were positioned within 600 km of their native locations. While the absence of appropriate
reference populations resulted in moderate-to-low levels of precision in positioning of Punjabi and Bengali genomes.

Conclusions: Our findings reflect that the GPS approach is useful but likely overtly dependent on the relative
proportions of admixture in the reference populations for determination of the biogeographical origins of test
individuals. We conclude that further modifications are desired to make this approach more suitable for highly
admixed individuals.
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Background
The formulation of appropriate methods to decipher the
geographic origins of human populations has been a
long-standing quest with biologists and anthropologists.
Given that a significant correspondence between geog-
raphy and genetics has been reflected previously [1, 2],
various investigations over the last decade have strived
to glean the precise geographic origin of human popula-
tions using high-resolution genetic information. The
Geographic Population Structure (GPS) algorithm is a
recently devised admixture based tool for biogeograph-
ical analyses. While GPS has been demonstrated to be
superior to other existing methods for tracing the ances-
try of human populations [2–7], it may not be accurate
for tracing ancestry of recently admixed individuals and
groups (up to 1000 years before present) [2, 8]. It relies
on extrapolating the genomic similarity between the
query and reference populations to infer the likely bio-
geographical affinity of the former using the geographic
locations (latitude and longitude) corresponding to the
latter as a reference. GPS has been effectively employed
for reconstructing the population history of several pop-
ulations worldwide [2, 6, 7, 9–11]. However, so far its
utility and robustness in accurately localizing highly
admixed populations whose genetic structure has been
modified by significant demographic, biological and so-
cial factors has remained largely unexplored.
India and its neighbouring areas in South Asia are a rich

melting-pot of genetic and ethno-linguistic diversity inter-
woven with unique social practices. Several lines of evi-
dence allude to the presence of prominent signatures of the
Late Pleistocene era in Indian population history [12–15].
The demographic landscape of the Indian sub-continent
has been modulated by multiple waves of migration during
the late glacial maximum (LGM) of Holocene, Neolithic
Period, Bronze and Iron Age [16–20]. A long and complex
history of admixture between immigrant gene-pools origin-
ating primarily in West Eurasia, Southeast Asia [21–27]
and the autochthonous Indian lineages [26, 28–30] had
generated enormous genetic heterogeneity, which together
with the subsequent stringently enforced socio-cultural
practices like endogamy [22] gave rise to the distinctive
population structure of the Indian sub-continent. Initially it
was suggested that extant Indian populations largely arose
due to admixture between two ancestral gene-pools,
namely Ancestral North Indian (ANI) and Ancestral South
Indian (ASI) [31, 32]. However, recent findings support the
prevalence of four ancestral genetic components in the
mainland Indian populace that included Ancestral Tibeto-
Burman (ATB), Ancestral Austro-Asiatic (AAA), in
addition to ANI and ASI components [22].
Given the complex history of population dispersal and

gene flow in the Indian subcontinent, here we have
employed the GPS tool to interrogate publically available

whole genome sequence (WGS) data from the Indian
sub-continent to ascertain its utility in geo-localization
of the corresponding populations. Our dataset included
five populations of South Asian ancestry (SAS) available
in the 1000 Genomes Project (Phase 3 release), namely
two populations originating from the North-Western re-
gion of the Indian subcontinent, Gujarati (GIH) and
Punjabi (PJL), two populations from the Southern Indian
subcontinent,Tamil (STU) and Telugu (ITU), and one
population from Eastern region of the Indian subcontin-
ent, Bengalis from Bangladesh (BEB) [33]. Notably three
out of the five SAS populations (GIH, STU and ITU)
had been sampled from USA and UK. In addition, we
assessed data corresponding to eight populations from
the North-Western region of the Indian subcontinent,
namely Balochi, Brahui, Burusho, Hazara, Kalash,
Makrani, Pathan, and Sindhi that are available in the
Human Genome Diversity Panel (HGDP) [34, 35] and
from 52 Indian groups [31]. We mapped the putative
origins of the five SAS populations from the 1000
Genomes project [33] with reference to those avail-
able in HGDP [34, 35] and previously published WGS
data from Indian populations [31]. We note that GPS
geo-localized most genomes including those pertain-
ing to recent migrants from the Indian subcontinent,
the GIH, ITU and STU populations with reasonably
high accuracy. While likely the lack of appropriate
reference populations resulted in moderate-low level
of its precision in assigning PJL and BEB genomes.
Overall our findings yield a better understanding into
the efficacy and limitations of the GPS approach in
predicting the biogeographical affiliation and tracing
the ancestry of highly admixed populations.

Methods
Datasets
The datasets used in the present study comprised of the
five South Asian populations available in 1000 Genomes
Project, namely Gujarati Indians from Houston, USA
(GIH), Punjabis from Lahore, Pakistan (PJL), Indian
Telugu from UK (ITU), Sri Lankan Tamil from UK
(STU), and Bengalis from Bangladesh (BEB), assessing a
total of 489 (103 GIH, 96 PJL, 102 ITU, 102 STU and 86
BEB) samples [33]; eight Pakistani populations (Balochi,
Brahui, Burusho, Hazara, Kalash, Makrani, Pathan, and
Sindhi) from the Human Genome Diversity Panel
(HGDP) dataset 2 (N = 197) [34, 35] and 52 previously
reported Indian populations (N = 378) [31]. File conver-
sions and manipulations were performed using EIG v4.2
[36], VCF tools [37] and PLINK [38]. The VCF files for
the Phase 3 release of 1000 Genomes Project were ob-
tained from The International Genome Sample Resource
(IGSR) server (http://www.internationalgenome.org/
data/). The single nucleotide polymorphisms (SNPs) that
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passed the default quality control check and were
marked as ‘PASS’ in the VCF files were used for further
analysis. No additional quality control measures were
employed for the HGDP and previously described data-
sets [31]. All three datasets were made compatible with
each other and merged together using PLINK. Overall,
94,759 autosomal SNPs were assessed for 1064 South
Asians samples. A separate dataset was generated by
including 29 French, 24 Karitiana and 21 Surui samples
from Brazil, 19 Melanesians, 17 Papuans, 48 Bedouins
from Israel, 51 Palestinians [34, 35], 99 Northern and
Western Europeans from Utah, USA (CEU), 103 Han
Chinese samples from Beijing, China (CHB), and 108
Yorubans from Ibadan, Nigeria (YRI) [33] to the 1064
South Asian samples (N = 1583) for performing a global
admixture analysis. A total of 89,727 SNPs were assessed
for the global dataset.

Admixture analysis
The genetic ancestry of all individuals was estimated using
an unsupervised clustering algorithm, ADMIXTURE [39].
The optimum number of ancestral components (K) was
discerned by minimizing the cross-validation error (CVE)
[39] implemented in ADMIXTURE v1.3 using a –cv flag
to the ADMIXTURE command line. For the global dataset
(N = 1583), the lowest CVE was estimated for K = 13
(Additional file 1: Figure S1), while for the South Asians
only dataset (N = 1064) the lowest CVE was estimated for
K = 8 (Additional file 1: Figure S2).

Biogeographical mapping of south Asian populations
Biogeographical analysis was performed using the
Geographic Population Structure (GPS) algorithm [2].
Given a sample of unknown geographic origin and
admixture proportions that correspond to putative an-
cestral populations, the GPS tool converts the genetic
distances between the test and the nearest reference
populations into geographic distances. Comparing the
test samples with the reference populations, GPS
finds the geographic coordinates of locations where
individuals with similar genotype reside. All super-
vised admixture proportions were calculated as
described previously [40]. Essentially, the GPS algo-
rithm correlates the admixture patterns of individuals
of unknown origin with geographical coordinates
using the admixture fractions (GEN file) and geo-
graphical locations (GEO file) of reference samples.
Prior to applying GPS to elucidate the biogeographical

affinity of South Asian populations, we sought to test its
accuracy on selected Indian populations corresponding to
known latitudes and longitudes. To this end we analyzed
57 individuals from four Indian populations (Brahmin,
Kshatriya, Madiga, and Kurumba) described previously
[31] and estimated their admixture proportion with

respect to eight admixture components corresponding to
reference populations.
Subsequently we mapped five South Asian populations

(N = 489) [33], using previously described Indian [31]
and Pakistani populations from HGDP [34, 35] as the
reference, interpreting their admixture fractions and
geographic locations (latitudinal and longitudinal coordi-
nates). Therefore, the GEN file contains eight admixture
coefficients corresponding to 575 individuals across 60
reference populations from around India and Pakistan
and the GEO file contains the geographic coordinates
(latitude and longitude) for the same.

Determining the accuracy of GPS prediction
Geographic distances (‘Laws of cosines’, great circle dis-
tance) between the physical location of the query samples
from 1000 Genomes project and their corresponding GPS
assigned locations was calculated using the R package geo-
sphere (https://CRAN.R-project.org/package=geosphere).
For GIH, ITU, and STU genomes that were pertaining to
the South Asian diaspora, the capital cities of their ances-
tral region or country, Ahmedabad (India), Hyderabad,
(India) and Colombo (Sri Lanka) respectively were used as
their native regional location. Similarly, for PJL and BEB
samples the geographic coordinates of Lahore (Pakistan)
and Dhaka (Bangladesh) respectively were used for the
geographic distance estimation.

Results
Clustering of populations
The ancestry of 1064 samples from the South Asians
only dataset and 1374 samples from the global dataset
was estimated using unsupervised clustering as imple-
mented in ADMIXTURE v1.3 [39]. Model validation
by optimum choice of the number of ancestral com-
ponents (K) was achieved for both datasets by minim-
izing the cross-validation error (CVE). For the global
dataset (N = 1583), the lowest CVE was estimated for
K = 13 (Additional file 1: Figure S1), while for the
South Asians only dataset (N = 1064) the lowest CVE
was estimated for K = 8 (Additional file 1: Figure S2).
In the global admixture analysis, at K = 13, European

(CEU and French), Chinese (CHB), African (YRI), Papuan,
Melanesian, Surui and Karitiana samples were assigned
homogeneously to unique populations putatively repre-
senting k1, k5, k8, k9, k10, k11 and k12 ancestral compo-
nents (Fig. 1). While the ancestral components k6 and k7
predominantly occurred among the Telugu (Vysya) and
Andamanese (Onge) populations. Finally, the ancestral
component k13 was exclusively found in the Kalash popu-
lation that is a genomic isolate [41] from Pakistan. Most
South Asians have high fractions of putative North Indian
(k3) and South Indian (k4) ancestral components with
variable fractions of k1, k5 and k6 in their genomes.
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In the South Asian only admixture analysis, at K = 8, a
discernible degree of genetic admixture between the North
and South Indian populations was evident from the admix-
ture analysis (Fig. 2). Consistent with the global admixture
studies and previous findings [31] the Punjabi (PJL), Guja-
rati (GIH), and ANI [31] genomes revealed a higher frac-
tion of the North Indian ancestral component, k2 (identical
to component k3 in the global analysis, Fig. 1), while the
Tamil (STU), Telugu (ITU) and the ASI [31] genomes were
demonstrated to possess a higher fraction of the South
Indian ancestral component, k4 as also observed in the glo-
bal analysis. The GIH samples had the highest North Indian
ancestral component, k2 (Tukey’s post hoc analysis, p-
value < 0.0001) (Fig. 3a), while the STU genomes possessed
the highest levels of the South Indian component, k4
(Tukey’s post hoc analysis, p-value < 0.0001) (Fig. 3b). The
West Eurasian ancestry component, k1 as also delineated
in the global assessment was discerned to be the highest
among Pathans, Kashmiri Pandits, Brahmins, Kshatriyas
and PJL, while highest levels of the ancestral component,
k5 (same as the component k6 in the global analysis, Fig. 1)
was found in the genomes of the Telugu people including
the highly endogamous Vysya group from Andhra Pradesh
[32, 42] and the ITU population. In tune with their geo-
graphic origin and proximity to the West Eurasians, the

highest fraction of the component k1 was present in PJL
when compared to the remaining four SAS populations
(Tukey’s post hoc analysis, p-value < 0.0001) (Fig. 3c). As
reported previously [43], the Bangladeshi (BEB) genomes
were delineated to contain a significant fraction of the East
Asian ancestral component, k3 (identical to component k5
in the global assessment, Fig. 1) (Tukey’s post hoc analysis,
p-value < 0.0001) (Fig. 3d), in addition to discernable ‘North
Indian’ and ‘South Indian’ ancestry components, which are
likely linked to their geographical origin and migration his-
tory. The ancestral component k6, potentially representa-
tive of Andamanese ancestry (same as component k7 in the
global analysis, Fig. 1), was observed among most tribes
from the Indian subcontinent in discernible proportions to-
gether with the South Indian component, k4. Finally the an-
cestral component k8 as also found in the global studies in
Fig. 1 was exclusively observed among the Siddis. Given
that the Siddis are a unique Indian population of African
ancestry [11, 44, 45] their genomic proximity to Yorubans
is not unexpected.

Biogeographical mapping of reference south Asian
populations
Prior to applying GPS to elucidate the biogeographical
affinity of South Asian populations, we sought to trial its

Fig. 1 An admixture plot showing the ancestry components of global populations. Five SAS populations (STU, ITU, GIH, PJL and BEB) from 1000
Genomes Project [33], selected Indian [31] and Pakistani populations [34, 35] alongside French, Karitiana and Surui samples from Brazil, Melanesians,
Papuans, Bedouins from Israel, Palestinians [34, 35], Northern and Western Europeans from Utah, USA (CEU), Han Chinese samples from Beijing, China
(CHB), and Yorubans from Ibadan, Nigeria (YRI) [33], were evaluated. Percent ancestry is plotted on the Y axis. The ancestral components in evaluated
genomes was estimated using ADMIXTURE v1.3. A model with thirteen ancestral components (K = 13) was the most parsimonious to explain the
variation and similarities of the genome-wide genotype data. Each individual is represented by a vertical line partitioned into colored segments whose
lengths are proportional to the contributions of the ancestral components to the genome of the individual. Population labels were added after each
individual’s ancestry had been estimated. To note k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12 and k13 represent putative ancestral West Eurasian, Middle
Eastern, North Indian, South Indian, Chinese, Telugu, Andamanese, African, Papuan, Melanesian, Surui, Karitiana, and Kalash components respectively
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accuracy on 57 individuals belonging to four Indian pop-
ulations (Brahmin, Kshatriya, Madiga, and Kurumba)
corresponding to known latitudes and longitudes, as
described previously [31]. We applied GPS using the
leave-one-out procedure [9, 10] at the population level.
Assignment accuracy was determined for each of the 57
individuals. GPS correctly assigned 88% of all individuals
to less than or equal to 600 km from their original loca-
tion (Fig. 4). For both South Indian populations, Madiga
and Kurumba, 100% of all individuals were correctly
assigned within 400 km of their known regional location
while 73% Brahmin and 78% Kshatriya groups were
assigned within 600 km of their original geographic re-
gion. These results demonstrate a reasonably strong
geographic-genomic correspondence and delineate the
expected assignment error for the SAS populations.

Biogeographical mapping of south Asian populations
from 1000 genomes project
Next, we applied the GPS algorithm to infer the biogeo-
graphical affinity of the five SAS populations from 1000
Genomes Project [33] using South Asian populations de-
scribed earlier [31, 34, 35] as the reference. GPS assigned
locations for the query SAS populations are depicted in
Fig. 5. As evident most SAS genomes were positioned in
continental India, Pakistan and the remaining in Sri
Lanka (Additional file 1: Table S1). A majority of

Punjabi, PJL (>70%) and Gujarati, GIH (>90%) genomes
were positioned in northern and western regions of the
Indian subcontinent, across western Pakistan and the
Indian states of Jammu and Kashmir, Uttarakhand, Uttar
Pradesh, Rajasthan and Gujarat (Fig. 5a, b). We note that
the remainder of the PJL individuals was assigned across
the southern Indian states of Karnataka, Kerala and
Andhra Pradesh (Fig. 5a), while the remaining GIH indi-
viduals were positioned in Andhra Pradesh (Fig. 5b). As
may be surmised most genomes corresponding to that
of the south Indian groups, STU and ITU (>80%) were
positioned across the southern Indian states of Andhra
Pradesh, Telangana, Tamil Nadu, Kerala, and Karnataka
with those remaining being positioned in northern India
(Fig. 5c, d). Except a single Bangladeshi, BEB individual
who was positioned in Karnataka, the remainder of the
BEB genomes was localized in northern and central
India, spread across the states of Uttarakhand, Uttar
Pradesh, Madhya Pradesh, Chhattisgarh, and Orissa
(Fig. 5e).
GPS assignment accuracy was ascertained for each

SAS individual to investigate the proximity of their pre-
dicted location to that of their likely regional location.
Overall more than 56% and 88% of all queried genomes
were positioned within 600 km and 1000 km, respect-
ively from their regional location (Fig. 6). The GPS pre-
dictions were most accurate for STU and ITU

Fig. 2 An admixture plot showing the ancestry components of South Asian populations. Five SAS populations (STU, ITU, GIH, PJL and BEB) from 1000
Genomes Project [33], and previously published Indian [31] and Pakistani populations [34, 35] were evaluated. Percent ancestry is plotted on the
Y axis. The ancestral components in evaluated genomes was estimated using ADMIXTURE v1.3. A model with eight ancestral components (K = 8)
was the most parsimonious to explain the variation and similarities of the genome-wide genotype data. Each individual is represented by a vertical line
partitioned into colored segments whose lengths are proportional to the contributions of the ancestral components to the genome of the individual.
Population labels were added after each individual’s ancestry had been estimated. To note k1, k2, k3, k4, k5, k6, k7, and k8 represent putative ancestral
West Eurasian, North Indian, East Asian, South Indian, Telugu, Andamanese, Kalash, and Siddi components respectively
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individuals, where 96% and 87% of samples, respectively,
were positioned within 600 km of their native locations,
Hyderabad (India) and Colombo (Sri Lanka), respect-
ively. Likewise, a substantial number of GIH individuals
(~79%) were positioned within 600 km of their regional
location, Ahmedabad (India). In contrast, the GPS
assignments were only moderate-low in accuracy for PJL
and BEB populations. ~ 19% PJL genomes were posi-
tioned within 600 km of their native location, Lahore
(Pakistan), while a majority were assigned largely across
northern and western India, the remainder were posi-
tioned in southern India. This is a likely consequence of
the high genomic similarity of PJL individuals with In-
dian populations compared to its geographically prox-
imal Pakistani populations. We also observed poor
assignment accuracy for the Bengali individuals, wherein
~ 98% BEB genomes were assigned to locations more
than 1000 km of their native region.

Discussion
The utilization of biological data to infer the geographic
origins of human populations has piqued the curiosity of

geneticists and anthropologists for decades. Presently
several biogeographical approaches using high-
resolution next-generation sequencing data are available
that are based on identity by distance, nevertheless the
accurate geo-localization of populations has remained a
challenge. GPS has been used successfully for determin-
ation of the biogeographical affinity of several worldwide
populations [2, 6, 7, 9–11]. This approach correlates the
admixture proportions of the query populations with
that of the reference groups known to have resided in a
specific geographic location for a substantial period of
time and infers the geographic coordinates (latitude and
longitude) of the former based on the geographic infor-
mation pertaining to the latter. The admixture signature
of a population maybe modulated by genetic exchanges
with other groups during its migration while its isolation
and segregation preserves its original admixture signal.
Therefore, unmixed populations are likely to be localized
more reliably close to their best matching reference by
the GPS algorithm, however, for populations where the
admixture event is recent GPS predictions are likely to
be error-prone [2, 6].

Fig. 3 Comparison of major admixture components among five SAS populations from 1000 Genomes Project. Multiple comparisons were performed
using Tukey’s post hoc analysis implemented in GraphPad Prism v7. a Comparison of North Indian component (k2). GIH had the highest North
Indian ancestral component compared to the other four SAS populations (Tukey’s post hoc analysis, p-value < 0.0001). b Comparison of South
Indian component (k4). STU had the highest fraction of South Indian component in their genome compared to the rest (Tukey’s post hoc analysis, p-value
< 0.0001). c Comparison of West Eurasian component (k1). PJL possessed the highest fraction of West Eurasian component in their genome compared to
the other four SAS populations (Tukey’s post hoc analysis, p-value< 0.0001). d Comparison of East Asian component (k3). BEB had the highest fraction of
East Asian component in their genome compared to the rest (Tukey’s post hoc analysis, p-value< 0.0001)
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Fig. 4 GPS prediction of biogeographical affinities for four Indian reference populations: Brahmin, Kshatriya, Madiga, and Kurumba. The original locations
corresponding to all four populations are shown in black - square, diamond, circle and triangle respectively. The GPS predicted coordinates of
Brahmins, Kshatriyas, Madigas, and Kurumbas are shown in red squares, purple diamonds, blue circles and cyan triangles, respectively. Pie charts
reflect the admixture proportions of each of the four reference populations. The colors in the pie charts correspond to those used to represent
the various admixture components depicted in Fig. 2. Inset shows stacked bar plots depicting the accuracy of GPS predictions for the four
reference populations. Note: in some cases, multiple individuals from certain populations were assigned to the same location and therefore
appeared as a single individual. Maps were plotted using the R package rworldmap v1.3–1 [52]

Fig. 5 GPS predictions for the five SAS populations from 1000 Genomes Project. A map depicting the GPS predicted locations for (a) PJL (b) GIH (c)
ITU (d) STU (e) BEB and (f) merged. The red, blue, orange, green, and pink triangles depict BEB, ITU, GIH, PJL and STU populations, respectively.
Maps were plotted using the R package rworldmap v1.3–1 [52]
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India has served as a prominent corridor for the migra-
tion of anatomically modern humans in the Paleolithic
and Neolithic era [13–15, 19, 46]. Its demographic history
has been modulated by multiple, large-scale population
migrations, admixture and the regimented sociocultural
enforcement of practices like endogamy [21–24, 26, 30,
32, 47–50]. Given the complex population history and
genetic heterogeneity of the Indian subcontinent, here we
sought to examine the effectiveness of the GPS approach
for localizing five SAS populations obtained from the
1000 Genomes project [33] using populations from the In-
dian subcontinent available in HGDP [34, 35] and those
previously described [31] as reference.
Our trial analysis of four Indian groups, Brahmin,

Kshatriya, Madiga, and Kurumba [31] using the leave-
one out procedure demonstrated strong genomic-
geographic relationship with 88% of all the individuals
being assigned within 600 km of their regional location
(Fig. 4). Among our query dataset GPS appeared to pos-
ition three SAS populations, Tamil (STU), Telegu (ITU)
and Gujarati (GIH) with reasonably high accuracy. Not-
ably all three populations corresponded to the South
Asian diaspora and were sampled from UK and USA
respectively. Consistent with expectation STU and ITU
populations from the southern region of the Indian sub-
continent possessed very high South Indian ancestral
component, k4 (Fig. 3b). Overall they were largely
(>80%) positioned across the southern Indian states of
Andhra Pradesh, Telangana, Tamil Nadu, Kerala, and
Karnataka (Fig. 5c, d). We obtained high accuracy for

the GPS assignment of STU and ITU individuals, where
96% and 87% of individuals respectively, were positioned
within 600 km of their native locations, Hyderabad
(India) and Colombo (Sri Lanka), respectively. Similar
results were derived for the GIH population, which con-
tained the highest North Indian ancestral component, k2
(Fig. 3a); >90% of the GIH individuals were assigned
across northern and western regions of the Indian sub-
continent (Fig. 5b). GPS placed ~79% of the GIH indi-
viduals within 600 km of their regional location,
Ahmedabad (India). We note that with the presently uti-
lized GPS algorithm only a handful of Gujarati samples
were positioned within the state of Gujarat, which is in
concordance with a previous study where approximately
25% GIH individuals were mapped to their native loca-
tion using GPS [51], thereby underscoring the genetic
heterogeneity in the GIH genomes sampled in the 1000
Genomes project. In contrast, GPS predictions were
moderately accurate for the Punjabi (PJL) population, ~
19% PJL genomes were positioned within 600 km of
their native location, Lahore (Pakistan), while a majority
were assigned across western and northern regions of
the Indian subcontinent and the remainder were posi-
tioned in southern India (Fig. 5a). While the PJL popula-
tion contained the highest fraction of the ancestral West
Eurasian component, k1 (Fig. 3c), it also possessed sub-
stantial North and South Indian ancestral components,
k2 and k4 respectively (Figs. 2 and 3a, b). We note that
the PJL genomes possessed a significantly higher fraction
of the k4 ancestral component compared to the other

Fig. 6 Stacked bar plots representing the assignment accuracy of GPS algorithm. Blue-violet, dark-blue, cornflower-blue, cadet-blue, cyan, and azure
segments represent the positioning of STU, ITU, GIH, PJL and BEB populations within 200 km, 400 km, 600 km, 800 km, 1000 km and more than
1000 km, respectively from their corresponding native locations. The geographical coordinates (latitude and longitude) of Ahmedabad (India),
Hyderabad, (India), Colombo (Sri Lanka), Lahore (Pakistan), and Dhaka (Bangladesh) were used as the native locations for GIH, ITU, STU, PJL and
BEB respectively for the geographic distance estimation
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North Indian population, GIH (Tukey’s post hoc ana-
lysis, p-value < 0.0001) (Fig. 3b) which likely accounts
for the higher number of PJL individuals being assigned
to the southern regions of the Indian subcontinent com-
pared to GIH (Fig. 5a, b). Further PJL genomes con-
tained the highest West Eurasian ancestral component,
k1 among the query SAS populations (Fig. 3c), while it’s
North Indian ancestral component, k2 appeared substan-
tially lower than that of the GIH group (Fig. 3a). We
surmise that the high proportions of k1 component
present among Pathans, Kashmiri Pandits, Brahmins and
Kshatriyas (Fig. 2) in our reference dataset likely led to a
greater proportion of PJL individuals being localized
towards the north-western regions of the Indian subcon-
tinent (Fig. 5a). The presence of high West Eurasian
component (k1) in Brahmins and Kashmiri Pandits is in
concordance with a previous study that demonstrated
the presence of 11.4% and 10.6% of Northern Eurasian
and Mediterranean components, respectively, in the
Brahmin genome [51]. As speculated in Arunkumar et
al. (2015) [51] a higher fraction of k1 in Brahmins and
North-West Indians indicates a potential shared ancestry
between the Brahmins and Europeans. Finally the GPS
assignment accuracy was found to be poor for the Ben-
gali (BEB) individuals, wherein ~ 98% BEB genomes
were assigned to locations more than 1000 km of their
native region, Dhaka (Bangladesh) (Fig. 5e). We note
that BEB genomes contained the highest East Asian and
discernible North and South Indian ancestral compo-
nents, k3, k2 and k4 respectively (Fig. 2) which in the
absence of appropriate reference populations in our ana-
lysis lead the GPS tool to interpret them in accordance
with their genetic similarity with the available reference
groups and localized the BEB individuals at average geo-
graphic locations where a consensus appeared to be
reached. The presence of high East Asian component
(k3) among Bengalis and Northeast Indians supports the
presence of at least three [51] to four [22] major admix-
ture components in Indian genome, contrary to a more
popular two component theory [32].
Inference of the geographic origin of individuals on

the basis of their genetic information poses a formidable
challenge and is prone to misinterpretations. In this
study the GPS algorithm employed the unsupervised
ADMIXTURE analysis where an appropriate number of
admixture components for the model in question is
deduced, evaluating both the query and reference popu-
lations against the same putative ancestral populations.
GPS correlates the relative proportions of admixture in
the query and reference populations to extrapolate the
geographic location of the former on the basis of the
geographic coordinates (latitude and longitude) of the
latter. Therefore, the reference populations can be con-
ceived as drawing the query groups on the basis of the

corresponding genetic proximity till an agreement of
geographical locations is achieved [6]. Our results shed
light on the efficacy and limitations of the GPS tool for
biogeographical analyses of admixed populations, using
the evaluation of SAS groups from 1000 Genomes pro-
ject as a case in point. Here we note that although the
1000 Genomes project is an invaluable resource of pub-
lically available WGS data for a wide range of ethno-
linguistic groups, the use of language as a proxy for an
ethnic unit renders the SAS diaspora samples as likely
suboptimal representatives of populations from the In-
dian subcontinent [43]. We surmise that the lack of pre-
cision and adequate corrective measures in sampling
individuals with well-defined SAS ancestries in the 1000
Genomes project together with our assumption of the
capital cities of their putative country or ancestral region
as their likely origin, may have further constrained the
assignment accuracy of the GPS model. Since GPS pre-
dictions are likely the last location where admixture had
occurred or the geographic origin, for individuals of
mixed ancestries, GPS assignments represent the mean
geographic locations of their immediate parental popula-
tions. However, given the present GPS model we ob-
served reasonably high accuracy in its assignments even
for recent migrant populations sampled elsewhere, STU,
ITU and GIH. However, its predictive capacity was
severely curtailed when suitable reference groups were
unavailable, as in case of the BEB individuals. Neverthe-
less, we envision that as WGS data becomes available
from a greater number of populations worldwide and a
better reference panel will be available to map the ances-
try of currently unresolved populations such as the Ben-
gali individuals from Bangladesh.
While in theory the GPS approach can have putative

applications in various fields of science, including genea-
logical research, where GPS can aid adopted individuals
to localize their home regions; it may be employed in
forensics, where it can improve the assignment of geo-
graphic ancestry to DNA evidence [2]. Further we sur-
mise that due to its inherent ability to detect correlation
between genomic and geographic information, the GPS
approach can potentially be used to investigate local
adaptations. However, its administration and efficacy in
the realms of these applications is yet to be evaluated.

Conclusions
Despite its success in tracing ancestry of several
modern-day populations and several other likely applica-
tions, our findings exemplify that the GPS approach is
heavily dependent on the relative proportions of admix-
ture in the reference populations to articulate the popu-
lation history and biogeographical origins of test
individuals. Given the perils of bias in the GPS predic-
tions, interpretation of its results must be performed
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with adequate caution. Finally, we conclude that further
modifications are desired to make this approach more
suitable for highly admixed individuals.

Additional file

Additional file 1: Table S1. GPS predicted coordinates of individuals
from five SAS populations. Figure S1. (a) Table showing proportion of
Cross-Validation error (CVE) in ADMIXTURE carried out for the global dataset
with different values of ancestral components (K) employed in the admixture
analysis. The CVE was used to determine the optimum number of ancestral
components (K) supported by the data. At K= 13 the CVE was minimized. (b)
Plot depicting the change of CVE with increasing number of ancestral
components (K). The optimum number of ancestral components with lowest
CVE was thirteen (K= 13). Figure S2. (a) Table showing proportion of
Cross-Validation error (CVE) in ADMIXTURE carried out for the South Asian only
dataset with different values of ancestral components (K) employed in the
admixture analysis. The CVE was used to determine the optimum number of
ancestral components (K) supported by the data. At K= 8 the CVE was
minimized. (b) Plot depicting the change of CVE with increasing number of
ancestral components (K). The optimum number of ancestral components
with lowest CVE was 8 (K= 8). (PDF 493 kb)
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