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Abstract

Background: An important feature in many genomic studies is quality control and normalization. This is particularly
important when analyzing epigenetic data, where the process of obtaining measurements can be bias prone. The
GAW20 data was from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN), a study with multigeneration
families, where DNA cytosine-phosphate-guanine (CpG) methylation was measured pre- and posttreatment with
fenofibrate. We performed quality control assessment of the GAW20 DNA methylation data, including normalization,
assessment of batch effects and detection of sample swaps.

Results: We show that even after normalization, the GOLDN methylation data has systematic differences pre- and
posttreatment. Through investigation of (a) CpGs sites containing a single nucleotide polymorphism, (b) the stability of
breeding values for methylation across time points, and (c) autosomal gender-associated CpGs, 13 sample swaps were
detected, 11 of which were posttreatment.

Conclusions: This paper demonstrates several ways to perform quality control of methylation data in the absence of
raw data files and highlights the importance of normalization and quality control of the GAW20 methylation data from
the GOLDN study.
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Background
Genome-wide DNA methylation (DNAm) studies, particu-
larly those using chip-based technologies, are inherently
more susceptible to biases than single nucleotide poly-
morphism (SNP) studies. To make DNAm detectable,
DNA is treated with bisulfite to deaminate unmethylated
cytosine to uracil. Bisulfite conversion run in separate
batches can lead to technical bias in DNAm studies.
Bisulfite conversion can either (a) underconvert the

unmethylated cytosines or (b) if not properly controlled,
cause methylated cytosines to convert to uracil.
The Illumina Infinium Human Methylation 450K

BeadChip (450K Chip) has two different probe chemis-
tries (Type I and Type II) [1], which creates problems
with respect to normalization. Multiple R packages for
normalization and quality control (QC) for the 450K
Chip have been developed [2–5]. However, most require
raw data (iDat files) to run and these were not made
available to GAW20 participants.
Type I probes are mainly confined to cytosine-phos-

phate-guanine (CpG)-rich regions; CpG richness is
also associated with biological function [6]. Type I probes
have two beads on the same color channel, one for meth-
ylated signal and the second for unmethylated signal.
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Conversely, Type II probes only have one bead that is de-
tectable on two color channels, with one color for methyl-
ated and one for unmethylated signal. The two probe
types differ in terms of dynamic range and result in
different distributions for DNAm. Methods for nor-
malizing for probe type include subset-quantile within
array normalization (SWAN) [7], funNorm [8], and
beta-mixture quantile normalization (BMIQ) [9]. The
BMIQ method does not require raw data.
The GAW20 real data set is from the Genetics of Lipid

Lowering Drugs and Diet Network (GOLDN) [10],
where DNAm was measured using the 450K Chip in
multigenerational pedigrees, pre- and posttreatment
with a lipid-lowering drug (fenofibrate). DNAm data was
provided to GAW20 participants in processed text format,
after undergoing some normalization procedures [11].
However, some outstanding normalization and QC issues
with the GOLDN DNAm data remain.
We address normalization and QC of the GAW20

GOLDN DNAm data. We utilize repeated DNAm mea-
sures, SNP genotype data, and family structure, and
show how these can be used to detect possible sample
swaps and enhance the QC process.

Methods
Data
All individuals in GOLDN having DNAm measurements
(assayed with the 450K Chip) either pre- or posttreat-
ment were included in the analysis (npre = 993, npost = 528,
nboth = 444 after removal of a twin pair) [10–12]. In
addition to DNAm, age, gender, and SNP genotypes were
used. SNP genotypes (Affymetrix HumanSNP array 6.0)
were available for 427 of the nboth = 444 individuals. For
GAW20, only autosomal DNAm was available.

Probe-type normalization
We first visualized the DNAm data using principal compo-
nent analysis (PCA) to look for systematic patterns, and
then normalized the data for probe type using beta-mixture
quantile normalization (BMIQ) with the R {wateRmelon}
package [9]. For each individual (separately for pre- and
posttreatment), BMIQ fits a three-group beta distribution
mixture model separately to the Type I and Type II probes.
The resulting distributions are then used to map the Type
II probes to the Type I probe distribution. For all subse-
quent analysis, we use these DNAm beta values, unless
otherwise indicated.

Detection of potential sample swaps
We used several approaches for detecting potential sam-
ple swaps:

1. SNPs located CpG sites: A number of probes on the
450K Chip detect CpGs which are polymorphic and

thus show genotype-specific methylation. We used
597 of these CpGs as a tool to check for sample
swap by comparing CpG-inferred genotypes pre-
and posttreatment. For 59 of the 597 CpGs, we
were able to compare the CpG-inferred genotypes
to SNP genotypes from the Affymetrix array.

2. CpGs associated with gender: Because the GAW20
DNAm data did not include sex chromosomes,
we could not look for gender-discordant samples
directly. Based on a previous study reporting
gender-associated CpGs [13], we used PCA with
the top 50 autosomal gender-associated CpGs to
detect discordant genders compared to reported
gender.

3. Individual breeding values: A Bayesian mixed-effects
model was fitted for each CpG site separately to
estimate individual breeding values, modeled as the
realizations of a random intercept [14]. For inference,
integrated nested Laplace approximation (INLA)
[15, 16] was used (for information on INLA, see The
R-INLA Project [16]). The model was constructed
separately for pre- and posttreatment methylation:
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where yi is DNAm [M value: log2(beta/1-beta)] for per-
son i at a CpG site; σ2

e is the environmental variance, β0;
β1 and β2 are fixed effects corresponding to an intercept,
the effect of age and gender, respectively. The family
structure is modeled through u j σ2g � Nð0; 2σ2gK Þ, where
σ2g is the additive genetic variance; K is the kinship matrix;

and u is the vector of individual breeding values. Because
breeding values should be quite stable pre- and posttreat-
ment, we can use the correlation between pre- and post-
treatment breeding values to assess possible sample swaps.

Results
Probe type
Figure 1a shows a density plot for one individual for all
CpGs by probe type. Type II probes have a smaller dy-
namic range than type I probes, as is typical for 450K
Chip data prior to normalization. Systematic differences
pre- to posttreatment are seen when plotting the first
two principal components of the DNAm data (Fig. 1b).
Comparing DNAm pre- and posttreatment (for QC only
by t test, which is not strictly valid for family data), we
identified approximately 300,000 significant CpGs after
Bonferroni correction (family-wise error rate = 0.05).
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Clearly the data, as delivered to the GAW20 partici-
pants, has some remaining normalization problems with
respect to both probe type and time point.
We performed probe-type normalization with BMIQ.

Figure 1c shows the density plot post-BMIQ normalization
for the same sample as in Fig. 1a. While this aligned
the distributions of the Type I and Type II probes, the
PCA plot still shows systematic differences between
time points (Fig. 1d). When repeating the QC t test, we
still found an unrealistically high number (~ 240,000) of
differentially methylated CpGs.

Sample swaps
Without technical covariates such as bisulfite conver-
sion batch or sample position on the 450K Chip (12
subarrays per slide), it is difficult to correct explicitly
for residual pre- and posttreatment differences. How-
ever, it is possible to use the repeated measures and
kinship structure to look for sample swaps and other
systematic differences.

1. SNPs located in CpGs: In Fig. 2, we plot pre- versus
posttreatment DNAm for 444 individuals for CpG
cg25649515, where SNP rs552757 is located at the
CpG. Three clusters corresponding to the AA, AG,
and GG genotypes are clearly seen. We also see
some individuals (in red) that appear to switch
genotype pre- to post- treatment. Using 597 SNP-
containing CpGs, we identify 11 individuals who
switch the inferred genotype at > 100 loci. For these
11 individuals, we compared CpG-inferred genotype
to actual SNP genotype where available, which
makes it is easy to visually detect heterozygote to
homozygote mismatches. The actual genotype was
in agreement with the pretreatment CpG-inferred
genotype for 9 individuals and with the posttreatment
CpG-inferred genotype for 2 individuals.

2. CpGs associated with gender: Because the GAW20
data had only autosomal DNAm available, it was
not possible to directly check reported gender
against sex chromosomes; instead, we used PCA for
the top 50 autosomal CpGs associated with gender

Fig. 1 Before (a, b) and after (c, d) BMIQ normalization. a Distribution of methylation values genome wide for 1 randomly chosen individual
before probe-type normalization with BMIQ; b PCA plots before probe-type normalization with BMIQ; c Distribution of methylation values
genome wide for the individual in (a) after probe-type normalization with BMIQ; and d PCA plots after probe-type normalization with BMIQ
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in Inoshita et al. [13]. Indeed, 2 gender clusters are
clearly visible when the samples are colored by
reported gender (Fig. 3). For pretreatment, there are
2 individuals with potentially discordant reported
gender and CpG-inferred gender; for posttreatment,
there are 8 such individuals (including 1 who was also
discordant pretreatment). Six of the 8 individuals
with discordant gender posttreatment are among the
11 individuals with SNP-genotype discrepancies; 1
individual was discordant for both time points.
We thus identified an additional 3 problematic
individuals with this QC step.

3. Individual breeding values: We estimated individual
breeding values pre- and posttreatment with a
Bayesian linear mixed model. We then calculated

the correlation between the 2 vectors of breeding
values for each individual. Figure 4 shows the
number of discrepancies between CpG-inferred
genotypes pre- versus posttreatment against the
correlation of breeding values. All 11 individuals
with more than 100 genotype discrepancies also
have low correlation of breeding values (< 0.25).
Of the 3 additional gender-discordant individuals,
only 1 had both pre- and posttreatment methylation
available. This individual’s reported gender was
discordant with its CpG-inferred gender at both
time points, had a relatively high breeding value
correlation and no discrepancies between SNP
genotype and CpG-inferred genotype. This individual
is likely not a sample swap but rather a misreported
gender.

Note that we can estimate the expected number of
CpGs with genotype discrepancies in the presence of a
sample swap, given that some of the swapped samples
might by chance have the same genotype. For a rough
estimate (assuming Hardy-Weinberg equilibrium), if all
CpGs were associated with SNPs with a minor allele fre-
quency of 0.25, we would expect to be able to identify
the sample swap in 53.9% of all CpGs.

Discussion
We demonstrate several ways to perform QC of DNAm
data in the absence of raw data files by using informa-
tion on pedigree structure, repeated measurements, and
external data such as gender. We find that the DNAm
data shows systematic differences (a) by probe type and
(b) by time point (pre- vs posttreatment). After perform-
ing BMIQ normalization for probe type, we demonstrate
how SNP genotypes, repeated measures, family structure
and external information on gender-associated CpGs

Fig. 2 SNPs located in CpGs. Methylation value pre- versus
posttreatment for 1 CpG (cg25649515) with the 3 clusters on the
diagonal representing the different underlying SNP genotypes at
rs552757. Individuals that switch inferred genotype between the 2
measurements are colored red

Fig. 3 Autosomal CpG-inferred gender. Principal component analysis of 50 gender-associated autosomal CpG sites pre- and posttreatment. The
coloring is based on the reported gender and filled points represent “misclassified” individuals
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can enhance the QC process. We use this additional in-
formation to identify up to 13 sample swaps, 11 of which
occur posttreatment. We also identify 1 additional indi-
vidual with a likely misreported gender. The systematic
pre- vs posttreatment difference improved after BMIQ
normalization, but was not completely resolved.
Because a genome-wide treatment effect on DNAm is

unlikely [10], it is possible that pre- and posttreatment
methylation samples were run in separate bisulfite con-
version batches or run on separate chips, causing treat-
ment to be confounded with batch. This makes any
inference of treatment effect on DNAm difficult. How to
correct for batch effect when confounded with treatment
is not obvious, and is particularly challenging, because
the change in methylation from pre- to posttreatment
tends to be larger for CpGs with either low or high
methylation compared to CpGs with approximately 50%
methylation (data not shown), which means that a sim-
ple correction for a global mean is not appropriate.
We detect 13 sample swaps using unconventional

methods. The 450K Chip is designed with 65 control
probes that normally can be used for such purposes, but
these were not provided in the GAW20 data. Conse-
quently, we used SNP-containing CpGs as a proxy and
looked for CpG-inferred genotype swaps pre- and post-
treatment, and compared the inferred genotypes to the
actual SNP genotypes where available. The 450K Chip

has probes on the sex chromosomes but these were not
provided in the GAW20 data. Using PCA of 50 autosomal
CpGs previously associated with gender, we identified
gender-specific clusters and identified samples whose re-
ported gender was discordant from their PCA-cluster
gender. We then used the family structure to estimate in-
dividual breeding values for DNAm. Previously identified
likely sample swaps were confirmed by low correlation of
the individual breeding values across time points. In
addition, negative or very low correlation of breeding
values between time points could indicate low-quality
DNAm at one of the time points.
We identify more likely sample swaps posttreatment

compared to pretreatment, which would weaken any re-
lationship between DNAm measured posttreatment and
family structure. This is consistent with the markedly
lower reported DNAm heritability seen posttreatment
compared to pretreatment [14].

Conclusions
This work highlights the importance of normalization
and QC of the GAW20 DNAm data and demonstrates
several ways to perform QC of 450K Chip data in the
absence of raw data files.
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