
RESEARCH Open Access

Indirect effect inference and application to
GAW20 data
Liming Li1, Chan Wang1, Tianyuan Lu1, Shili Lin2 and Yue-Qing Hu1*

From Genetic Analysis Workshop 20
San Diego, CA, USA. 4-8 March 2017

Abstract

Background: Association studies using a single type of omics data have been successful in identifying disease-
associated genetic markers, but the underlying mechanisms are unaddressed. To provide a possible explanation of
how these genetic factors affect the disease phenotype, integration of multiple omics data is needed.

Results: We propose a novel method, LIPID (likelihood inference proposal for indirect estimation), that uses both
single nucleotide polymorphism (SNP) and DNA methylation data jointly to analyze the association between a trait
and SNPs. The total effect of SNPs is decomposed into direct and indirect effects, where the indirect effects are the
focus of our investigation. Simulation studies show that LIPID performs better in various scenarios than existing
methods. Application to the GAW20 data also leads to encouraging results, as the genes identified appear to be
biologically relevant to the phenotype studied.

Conclusions: The proposed LIPID method is shown to be meritorious in extensive simulations and in real-data analyses.
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Background
In complex disease studies, genome-wide association stud-
ies (GWAS) [1] and epigenome-wide association studies [2]
have been successful in identifying disease-associated
single-nucleotide polymorphisms (SNPs) and DNA methy-
lation loci. However, the mechanism of how these genetic
loci affect the disease status remains unknown. To provide
a possible explanation of the causal mechanisms of these
genetic factors, integrative analyses using both types of data
are important. Even though integration of multiple types of
data sets is a promising method as it is generally more
powerful than ordinary association studies [3], the method
of integration itself is challenging.
Most existing methods use additional information to

filter out nonsignificant loci and reduce the total number
of tests, which, in return, improve power [4]. On the
other hand, mediation analyses usually consider only a

single mediator and require multiple testing correction
[5]. An example is Zhao et al. [6] who proposed an inte-
grative test, denoted as o-eSNP that was shown to be
more powerful than traditional GWAS. Motivated by
the data provided by GAW20, in which SNP and DNA
methylation data for integrative analysis are available, we
aim to characterize the effects of SNPs into direct and
indirect effects. As the direct effect of SNPs is simple
and straightforward, in this contribution we focus on the
indirect effect of SNPs. With the prior knowledge that
DNA methylation can be modulated by SNPs [7], we as-
sume that some SNPs exert their effects by regulating
the DNA methylation level. Hence the indirect effect of
SNPs on a phenotype of interest here is taken as the
combined effects of SNPs on DNA methylation and
DNA methylation on the phenotype.
In this paper, we propose a novel method, LIPID

(likelihood inference proposal for indirect estimation),
to use both SNP and DNA methylation data to test
whether there is an indirect effect of SNPs on a pheno-
type. The indirect effect and its variance–covariance
matrix are derived, and a Wald test is conducted. An
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extensive simulation study was done to evaluate the
properties and the performance of LIPID, which was
also applied to analyze the GAW20 real data.

Methods
Suppose there are n independent subjects, and for each
subject, its SNP, DNA methylation, covariates, and
phenotype are measured. Specifically, let Y = (Y1,…,Yn)

T

be the vector of observed phenotypes; X = (X1,…,Xk) be
the n × k matrix denoting the observed values of k (non-
genetic) covariates, including intercept; S = (S1,..., Sr) and
M = (M1,..., Mp) be the n × r and n × p matrices regarding
the genotypes of r SNPs and methylation levels of p
cytosine-phosphate-guanine (CpG) sites, respectively.
Assuming that phenotype Y is a continuous variable, we
can use a set of linear models to capture the relationship
among Y, X, S, and M as follows:

Y ¼ SαS þMαM þ XαX þ εY; ð1Þ
M ¼ SβS þ XβX þ εM; ð2Þ

where εY ∼N (0, σ2
Y In), vec(εM) ∼N (ΣM ⊗In), vec(·) is the

vectorization operation; ⊗ is the Kronecker product; and
εY and εM are independent. Note that here βS and βX are
r × p and k × p matrices respectively, and ΣM is a p × p
positive definite matrix. Model (1) characterizes the
relationship between phenotype and SNPs, DNA methy-
lation, and covariates, while model (2) depicts the rela-
tionship between DNA methylation (as a response
variable) and SNPs and covariates. It is concluded from
models (1) and (2) that the direct effect of SNPs on the
phenotype is αS and the indirect effect is γ = βSαM.

Estimation and inference
For linear models (1) and (2), we have the following
maximum likelihood estimates

α̂ ¼ GT
1 G1

� �−1
GT

1 Y ; β̂ ¼ GT
2 G2

� �−1
GT

2 M

where G1 ¼ ðS;M;XÞ;G2 ¼ ðS;XÞ; α ¼ ðαTS ; αTM; αTXÞT ;
and β ¼ ðβTS ; βTXÞ

T
: The variance–covariance matrices for

α̂ and vec ðβ̂Þ are, respectively:

Cov α̂ð Þ ¼ GT
1 G1

� �−1
σ2Y

Covðvecðβ̂ÞÞ ¼ ðGT
2 G2Þ−1 � ΣM

Their corresponding block matrices are the variance–

covariance matrices for α̂M and vec ð bβSÞ, respectively.
According to the law of total variation, the variance–
covariance matrix for γ̂ is

Cov γ̂ð Þ ¼ Cov bβScαM
� �

¼ Cov E β̂Sα̂Mjβ̂S
� �� �

þ E Cov β̂Sα̂Mjβ̂S
� �� �

¼ αTMΣMαM GT
2 G2

� �−1
11 þ βSCov α̂Mð ÞβTS

þ tr ΣMCov α̂Mð Þð Þ GT
2 G2

� �−1
11

where (·)11 represents the first r × r diagonal subma-
trix. As αM and βS are unavailable, their estimates α̂M
and β̂S are used. After several lines of algebra we have

E α̂TMΣ̂Mα̂M
� � ¼ αTMΣMαM þ tr ΣMCov α̂Mð Þð Þ

E β̂SCov α̂Mð Þβ̂TS
� �

¼ βSCov α̂Mð ÞβTS
þ tr ΣMCov α̂Mð Þð Þ GT

2 G2
� �−1

11

So an unbiased estimate for the variance–covariance
matrix of γ̂ is

Ĉov γ̂ð Þ ¼ α̂TMΣ̂Mα̂M GT
2 G2

� �−1
11

þ β̂SĈov α̂Mð Þβ̂TS −tr Σ̂MĈov α̂Mð Þ� �
GT

2 G2
� �−1

11 ;

where Σ̂M and Ĉovðα̂MÞ are corresponding estimates of
ΣM and Covðα̂MÞ. This estimate is different from o-eSNP
[6] in the last component. The Wald statistic to test if
indirect effect exists is

LIPID ¼ γ̂T Ĉov γ̂ð Þ−1γ̂;
which asymptotically follows a chi-squared distribution
with r degrees of freedom.

Adaptation to correlated subjects
For subjects with correlation between each other, linear
model with mixed effect is utilized. So model (1) is
changed to

Y ¼ SαS þMαM þ XαX þ bþ εY

where b is the random effect, with mean 0 and vari-
ance–covariance matrix 2σ2bΦ , where Φ is the kinship
coefficient matrix, and b + εY ∼ Nð0; σ2Y In þ 2σ2

bΦÞ:Model
(2) is not changed. The estimate αM and its variance–
covariance matrix are derived similarly, and the LIPID
statistic has the same form.

Simulation study
To evaluate the performance of LIPID, simulation
under various scenarios are conducted. For simplicity,
we assume there are no covariates, and that S, M,
and Y are all univariate. In addition, the direct effect
that we are not interested in does not exist in simula-
tion. The simulated data are generated as follows.
First, SNP S is generated with a minor allele fre-
quency (MAF) under Hardy-Weinberg equilibrium.
Then, DNA methylation M is generated from a normal
distribution with mean SβS and variance σ2M . Finally,
phenotypic value Y is generated from a normal distri-
bution with mean MαM and variance σ2Y . The number
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of individuals is set to be 100 and the number of rep-
lications is 10,000. As Table 1 shows, there are 5 sce-
narios of parameters designed to gauge the Type I
error rates of LIPID, and 5 scenarios for the evalu-
ation of power. The variance of Y and variance of M
are fixed to 1 for simplicity. In scenario 1, the coeffi-
cients βS and αM are both 0; in scenarios 2 and 3, βS
is nonzero while αM is 0; in scenarios 4 and 5, αM is
nonzero with βS equal to 0. In these scenarios, the in-
direct effect is nonexistent, so we change the coeffi-
cient of one parameter to measure the Type I error
rates under different situations. Under Ha, the indir-
ect effect is βS αM ≠ 0. The coefficients are chosen so
that different methods have moderate powers. From
scenario 1 to scenario 5, the βS and αM are increased.
The MAF ranges from 0.1 to 0.4.

Results
Table 2 shows the Type I error rates in the 5 scenar-
ios, from which we can see that the Type I error
rates are more or less conservative in scenarios 1 to
5 for o-eSNP and LIPID, while regressing on SNPs
only (denoted as SNP in Table 2) controls the Type I
error rate well. For scenario 1, where both coefficients
βS and αM are 0, the Type I error rate is conservative;
for scenarios with 1 coefficient that is not 0 but rela-
tively small, the Type I error rates are still conserva-
tive; for scenarios with 1 large coefficient, the Type I
error rates are better controlled. Compared to o-eSNP [6],
the Type I error rates of LIPID are favorable, as o-eSNP is
more conservative in all scenarios. Figure 1 shows the
powers of 3 methods in 5 scenarios. We can see that
LIPID is the most powerful in all scenarios, while
SNP-only method has the least power. From scenario 1 to
scenario 5, as the indirect effect increases, the perform-
ance of LIPID and o-eSNP are very close to each other.

Real data analysis
The GAW20 real data package contains genomic, DNA
methylation, and phenotypic data for more than 1000 in-
dividuals from 188 pedigrees. The phenotypic data in-
clude metabolic indices, lipoproteins, and triglyceride.
Dense genome-wide SNP markers make up the genomic
data. DNA methylation levels are also available on CpG

sites genome-wide before and after individuals are
treated with fenofibrate. The level of triglycerides and
the methylation level before treatment are made use of.
The covariates include gender, age, smoking status,
high-density lipoprotein, metabolic disorder, and center.
We use SOLAR (Sequential Oligogenic Linkage Analysis
Routines) [8] to obtain the heritability for triglyceride
level, using 1108 subjects with phenotypic data. The
total number of subjects with SNP data and DNA
methylation is 716. As LIPID considers a region of mul-
tiple genetic markers, SNPs and DNA methylation loci
within the range of each gene are analyzed; we analyze a
total of 13,968 genes. Genes that pass false discovery rate
(FDR) correction are FAT1 (p value 9.4E-7) and DCTN6
(p value 1.3E-6), while o-eSNP fails to find any signifi-
cant genes (FAT1 p value 2.5E-5; DCTN6 p value
3.7E-6). We further use the BIOS QTL (quantitative trait
locus) browser [9] to validate our findings. We found
that rs458021 on gene FAT1 is a cis-meQTL (methyla-
tion quantitative trait locus) with a p value of 3.8E-07,
but we did not find any meQTL on gene DCTN6. FAT1
is associated with cholesterol in DAVID (Database for
Annotation, Visualization, and Integrated Discovery),
whereas DCTN6 is involved in lipid metabolism [10].
Because the eQTM (expression quantitative trait methy-
lation) database are not widely available, we cannot
further validate if these CpG sites on these genes can
modulate the expression, and further influence the
phenotype.

Discussion
Compared to o-eSNP [6], LIPID controls Type I error
rates better in all scenarios, and the power is higher

Table 2 Type I error rates of 3 methods in scenarios 1 to 5

MAF Method Scenario

1 2 3 4 5

0.1 o-eSNP 0.000 0.003 0.028 0.025 0.048

LIPID 0.000 0.004 0.032 0.029 0.049

SNP 0.054 0.054 0.056 0.051 0.048

0.2 o-eSNP 0.000 0.007 0.039 0.024 0.053

LIPID 0.000 0.009 0.042 0.028 0.054

SNP 0.056 0.053 0.053 0.056 0.054

0.3 o-eSNP 0.000 0.009 0.041 0.027 0.050

LIPID 0.000 0.011 0.044 0.032 0.051

SNP 0.059 0.054 0.052 0.053 0.057

0.4 o-eSNP 0.000 0.011 0.043 0.021 0.048

LIPID 0.000 0.013 0.044 0.025 0.049

SNP 0.052 0.056 0.056 0.051 0.054

The MAF changes from 0.1 to 0.4

Table 1 Parameter settings under H0: γ = βSαM = 0 and Ha:
γ = βSαM ≠ 0

Hypothesis Parameter Scenario

1 2 3 4 5

H0 βS 0 0.4 1 0 0

αM 0 0 0 0.4 1

Ha βS 0.2 0.3 0.2 0.3 0.4

αM 0.4 0.4 0.6 0.6 0.6
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in all scenarios. The estimate itself is the same, no
matter if we regress M or MαM on S, but the vari-
ance–covariance estimates are different, and LIPID
has a less-biased variance–covariance estimate, which
leads to the improvement of performance of LIPID.
Furthermore, we also adapt o-eSNP and LIPID to
correlated subjects.
Application of LIPID to the GAW20 real data indi-

cates that LIPID is capable of detecting genes with
indirect effect. The computation is efficient, and the
process takes 30 min to analyze the whole GAW20
data set on a personal computer with an Intel Core
i3–4150 CPU. The genes identified appear to be func-
tionally relevant to the trait being considered, thereby
substantiating the importance of these findings and
leading to confidence of genes found being true
discoveries.

Conclusions
For complex diseases, we propose a novel method to
detect indirect effect of SNPs on a phenotype via
methylation, and we demonstrate its superiority
compared to 2 existing methods. LIPID is single-step
and does not require multiple tests, compared to

traditional mediation analysis; at the same time, mul-
tiple genetic loci can be used simultaneously to test
indirect effect.
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