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Abstract

Background: Forest trees can occupy extensive geography and environmentally highly variable areas which result
in high genetic variability in the direction of pressure from natural selection. At the same time, the majority of conifer
species are wind-pollinated from both short and long distances, resulting in wide-spread gene flow, which can lead to
maladaptation to local conditions. Quantitative analyses of provenance/progeny tests correct for genetic differences
between populations to ensure unbiased genetic parameters are obtained. Commonly, the provenance effect is fitted
as a fixed term or can be implemented as a contemporary group in the pedigree.

Results: The use of a provenance effect, either as a fixed term or as the same contemporary groups in both maternal
and paternal sides of the pedigree, resulted in fairly similar precision of genetic parameters in our case. However,
when we developed a phantom contemporary group for the paternal side of the pedigree that considered a different
genetic quality of pollen compared with the maternal contribution from trees in the local environment, the model fit
and accuracy of breeding values increased.

Conclusion: Consideration of the mating dynamics and the vector of gene flow are important factors in modelling
contemporary genetic groups, particularly when implementing pedigrees within a mixed model framework to obtain
unbiased estimates of genetic parameters. This approach is especially important in traits involved in local adaptation.

Keywords: Linear mixed models, Genetic evaluation, Genetic groups, Pseudotsugamenziesii, Provenance/progeny
test, Open-pollinated test

Background
Forest tree species usually occupy large geographical areas
and are exposed to a wide range of environmental con-
ditions. These large geographical ranges predetermine
large genetic changes along the environmental gradients,
such as latitude or altitude, through natural selection. The
discovery of factors driving natural selection is essen-
tial for understanding a species’ adaptability and for the
development of population management strategies suit-
able for changing climate conditions [1]. Common garden
experiments, which include genetically broad material
representing a large proportion of a species’ natural dis-
tribution, are a useful tool to dissect genetic divergence
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and phenotypic plasticity, both of which contribute to
the phenotypic response to the changing environment
[2]. The conclusions from such experiments are essential
for effective implementation of seed transfer [3] or the
extrapolation of population redistribution following pre-
dicted changes in climate conditions [4, 5]. In extreme
cases, the results of climate change models show the
change in the species distribution and thus local species
composition [6].
Forest tree breeding populations are mostly in the initial

stage of domestication, and thus the history of evolu-
tionary processes involved in local adaptation such as
migration, genetic drift, mutations and selection greatly
affect the results of any initial genetic evaluations. The
geographical differences in these processes should be
included in these evaluations through the inclusion of
a provenance effect, fitted either as a fixed or random
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effect [7]. Ugarte et al. [8] tested differences between
models using genetic groups as fixed vs. random term
in mixed linear models, and found an advantage from
the later when males are assigned to genetic groups
non-randomly to reduce prediction error variance. Since
geographical structure in populations of forest tree
species is present [9], the non-random contribution of
males should be considered. Westell et al. [10] proposed
using random genetic groups as a means to model the
average effect of all phantom parents belonging to a par-
ticular genetic group in the evaluation of animal models,
which is the favoured approach in genetic evaluations.
Hadfield et al. [11] addressed several issues connected
with using animal models in quantitative evolutionary
genetics to infer natural selection in breeding values,
namely their spatial structure and temporal changes. In
particular, the assumption that the models must capture
all factors contributing to the explanation of a pheno-
type’s variance to be considered close to the true model
and obtain robust, unbiased estimates is often under
question.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)

is divided into two varieties: coastal Douglas-fir
(Pseudotsuga menziesii var. menziesii) and interior
Douglas-fir (Pseudotsuga menziesii var. glauca) [12]. A
previous genetic marker-based analysis performed using
allozymes found high population genetic differentiation
(GST ∼ 0.24) in Douglas-fir compared with other
conifer species [13], and 51% of that was attributed to
the difference between the inland and coastal varieties
[14]. Another Douglas-fir provenance study, including
populations from British Columbia, Washington and
Oregon, did not discover any strong patterns in pro-
ductivity along geographical or climatic gradients. This
could be explained by high sensitivity to microsite con-
ditions, which was not considered in global patterns,
or by the sampling strategy. However, the poorest per-
formers on the maritime sites tested were originally
from submaritime areas, indicating differences in eco-
typic differentiation [3]. Earlier work by St Clair et al.
[15] investigated provenance/progeny tests including
provenances from Washington and Oregon, and con-
structed composite traits which strongly aligned to the
east-west cline following temperature and elevation, and
north-south cline following latitude and summer drought.
The aim of our study was to investigate the fit-

ting of the provenance effect either as a fixed effect
or as a contemporary group in the pedigree within
a mixed model framework to reflect the best model
(data) fit. In addition, the modelling of contemporary
groups in the pedigree was included to reflect differ-
ences in the genetic composition of maternal and pater-
nal contributions in species with long-distance pollen
flow.

Results
Model fit and heritability
Four scenarios using a univariate mixed linear model were
tested for each trait in each environment. Two basic mod-
els used provenance, as fixed (ABLUP-F) or random effect
(ABLUP-R). Both had the poorest model fit in terms of
Akaike’s Information Criterion (AIC). ABLUP-R mostly
resulted in a better model fit compared to ABLUP-F with
the exception of traits that showed statistically signifi-
cant QST produced by ABLUP-R model (Tables 1 and 2).
Lastly, two models that used genetic groups implemented
directly in the pedigree (ABLUP-GC1 and ABLUP-GC2)
showed different model fit. While model ABLUP-GC2
showed similar or slightly improved AIC compared to
ABLUP-F (Tables 1 and 3), ABLUP-GC1 showed the best
model fit across all tested scenarios (Table 4). Similar
to model fit, ABLUP-F and ABLUP-GC2 resulted in the
identical heritability estimates ranging from 0.12 (MAL1)
to 0.51 (VEL1) at Gowan Hill and from 0.04 (MAL1)
to 0.84 (VEL1) at Kaingaroa. The model ABLUP-R
resulted in slightly lower heritability estimates compared
to ABLUP-F and reached values from 0.10 (BR2) to 0.47
(VEL1) at Gowan Hill and from 0.02 (MAL1) to 0.77
(VEL1) at Kaingaroa. The decrease in heritability esti-
mates in ABLUP-R model was attributed to the fact that
provenance effects were included in random terms and
thus included in the denominator of heritability esti-
mation. This model allowed for partitioning of genetic
variance attributed to within provenance variance and
within individuals between provenances and estimation
of QST. The QST values ranged from 0.032 (STR2) to
0.25 (DBH1) at Gowan Hill and from 0.00 (VEL1) to 0.27
(DBH1) at Kaingaroa (Table 2). The model ABLUP-GC2
resulted in heritability estimates similar to model ABLUP-
F (Table 3). The best fit model (ABLUP-GC1) resulted
in higher additive genetic as well as residual variance
estimates, especially for traits showing high genetic differ-
entiation (statistically significant QST). However, the level
of heritability remained similar to other scenarios and
reached values from 0.11 (BR2) to 0.46 (VEL1) at Gowan
Hill and from 0.06 (MAL1 and AC2) to 0.74 (VEL1) at
Kaingaroa (Table 4).

Accuracy of breeding value estimates
The models ABLUP-F and ABLUP-R resulted in similar
accuracy of breeding value estimates reaching values from
0.31 (AC2) to 0.65 (STR2) at Gowan Hill and from 0.14
(VEL1) to 0.56 (DBH1) at Kaingaroa (Tables 1 and 2).
The model ABLUP-GC2 resulted in the lowest accu-
racy of breeding value estimates which ranged from 0.30
(MAL1) to 0.66 (STR2) at Gowan Hill and from 0.17
(NR2) to 0.58 (DBH1) at Kaingaroa (Table 3). The best
fit model (ABLUP-GC1), resulted in the highest accu-
racy of breeding value estimates ranging from 0.32 (AC2)
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Table 1 Genetic parameters estimates using ABLUP-F model. Variance components, heritability (their standard errors in parentheses),
breeding values accuracy and Akaike’s Information Criterion (AIC) for traits measured at Gowan Hill and Kaingaroa sites ABLUP-F model

Gowan Hill Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 211 (34.3) 45.5 (13.6) 14.9 (4.76) 671 (31.0) 0.24 (0.04) 0.52 47691

STR1 0.12 (0.02) 0.02 (0.01) 0.01 (0.00) 0.24 (0.02) 0.29 (0.04) 0.54 737

MAL1 0.05 (0.01) 0.11 (0.03) 0.01 (0.00) 0.34 (0.01) 0.12 (0.03) 0.40 572

VEL1 0.06 (0.01) 0.01 (0.00) 0.00 (0.00) 0.05 (0.01) 0.51 (0.07) 0.54 -4242

DBH2 829 (133) 87.7 (28.0) 15.7 (13.8) 2305 (118) 0.27 (0.04) 0.53 52767

STR2 0.19 (0.02) 0.01 (0.00) 0.01 (0.00) 0.21 (0.02) 0.48 (0.06) 0.64 218

BR2 0.04 (0.02) 0.01 (0.00) 0.01 (0.00) 0.31 (0.01) 0.10 (0.03) 0.38 -135

MAL2 0.09 (0.02) 0.04 (0.01) 0.00 (0.00) 0.39 (0.02) 0.18 (0.04) 0.44 1391

AC2 0.49 (0.11) 0.10 (0.04) 0.03 (0.03) 1 (NA) 0.16 (0.03) 0.31 17094

Kaingaroa Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 413 (62.5) 45.9 (14.5) 18.8 (6.69) 794 (52.9) 0.34 (0.05) 0.55 44636

STR1 0.06 (0.01) 0.06 (0.02) 0.01 (0.00) 0.35 (0.01) 0.14 (0.03) 0.40 792

MAL1 0.04 (0.04) 0.15 (0.04) 0.01 (0.01) 1.03 (0.05) 0.04 (0.04) 0.17 3208

VEL1 0.10 (0.03) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.84 (0.21) 0.14 -586

DBH2 1050 (207) 78.0 (29.7) 30.1 (25.4) 2415 (183) 0.30 (0.06) 0.43 30872

STR2 0.10 (0.02) 0.08 (0.02) 0.01 (0.00) 0.34 (0.02) 0.23 (0.05) 0.38 747

BR2 0.04 (0.01) 0.00 (0.00) 0.01 (0.00) 0.21 (0.01) 0.15 (0.04) 0.33 -1076

MAL2 0.07 (0.04) 0.14 (0.04) 0.00 (0.00) 0.59 (0.05) 0.10 (0.07) 0.22 1176

AC2 0.20 (0.09) 0.09 (0.04) 0.06 (0.04) 1 (NA) 0.05 (0.02) 0.21 8373

NR2 0.04 (0.01) 0.19 (0.05) 0.02 (0.00) 0.23 (0.01) 0.14 (0.04) 0.32 -674

to 0.75 (STR2) at Gowan Hill and from 0.24 (AC2) to
0.71 (DBH1) at Kaingaroa (Table 4). The improvement
in breeding values accuracy was noticeable, especially in
traits with statistically significant QST (DBH and NR). The
accuracy of breeding values for these traits was lowest in
the ABLUP-F model, where values ranged from 0.32 to
0.55. Similar accuracy was reached in ABLUP-CG2, with
values ranging from 0.17 to 0.58. When the ABLUP-CG1
model was implemented, the accuracy of breeding values
increased, and values ranged from 0.41 to 0.71. For exam-
ple, the accuracy of breeding values for DBH1 at Gowan
Hill increased from 0.53 (ABLUP-GC2) to 0.68 (ABLUP-
GC1). Similarly, the accuracy of breeding values for NR2
at Kaingaroa increased from 0.17 (ABLUP-GC2) to 0.41
(ABLUP-GC1) (Tables 1, 2, 3 and 4). The correlation of
latitude of origin with breeding values estimated for DBH
found that productivity increased with decreasing lati-
tude (Fig. 1 - upper row) which was more obvious at later
age (correlation of -0.17 versus -0.27). The opposite pat-
tern was observed at Kaingaroa at an early age and was
reversed at a later age (correlation of 0.14 versus -0.11)
(Fig. 1 - bottom row). This pattern observed at Kaingaroa
resulted from the presence of a needle disease termed
Swiss needle cast (SNC), caused by Phaeocryptopus
gaeumannii [16]. The needle retention trait, indirectly
inferring resistance to disease, was therefore scored,

evaluated and showed pattern found for productivity at an
early age (Fig. 2). However, opposite pattern in productiv-
ity at a later age (Fig. 1 - bottom right) would assume that
decreased productivity of most sensitive provenances at
an early age (Fig. 1 - bottom left) is diminished with age.

Genetic correlations
A bivariate mixed linear model was implemented for
the estimation of pair-wise genetic correlations using
ABLUP-F (the default model) and ABLUP-CG1 (the
model which showed best AIC for all traits). Both mod-
els resulted in similar genetic correlations with slightly
lower estimates in the ABLUP-CG1 model. The results
show a negative genetic correlation of DBH1 to all
other tested traits using both models, with the excep-
tion of positive genetic correlations to DBH2 and NR2 at
Kaingaroa. Both STR1 and STR2 traits showed strong
positive genetic correlations to other stem form traits such
as MAL1, MAL2, and BR2, ranging from 0.34 to 0.93 at
Gowan Hill and from -0.09 to 0.97 at Kaingaroa. BR2 is
the only trait that showed an opposite pattern between
sites. While strong positive genetic correlations between
BR2 and form traits such as STR1, MAL1 and STR2, rang-
ing from 0.06 to 0.50, were observed at Gowan Hill, only
moderate correlations ranging from -0.21 to 0.58, were
observed at Kaingaroa. VEL1 did not show any statistically
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Table 2 Genetic parameters estimates using ABLUP-R model

Gowan Hill Prov/Add.gen Rep Rep(Set) Residual h2/QST r AIC

DBH1 140 (45.2) 212 (34.4) 45.3 (13.6) 14.9 (4.77) 671 (31.0) 0.21 (0.03) 0.25 (0.07) 0.52 47864

STR1 0.02 (0.01) 0.12 (0.02) 0.02 (0.01) 0.01 (0.00) 0.30 (0.02) 0.27 (0.04) 0.07 (0.03) 0.55 674

MAL1 0.01 (0.00) 0.05 (0.01) 0.11 (0.03) 0.01 (0.00) 0.34 (0.01) 0.11 (0.03) 0.08 (0.04) 0.41 495

VEL1 0.01 (0.00) 0.06 (0.01) 0.01 (0.00) 0.00 (0.00) 0.06 (0.01) 0.47 (0.06) 0.07 (0.03) 0.55 -4326

DBH2 412 (139) 835 (133) 88.3 (28.1) 15.3 (13.7) 2301 (118) 0.24 (0.04) 0.20 (0.06) 0.53 52972

STR2 0.01 (0.01) 0.18 (0.02) 0.01 (0.00) 0.01 (0.00) 0.21 (0.02) 0.45 (0.05) 0.03 (0.02) 0.65 153

BR2 0.00 (0.00) 0.03 (0.01) 0.01 (0.00) 0.01 (0.00) 0.31 (0.01) 0.10 (0.03) 0.05 (0.03) 0.38 -233

MAL2 0.02 (0.01) 0.09 (0.02) 0.04 (0.01) 0.00 (0.00) 0.39 (0.02) 0.17 (0.03) 0.10 (0.04) 0.44 1328

AC2 0.16 (0.07) 0.45 (0.10) 0.09 (0.04) 0.03 (0.03) 1 (NA) 0.14 (0.03) 0.15 (0.06) 0.31 16908

Kaingaroa Prov/Add.gen Rep Rep(Set) Residual h2/QST r AIC

DBH1 305 (90.1) 405 (61.4) 45.6 (14.5) 18.7 (6.69) 801 (52.2) 0.27 (0.04) 0.27 (0.04) 0.56 44840

STR1 0.00 (0.00) 0.05 (0.01) 0.06 (0.02) 0.01 (0.00) 0.35 (0.01) 0.13 (0.03) 0.03 (0.02) 0.41 694

MAL1 0.01 (0.01) 0.02 (0.04) 0.15 (0.04) 0.01 (0.01) 1.04 (0.04) 0.02 (0.03) 0.16 (0.24) 0.15 3142

VEL1 0.00 (0.00) 0.09 (0.02) 0.00 (0.00) 0.01 (0.01) 0.03 (0.02) 0.77 (0.18) 0.00 (0.00) 0.15 -637

DBH2 474 (156) 1027 (203) 77.4 (29.5) 30.5 (25.4) 2433 (181) 0.26 (0.05) 0.19 (0.06) 0.44 31092

STR2 0.01 (0.00) 0.09 (0.02) 0.08 (0.02) 0.01 (0.00) 0.34 (0.02) 0.20 (0.05) 0.04 (0.02) 0.39 666

BR2 0.00 (0.00) 0.03 (0.01) 0.00 (0.00) 0.01 (0.00) 0.22 (0.01) 0.13 (0.04) 0.04 (0.03) 0.34 -1177

MAL2 0.01 (0.01) 0.05 (0.04) 0.14 (0.04) 0.00 (0.00) 0.61 (0.04) 0.08 (0.06) 0.11 (0.10) 0.21 1116

AC2 0.08 (0.04) 0.16 (0.08) 0.09 (0.04) 0.06 (0.03) 1 (NA) 0.04 (0.02) 0.20 (0.12) 0.21 8263

NR2 0.01 (0.01) 0.03 (0.01) 0.19 (0.05) 0.02 (0.00) 0.23 (0.01) 0.12 (0.04) 0.17 (0.07) 0.32 -751

Variance components, heritability (their standard errors in parentheses), breeding values accuracy, QST and Akaike’s Information Criterion (AIC) for traits measured at Gowan
Hill and Kaingaroa sites ABLUP-R model

significant genetic correlations to any other traits, proba-
bly due to low sample size (only 61% of individuals were
measured at Gowan Hill, and 10% of individuals were
measured at Kaingaroa for this trait). The traits mea-
sured at both ages (DBH, STR, MAL) showed strong age
x age correlations, ranging from 0.86 to 0.96 at Gowan
Hill and from 0.23 to 0.97 at Kaingaroa, indicating the
stability of these traits’ expression levels across the inves-
tigated developmental stages (Tables 5 and 6; Figs. 3
and 4). The exploration of genotype by environment
interaction (GxE) was performed through genetic correla-
tions between environments.While STR andVEL reached
high genetic correlations, indicating no GxE, other traits
showed lower correlations (under 0.7) indicating the pres-
ence of strong GxE. DBH, measured at both ages, showed
an increase in GxE with increasing age (Table 7). The
Mantel test performed on the correlationmatrices derived
from ABLUP-F and ABLUP-CG1 models resulted in cor-
relations of 0.99 in Gowan Hill and 0.97 in Kaingaroa. The
modularity test showed that themajority of traits are inde-
pendent, with the exceptions of MAL and STR in Gowan
Hill belonging to a single module in both of the tested
models. Additionally, DBH2 and NR2 were detected as
traits belonging to the samemodule in Kaingaroa but only
in the ABLUP-CG1 model.

Discussion
Population structure and its relevance in forest trees
Local adaptation is the result of evolutionary forces such
as migration, random drift, natural selection and muta-
tion. Contemporary groups can efficiently model genetic
differences between sets of individuals coming from dif-
ferent environments undergoing different directions of
local adaptation. However, the mobility of seed and pollen
in wind-pollinated species such as conifers is different
[17], and both parents do not necessarily come from the
same genetic group. While seed dispersion is realised
mostly within 60 meters, pollen dispersal is usually within
the range of several hundreds of metres [18], however,
this can reach as much as 500 - 750 km in conifer species
[19, 20]. Moreover, while a seed donor is considered
adapted to the local environment due to survival and suc-
cessfully reaching sexual maturity (see Box 2 in [21] for
reference), the pollen donor has not necessarily inter-
acted with the local environment due to the possibility of
long-distance pollen transfer.
The investigation of evolutionary responses across pop-

ulations sampled along different environmental gradients
and planted under a common environment is critical
for understanding population genetic divergence and will
guide the selection of material suitable for future climatic
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Table 3 Genetic parameters estimates using ABLUP-GC2 model

Gowan Hill Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 211 (34.3) 45.5 (13.6) 14.9 (4.76) 671 (31.0) 0.24 (0.04) 0.53 47691

STR1 0.12 (0.02) 0.02 (0.01) 0.01 (0.00) 0.29 (0.02) 0.29 (0.04) 0.56 737

MAL1 0.05 (0.01) 0.11 (0.03) 0.01 (0.00) 0.34 (0.01) 0.12 (0.03) 0.30 572

VEL1 0.06 (0.01) 0.01 (0.00) 0.00 (0.00) 0.05 (0.01) 0.51 (0.07) 0.56 -4242

DBH2 829 (133) 87.7 (28.0) 15.7 (13.8) 2305 (118) 0.27 (0.04) 0.54 52767

STR2 0.19 (0.02) 0.01 (0.00) 0.01 (0.00) 0.21 (0.02) 0.48 (0.06) 0.66 218

BR2 0.04 (0.01) 0.01 (0.00) 0.01 (0.00) 0.31 (0.01) 0.10 (0.03) 0.37 -135

MAL2 0.09 (0.02) 0.04 (0.01) 0.00 (0.00) 0.39 (0.02) 0.18 (0.04) 0.44 1391

AC2 0.57 (0.13) 0.10 (0.04) 0.03 (0.03) 1 (NA) 0.19 (0.03) 0.49 17129

Kaingaroa Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 419 (63.0) 45.9 (14.6) 18.7 (6.69) 790 (53.3) 0.35 (0.05) 0.58 44644

STR1 0.06 (0.01) 0.06 (0.02) 0.01 (0.00) 0.35 (0.01) 0.14 (0.03) 0.36 788

MAL1 0.04 (0.04) 0.15 (0.04) 0.01 (0.01) 1.03 (0.05) 0.04 (0.04) NA 3207

VEL1 0.10 (0.03) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.84 (0.21) 0.25 -586

DBH2 1050 (207) 78.4 (29.8) 30.3 (25.4) 2416 (184) 0.30 (0.06) 0.46 30879

STR2 0.10 (0.02) 0.08 (0.02) 0.01 (0.00) 0.34 (0.02) 0.22 (0.05) 0.37 743

BR2 0.04 (0.01) 0.00 (0.00) 0.01 (0.00) 0.21 (0.01) 0.14 (0.04) 0.33 -1080

MAL2 0.07 (0.04) 0.14 (0.04) 0.00 (0.00) 0.60 (0.05) 0.09 (0.07) 0.20 1173

AC2 0.20 (0.09) 0.09 (0.04) 0.06 (0.04) 1 (NA) 0.05 (0.02) 0.19 8369

NR2 0.04 (0.01) 0.19 (0.05) 0.02 (0.00) 0.23 (0.01) 0.13 (0.04) 0.17 -678

Variance components, heritability (their standard errors in parentheses), breeding values accuracy and Akaike’s Information Criterion (AIC) for traits measured at Gowan Hill
and Kaingaroa sites ABLUP-GC2 model

conditions [2]. However, using appropriately informed
models is necessary to obtain an unbiased estimation of
genetic parameters and make correct inferences about
evolutionary responses [11], which is especially impor-
tant in traits responsible for local adaptation. Most of
the conifer domestication programmes are in their initial
phases, where samples are collected across a wide range of
environments and planted under common environmen-
tal conditions [22, 23]. Under such conditions, popula-
tion genetic divergence provides important information
about the strength of local adaptation and its modelling
is critical to obtain accurate genetic parameters about
the evolutionary capacity to respond to future climate
conditions [11].
The current intensity of climate change is placing pres-

sure on forest tree populations to improve resilience
to increasingly variable environments during their long
lifespans. Widely distributed conifer species are able to
promote local adaptation due to intensive gene flow.
However, it might not be enough to cope with rapid
climate change [24]. Climate and growth models have
estimated that maladaptation to future climate results
not only in reduced productivity and increased mortal-
ity [25] but also in increased sensitivity to pathogens [26].
Therefore, active matching of forest populations to future

climate conditions [4, 5, 24, 27], as well the monitor-
ing and assessing host-pathogen interaction is required
for optimal resilience [28]. In extreme cases, this type
of active management can lead to a change in species
composition [6].

Modelling of population structure in genetic evaluation
The population structure is usually fitted as either fixed
or random term in the genetic evaluation using mixed
linear models [8]. The modelling of population structure
through contemporary groups implemented directly in
pedigree improved model fit and increased the accuracy
of breeding values in the current study. However, assign-
ing both maternal and paternal contribution to the same
contemporary group resulted in the same model fit as
using provenance as a fixed term. Consequently, defining
only a different contemporary group for the paternal side
of the pedigree, reflecting a different genetic background,
resulted in improvement of both model fit and the accu-
racy of breeding values. In addition, models considering
provenance as a fixed term or including both parents in
the same contemporary group resulted in slightly higher
heritability, than different contemporary groups in the
both sides of the pedigree. These results indicate that
the incorrect fit of the population structure would result
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Table 4 Genetic parameters estimates using ABLUP-GC1 model

Gowan Hill Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 217 (35.1) 45.5 (13.6) 14.9 (4.76) 721.2 (24.2) 0.23 (0.03) 0.68 47602

STR1 0.12 (0.02) 0.02 (0.01) 0.01 (0.00) 0.32 (0.01) 0.27 (0.04) 0.70 663

MAL1 0.05 (0.01) 0.11 (0.03) 0.01 (0.00) 0.35 (0.03) 0.12 (0.03) 0.55 500

VEL1 0.06 (0.01) 0.01 (0.00) 0.00 (0.00) 0.07 (0.01) 0.46 (0.05) 0.71 -4314

DBH2 851 (136) 87.7 (28.0) 15.8 (13.8) 2501 (91.4) 0.25 (0.04) 0.69 52676

STR2 0.19 (0.02) 0.01 (0.00) 0.01 (0.00) 0.25 (0.01) 0.43 (0.05) 0.75 143

BR2 0.04 (0.01) 0.01 (0.00) 0.01 (0.00) 0.32 (0.01) 0.11 (0.03) 0.59 -206

MAL2 0.09 (0.02) 0.04 (0.01) 0.00 (0.00) 0.41 (0.01) 0.18 (0.03) 0.63 1318

AC2 0.51 (0.11) 0.10 (0.04) 0.03 (0.03) 1 (NA) 0.17 (0.03) 0.32 17006

Kaingaroa Add.gen Rep Rep(Set) Residual h2 r AIC

DBH1 428 (64.4) 45.9 (14.6) 18.7 (6.69) 889 (40.0) 0.33 (0.04) 0.71 44560

STR1 0.06 (0.01) 0.06 (0.02) 0.01 (0.00) 0.36 (0.01) 0.14 (0.03) 0.60 714

MAL1 0.06 (0.04) 0.15 (0.04) 0.01 (0.01) 1.02 (0.04) 0.06 (0.04) 0.35 3135

VEL1 0.11 (0.03) 0.00 (0.00) 0.01 (0.01) 0.04 (0.02) 0.74 (0.14) 0.54 -640

DBH2 1085 (212) 78.3 (29.8) 30.5 (25.4) 2659 (141) 0.29 (0.05) 0.65 30794

STR2 0.10 (0.02) 0.08 (0.02) 0.01 (0.00) 0.36 (0.02) 0.22 (0.05) 0.59 668

BR2 0.04 (0.01) 0.00 (0.00) 0.01 (0.00) 0.22 (0.01) 0.15 (0.04) 0.57 -1154

MAL2 0.09 (0.05) 0.14 (0.04) 0.00 (0.00) 0.60 (0.04) 0.13 (0.07) 0.43 1100

AC2 0.23 (0.09) 0.09 (0.04) 0.05 (0.04) 1 (NA) 0.06 (0.02) 0.24 8299

NR2 0.04 (0.01) 0.19 (0.05) 0.02 (0.00) 0.24 (0.01) 0.15 (0.04) 0.41 -750

Variance components, heritability (their standard errors in parentheses), breeding values accuracy and Akaike’s Information Criterion (AIC) for traits measured at Gowan Hill
and Kaingaroa sites ABLUP-GC1 model

in a somewhat overestimated genetic parameters. The
different genetic groups for maternal and paternal con-
tributions is expected, this is supported by the research
results of mating dynamics in seed orchards. Evidence was
shown on the presence of pollen contamination in seed
crop in the range of 10% [29] to 90% [30] with indicating a
relatively stable seasonal variability [29, 31].
The use of genetic groups provides flexibility in mod-

elling of population structure, which corresponds to real-
life seed and pollen mobility [18–20] and should be pre-
ferred over the fitting of provenance as a fixed term.

However, in the case of insect-pollinated species, pollen
mobility is directed by the pollinator and is usually limited
only to the local population. Gonzaga et al. [32] inves-
tigated mating patterns in Eucalyptus seed orchard and
found average pollen dispersal of 94 metres and pollen
contamination of 14%.
Similarly, Rao et al. [33] reported mean pollen con-

tamination of 17.6% in Eucalyptus breeding arboretum.
Under such conditions, modelling of both the mater-
nal and paternal sides of pedigree by the same con-
temporary group is a sensible solution, due to the fact

Table 5 Genetic correlation estimates at Gowan Hill

Gowan Hill DBH1 STR1 MAL1 VEL1 DBH2 STR2 BR2 MAL2

DBH1 1 -0.41 (0.10) -0.21 (0.14) -0.17 (0.11) 0.86 (0.04) -0.36 (0.09) -0.48 (0.13) -0.48 (0.11)

STR1 -0.41 (0.10) 1 0.39 (0.12) 0.34 (0.10) 0.12 (0.05) 0.93 (0.03) 0.50 (0.13) 0.93 (0.07)

MAL1 -0.20 (0.14) 0.38 (0.12) 1 0.02 (0.13) 0.17 (0.14) 0.53 (0.11) 0.06 (0.17) 0.96 (0.10)

VEL1 -0.17 (0.11) 0.34 (0.10) 0.02 (0.13) 1 -0.08 (0.11) 0.18 (0.10) 0.30 (0.13) 0.17 (0.12)

DBH2 0.86 (0.04) 0.00 (0.11) 0.16 (0.13) -0.08 (0.11) 1 0.05 (0.10) -0.51 (0.13) -0.04 (0.13)

STR2 -0.36 (0.09) 0.92 (0.03) 0.51 (0.10) 0.18 (0.10) 0.05 (0.10) 1 0.41 (0.12) 0.92 (0.05)

BR2 -0.45 (0.13) 0.48 (0.12) 0.06 (0.17) 0.29 (0.13) -0.49 (0.13) 0.40 (0.12) 1 0.29 (0.15)

MAL2 -0.47 (0.11) 0.89 (0.07) 0.88 (0.10) 0.16 (0.12) -0.04 (0.13) 0.90 (0.05) 0.28 (0.15) 1

Genetic correlation between traits (their standard errors in parentheses) measured at Gowan Hill, estimated using ABLUP-GC1 model (above diagonal) and ABLUP-F model
(below diagonal)
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Table 6 Genetic correlation estimates at Kaingaroa

Kaingaroa DBH1 STR1 MAL1 VEL1 DBH2 STR2 BR2 MAL2 NR2

DBH1 1 -0.07 (0.13) -0.08 (0.28) 0.20 (0.23) 0.96 (0.01) 0.05 (0.07) -0.13 (0.09) -0.34 (0.23) 0.38 (0.14)

STR1 -0.09 (0.13) 1 0.83 (0.28) 0.03 (0.31) -0.11 (0.15) 0.97 (0.09) -0.09 (0.19) 0.26 (0.27) 0.16 (0.20)

MAL1 -0.09 (0.23) 0.67 (0.22) 1 0.03 (0.59) 0.10 (0.33) 0.75 (0.34) 0.58 (0.43) 0.39 (0.55) 0.07 (0.41)

VEL1 0.05 (0.24) 0.03 (0.31) 0.01 (0.48) 1 0.13 (0.24) -0.29 (0.27) 0.09 (0.28) 0.44 (0.46) -0.25 (0.28)

DBH2 0.96 (0.02) -0.11 (0.15) 0.05 (0.26) 0.11 (0.24) 1 -0.18 (0.15) -0.46 (0.16) 0.12 (0.14) 0.78 (0.06)

STR2 -0.24 (0.13) 0.89 (0.09) 0.58 (0.26) -0.25 (0.27) -0.20 (0.15) 1 -0.21 (0.19) 0.43 (0.25) 0.38 (0.19)

BR2 -0.35 (0.15) -0.06 (0.19) 0.40 (0.32) 0.08 (0.28) -0.43 (0.16) -0.17 (0.19) 1 -0.19 (0.32) 0.06 (0.22)

MAL2 -0.33 (0.20) 0.21 (0.25) 0.23 (0.41) 0.28 (0.41) 0.04 (0.23) 0.37 (0.23) -0.13 (0.28) 1 0.02 (0.34)

NR2 0.32 (0.14) 0.19 (0.18) 0.04 (0.32) -0.21 (0.27) 0.38 (0.15) 0.34 (0.18) 0.02 (0.21) 0.01 (0.29) 1

Genetic correlation between traits (their standard errors in parentheses) measured at Kaingaroa, estimated using ABLUP-GC1 model (above diagonal) and ABLUP-F model
(below diagonal)

that both parents survived and reached sexual matu-
rity under the same environmental conditions and thus
passed the same kind of natural selection (see Box 2 in
[21] for reference). The development of genetic mark-
ers through next-generation sequencing platforms such

as "Genotyping-by-sequencing" [34] can help to improve
the inference about population structure. Although, a
thorough understanding of gene flow on a landscape
scale is anyhow challenging even with the help of genetic
markers [35].

Fig. 1 Distribution of breeding values estimated for DBH along latitude of origin. Latitudinal distribution of individual estimated breeding values
(EBV) for DBH at Gowan Hill at age of 11 (upper left) and at age of 21 (upper right). At Kaingaroa, the individual estimated breeding values (EBV) at
the age of 11 (bottom left) and at age of 21 (bottom right)
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Fig. 2 Distribution of breeding values estimated for NR along latitude of origin. Latitudinal distribution of individual breeding values (EBV) for needle
retention at Kaingaroa at the age of 21

Benefits of modelling of population structure for traits
potentially involved in local adaptation
Our study investigated investigated the level of genetic
differentiation between populations for all investigated
traits through QST parameters and found them as
statistically significant based on their standard errors for
productivity traits (DBH) and foliar disease resistance (to
SNC) measured by needle retention (NR2). Similar lev-
els of between-population differentiation were found for
other potentially adaptive traits in conifers such as bud set,

bud flush and cold injury [36]. Previous studies of genetic
differentiation in coastal Douglas-fir found very low FST
values ranging between 0.006 and 0.071 [14, 37, 38].
Additionally, Wilhelmi et al. [39] found differences in nee-
dle retention between provenances and concluded that
provenances originating from areas of higher foliar disease
pressure are more resistant. It can be therefore assumed
that these traits are contributing to local adaptation.
The considerable genetic variability between populations
(large QST) indicates a high level of local natural selection

Fig. 3 Network of trait’s genetic correlations at Gowan Hill. Correlation network estimated by the model using provenances as a fixed term
(ABLUP-F) (left) or implemented as genetic groups in the pedigree (ABLUP-CG1) (right) at Gowan Hill
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Fig. 4 Network of trait’s genetic correlations at Kaingaroa. Correlation network estimated by the model using provenances as a fixed term (ABLUP-F)
(left) or implemented as genetic groups in the pedigree (ABLUP-CG1) (right) at Kaingaroa

and thus adaptive potential in traits related to productivity
[40]. The exploration of provenance performance along
latitudes showed that the most productive provenances
tested in New Zealand originate from latitude around 38◦
N at Gowan Hill and around 40◦ N at Kaingaroa (Fig. 1).
The advantage of more northern provenances at Kain-
garoa (Latitude 38◦ 17’ S) can be attributed to the reduced
needle retention of the southern provenances (Fig. 2) due
to poorer resistance to SNC [16]. Douglas-fir at Kaingaroa
is exposed to SNC due to the favourable climate for the
disease in theNorth Island, such asmildmean daily winter
temperatures and high spring moisture [41]. Therefore, it
is critical to include needle retention as selection criteria
in the North Island of New Zealand to improve resistance
to SNC in Douglas-fir [42].
Correlation analysis discovered strong positive genetic

correlations between NR2 and DBH at Kaingaroa. This
relationship was more pronounced at later age, which
indicates that reduced productivity depends on the first

Table 7 Genetic correlation between sites

Trait ABLUP-F ABLUP-GC1

DBH1 0.68 (0.08) 0.66 (0.08)

STR1 0.87 (0.11) 0.81 (0.10)

MAL1 0.77 (0.46) 0.52 (0.30)

VEL1 0.76 (0.14) 0.70 (0.15)

DBH2 0.43 (0.12) 0.42 (0.12)

STR2 0.85 (0.09) 0.81 (0.09)

BR2 0.69 (0.19) 0.61 (0.18)

MAL2 0.53 (0.25) 0.46 (0.23)

Genetic correlations between sites using ABLUP-F model and ABLUP-CG1 model

occurrence and frequency of foliar diseases. The correla-
tions were mostly similar between implemented methods.
However, some correlation estimates were stronger at
Kaingaroa when contemporary groups were implemented
in the pedigree compared with a model using prove-
nance as a fixed term. Nevertheless, the Mantel test found
high agreement between correlation matrices from tested
models, reaching 0.99 in Gowan Hill and 0.97 in Kain-
garoa. Appropriate modelling of population structure is
critical to obtain reliable estimates of genetic correlations
which can be implemented in evolutionary response to
selection [11]. Additionally, reliable estimates of genetic
correlations are required in the evolutionary developmen-
tal biology field of research to infer organismal modularity
[43] and phenotypic integration [44]. Our test of modular-
ity identified a module consisting of productivity (DBH2)
and disease resistance (NR2) traits, both identified as
traits potentially involved in the process of local adap-
tation in environment where both traits were expressed
at the Kaingaroa site. This represents traits varying
in the same way independently from other traits [45].
Interestingly, this module was identified only in the model
that used different contemporary groups in the maternal
and paternal sides of the pedigree. Therefore, the appro-
priate modelling of population structure is especially criti-
cal for traits involved in local adaptation showing a decent
level of genetic divergence at the population level - QST).
However, it is worth to mention that the resulting effect
of population structure modelling depends on the extent
of genetic variation included in the tested sample. Ide-
ally, it should include a sample representing the whole
natural distribution of the species. In our case, the sam-
ple represented populations from only part of the natural
distribution (Oregon and California).
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In contrast to the testing of provenance effect as a fixed
term in mixed models, the implementation of contempo-
rary groups in the pedigree allows greater flexibility in the
modelling of differences in evolutionary forces, such as
migration and natural selection between seed and pollen.
This is important, especially in wind-pollinated species
showing long-distance gene flow across heterogeneous
environments, which could potentially cause maladapta-
tion to local environmental conditions. Our study found
a positive impact on model fit and accuracy of breeding
values from biologically relevant modelling of population
structure through contemporary groups implemented in
the pedigree. Additionally, the proposed model resulted
in changes in genetic correlations between the investi-
gated traits. Such changes affect inference, not only the
evolutionary response to selection, but also organismal
modularity and phenotypic integration.

Conclusions
The appropriate modelling of population structure in
genetic evaluations is critical for unbiased estimates of
genetic parameters. Ignorance or inappropriate modelling
of population structure can produce an inferior fit of the
models and lower accuracy of genetic parameters. Our
study found a positive impact on model fit and accuracy
of breeding values from biologically sensible modelling
of population structure through contemporary groups
implemented in the pedigree. The appropriate modelling
of population structure was found especially critical for
traits involved in local adaptation. This approach is suit-
able especially for wind-pollinated species with exten-
sive long-distance pollen flow. Additionally, the proposed
model resulted in changes in genetic correlations between
the investigated traits. Such changes can affect inference,
not only about the evolutionary response to selection but
about organismal modularity and phenotypic integration.

Methods
Coastal Douglas-fir was introduced in New Zealand dur-
ing the 1950s through the establishment of a provenance
test covering genetic material from Washington, Oregon,
and limited representation from California [46]. The
results of the early evaluation showed superior growth
performance of provenances from Oregon and California,
therefore, the selection of new breeding material was
focused on these geographical areas. A collection of seed
from trees at the original wild stands was imported to
New Zealand, and a new provenance/progeny test was
established in 1996 [47]. The material used to plant at
two New Zealand environments (Kaingaroa, latitude 38◦
17’ S, and Gowan Hill, latitude 45◦ 52’ S) in 1996 were
collected from populations in two US regions (California
and Oregon), ranging in latitude from 36◦ to 48◦ N along
the western coast of the USA. Each experiment includes

30 replications of 7 sets. Each set contains 34 open-
pollinated families and 2 controls. The provenances were
represented equally within each of the set. A detailed
description of the material is provided in a previous study
[42]. Tree diameter at breast height (DBH) was measured
at ages 11 (DBH1 [mm]) and 21 years (DBH2 [mm]).
Trees were also assessed for straightness (STR1 and STR2)
and malformation (MAL1 and MAL2) at the same ages.
Straightness was scored on a scale of 1 to 9 [48] where one
represented a crooked stem and nine a straight stem. Sim-
ilarly, malformation was scored on scale of 1 to 9 where:
1 - tree with multiple leaders, 2 - tree with two leaders,
3 - main stem shifted for more than half of its diameter,
4 - main stem shifted for less than half of its diameter,
5 - tree with multiple ramicorns instead of main leader,
6 - tree has three and more distinctive ramicorns, 7 - tree
has two distinctive ramicorns, 8 - tree has one distinctive
ramicorn, 9 - tree is clear of any stem shift, multiple lead-
ers or ramicorns. Acoustic wave velocity (VEL1 [km/s]),
as an indirect measure of wood stiffness, was measured by
HITMAN ST300 (Fibre-gen, Christchurch, New Zealand)
at age 11 years. Needle retention describes the proportion
of needles retained (NR2 - measured only at Kaingaroa
and scored on a scale of 1 - bad to 6 - good, reflecting
the damage of needles of different ages) was measured at
age 21 years. Branching pattern (BR2) was scored on 9
degrees scale where: 1 - one whorl per year with one set of
branches, 2 - one whorl per year with two sets of branches,
3 - one whorl per year with multiple sets of branches,
4 - short internode with multiple sets of branches per
whorl, 6 - 9 multinodal trees with increasing score as
frequency of nodes increases. Acceptability (AC2) was
scored as a binary trait at age 21 years. All class variables
(STR, MAL, BR, NR) were transformed into the normal
score [49]. Variance components and heritabilities for the
investigated traits were estimated using a mixed linear
model implemented in the ASReml-R statistical package
[50] as follows:

y = Xβ + Zg + Zr + Zr(s) + e

where y is the vector of measurements, β is the vector of
fixed effects such as intercept and control, g is the vector
of random individual tree additive genetic effects follow-
ing var(g)∼N(0,Aσ 2

g ), where A is the average numerator
relationship matrix [51] and σ 2

g is additive genetic vari-
ance, r is the vector of random replication effects follow-
ing var(r)∼N(0,Iσ 2

r ), where σ 2
r is replication variance and

I is identity matrix, r(s) is the vector of random set nested
within replication effects following var(r(s))∼N(0,Iσ 2

r(s)),
where σ 2

r(s) is set nested within replication variance, e is
the vector of random residuals following var(e)∼N(0,Iσ 2

e ),
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where σ 2
e is residual variance, and X and Z are the inci-

dence matrices assigning the effects from fixed and ran-
dom vectors to measurements in vector y. Additionally,
the provenance term was investigated through three alter-
native scenarios: 1) used as a fixed term (ABLUP-F), and
considered as the default model; 2) implemented as con-
temporary genetic groups directly in the pedigree and
modeling paternal contribution coming from an inde-
pendent genetic group (phantom group) common across
all provenances (ABLUP-CG1); 3) implemented as con-
temporary genetic groups directly in the pedigree, mod-
eling both maternal and paternal origin from the same
genetic group (ABLUP-CG2) [52]. In addition, the model
with provenance as a random term was used to test for
genetic divergence in quantitative traits (QST) (ABLUP-R)
[53]. Genetic correlations between traits within site and
between traits across sites were estimated using bivari-
ate mixed linear model implemented in the ASReml-R
statistical package [50] as follows:

Y = Xβ + Zg + Zr + Zr(s) + e

where Y is the matrix of measurements, g is the ran-
dom vector of individual tree additive genetic effects
following var(g)∼N(0,G1), where G1 is the additive
genetic variance-covariance structure following G1=[

σ 2
g1 σg1g2

σg2g1 σ 2
g2

] ⊗
A, where σ 2

g1 and σ 2
g2 are the additive

genetic variances for the 1st and 2nd trait, σg1g2 and
σg2g1 are the additive genetic covariances between the
1st and 2nd trait, and

⊗
is the Kronecker product,

r is the random vector of replication effects following
var(r)∼N(0,G2), where G2 is the replication variance-

covariance structure following G2=
[

σ 2
r1 0

0 σ 2
r2

] ⊗
I, where

σ 2
r1 and σ 2

r2 are the replication variances for the 1st and
2nd trait, r(s) is the random vector of the set nested
within replication effects following var(r(s))∼N(0,G3),
where G3 is the set nested within replication variance-

covariance structure following G3=
[

σ 2
r(s)1 0

0 σ 2
r(s)2

]⊗
I,

where σ 2
r(s)1 and σ 2

r(s)2 are set nested within replication
variances for the 1st and 2nd trait, e is the random vec-
tor of residual effects following var(e)∼N(0,R), where R
is the residual variance-covariance structure following

R=
[

σ 2
e1 σe1e2

σe2e1 σ 2
e2

] ⊗
I, where σ 2

e1 and σ 2
e2 are the residual

variances for the 1st and 2nd trait, σe1e2 and σe2e1 are
the residual covariances between the 1st and 2nd trait.
The narrow sense heritabilities for traits following normal
distribution were estimated as follows:

ĥ2 = σ̂ 2
g

σ̂ 2
g + σ̂ 2

e

The narrow-sense heritability for binary traits was esti-
mated as follows:

ĥ2 = σ̂ 2
g

σ̂ 2
g + θ π2

3

where θ is the over/under dispersion coefficient and π

is 3.14159.
The genetic divergence in quantitative traits was esti-

mated as follows:

QST = σ̂ 2
p

σ̂ 2
p + 2σ̂ 2

g

where σ 2
p is the provenance variance. The genetic corre-

lations were estimated as follows:

rG = σ̂gigj√
σ̂ 2
gi σ̂

2
gj

where σgigj is the additive genetic covariance between the
jth and ith trait, and σ 2

gi and σ 2
gj are the additive genetic

variances for the ith and jth trait. The standard errors for
variance components and genetic parameters were esti-
mated by using Taylor series approximation. Agreement
between the correlation matrices obtained from the inves-
tigated model was tested through a Mantel test by using
the ’MantelCor’ function implemented in the ’evolqg’ R
package [54]. Modularity of the investigated traits was
tested through a community detection algorithm [55] by
using ’LModularity’ function implemented in the ’evolqg’
R package [54]. Breeding value accuracy was estimated as
follows:

r =
√
1 − PEV

σ̂ 2
g

where PEV is the prediction error variance [56], esti-
mated as the square of standard errors for breeding value
estimates.
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ABLUP-F:Pedigree-based individual tree model using provenance as fixed
term; ABLUP-GC1: Pedigree-based individual tree model implementing
provenance as contemporary groups directly in pedigree and assuming both
maternal and paternal contribution from the same genetic group; ABLUP-GC2:
Pedigree-based individual tree model implementing provenance as
contemporary groups directly in pedigree and assuming paternal contribution
originated from the phantom genetic group unrelated to maternal
provenances; ABLUP-R: Pedigree-based individual tree model using
provenance as random term; AC2: Acceptability scored at age of 21 years; AIC:
Akaike’s Information Criterion; BR2: Branching pattern measured at age of 21
years; DBH1: Diameter at breast height measured at age of 11 years; DBH2:
Diameter at breast height measured at age of 21 years; FST: Fixation index -
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population differentiation due to genetic structure; GST: Population genetic
differentiation (an extension of FST for multi-allelic markers); GxE: Genotype by
environment interaction; MAL1: Stem malformation scored at age of 11 years;
MAL2: Stem malformation scored at age of 21 years; N: North; NR2: Needle
retention scored at age of 21 years; PEV: Prediction error variance; QST: Genetic
differentiation among populations expressed by quantitative trait; S: South;
SNC: Swiss needle cast; STR1: Stem straightness scored at age of 11 years;
STR2: Stem straightness scored at age of 21 years; USA: The United States of
America; VEL1: Acoustic wave velocity measured at age of 11 years
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