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Accuracy of genomic selection for grain
yield and agronomic traits in soft red
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Abstract

Background: Genomic selection has the potential to increase genetic gains by using molecular markers as predictors
of breeding values of individuals. This study evaluated the accuracy of predictions for grain yield, heading date, plant
height, and yield components in soft red winter wheat under different prediction scenarios. Response to selection for
grain yield was also compared across different selection strategies- phenotypic, marker-based, genomic, combination
of phenotypic and genomic, and random selections.

Results: Genomic selection was implemented through a ridge regression best linear unbiased prediction model in two
scenarios- cross-validations and independent predictions. Accuracy for cross-validations was assessed using a diverse
panel under different marker number, training population size, relatedness between training and validation
populations, and inclusion of fixed effect in the model. The population in the first scenario was then trained and used
to predict grain yield of biparental populations for independent validations. Using subsets of significant markers from
association mapping increased accuracy by 64–70% for grain yield but resulted in lower accuracy for traits with high
heritability such as plant height. Increasing size of training population resulted in an increase in accuracy, with
maximum values reached when ~ 60% of the lines were used as a training panel. Predictions using related
subpopulations also resulted in higher accuracies. Inclusion of major growth habit genes as fixed effect in the model
caused increase in grain yield accuracy under a cross-validation procedure. Independent predictions resulted in
accuracy ranging between − 0.14 and 0.43, dependent on the grouping of site-year data for the training and validation
populations. Genomic selection was “superior” to marker-based selection in terms of response to selection for yield.
Supplementing phenotypic with genomic selection resulted in approximately 10% gain in response compared to
using phenotypic selection alone.

Conclusions: Our results showed the effects of different factors on accuracy for yield and agronomic traits. Among the
factors studied, training population size and relatedness between training and validation population had the greatest
impact on accuracy. Ultimately, combining phenotypic with genomic selection would be relevant for accelerating
genetic gains for yield in winter wheat.

Keywords: Agronomic traits, Genomic selection, Grain yield, Ridge regression best linear unbiased prediction, Soft red
winter wheat, Yield components
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Background
High-throughput genotyping technologies that gener-
ate large sets of DNA marker data at low-cost have ac-
celerated the adoption of genomic selection (GS) in
plant breeding programs [1]. GS is a molecular breed-
ing tool that predicts genomic estimated breeding
values of individuals with only genotypic information
available through prediction models constructed based
on a training population with genome-wide marker
and phenotypic data available [2]. GS complement
traditional breeding strategies and can potentially re-
duce the need for large-scale phenotyping and acceler-
ate the rate of genetic gain through shorter breeding
cycles [3–5].
GS was initially implemented in animal breeding, par-

ticularly of cattle [2, 6] and has now been extended to
different crops, including rice [7, 8], tomato [9, 10],
maize [11], soybean [12], and barley [13]. In soft red
winter wheat, GS studies have been conducted for
Fusarium head blight (FHB) resistance [14], grain yield
and stability traits [15], yield, softness equivalence, flour
yield [16], grain yield, plant height, heading date, and
flour quality traits [17], and normalized difference vege-
tative index (NDVI) [18]. The performance of GS de-
pends primarily on the prediction accuracy, defined as
the Pearson’s correlation between the selection criterion
and the true breeding value to select individuals with
unknown phenotypes [19]. Factors affecting GS accuracy
include gene effects, genetic composition of the training
population (TP), level of linkage disequilibrium, marker
density, statistical models, number of quantitative trait
loci (QTL), relationship between TP and the validation
population (VP) or selection candidates, TP size, and
trait heritability [19–21].
Muleta et al. [22] recently evaluated the effects of trait

architecture, size of TP, and different marker densities
on GS accuracies for stripe rust in a diverse collection of
spring wheat. The genetic complexity of traits with agri-
cultural and economic importance in wheat, such as
grain yield and yield components, limit the power of as-
sociation mapping in identifying small effect loci [23].
GS can circumvent this problem by implementing
genome-wide markers for predictions, and thus can
complement association analyses in dissecting the gen-
etic basis of important traits [24, 25]. Currently, there
are no reports on the accuracy of GS for a diverse popu-
lation of soft red winter wheat lines that are adapted to
southeastern region of the US. Our objectives were then
to (1) evaluate the effects of marker number, TP size, re-
latedness between TP and validation set, presence of
fixed effect in the model, and genetic relatedness on ac-
curacy of GS using cross-validations; (2) validate GS
model in two biparental populations related to the TP
(independent predictions); and (3) compare phenotypic

(PS), genomic (GS), marker-based (MS), and random se-
lection (RS) strategies in terms of response to selection
(R), as a measure of genetic gain for grain yield.

Results
Trait heritability and yield across environments
Broad-sense heritability (H2) of grain yield in different
environments used for GS are presented in Table 1. In
the training population of diverse soft red winter wheat
lines, H2 for the measured traits were 0.48 (grain yield),
0.63 (heading date), 0.47 (kernel weight spike− 1), 0.37
(kernel number spike− 1), 0.77 (thousand kernel weight),
and 0.81 (plant height). Values of H2 for grain yield data-
sets across the three populations ranged between 0.33
(PA_ALL) and 0.85 (PA_Cluster3), with mean grain yield
between 2.82 (NB_NPT) and 5.56 t ha− 1 (PA_Cluster3)
(Table 1). Within the training population, H2 for grain
yield ranged between 0.40 (BLUP14) and 0.80 (BLUP15).

Effect of marker number and training population size
Average number of markers used for GS for each subset
(SS) were 820 (SS0.15), 540 (SS0.10), and 270 (SS0.05)
SNPs. Prediction accuracies for grain yield increased
from 0.33 to 0.56 when SS0.10 was used for predictions
(Fig. 1; Additional file 1: Table S1). Comparable predic-
tion values were observed between the marker subsets,
with both SS0.05 and SS0.15 having similar accuracy
(0.54). Using less markers, on the other hand, was not
that successful for heading date, in which using SS0.15
and SS0.10 resulted in negative accuracies (− 0.01), prob-
ably resulting from using a smaller number of markers.
For plant height, similar accuracies were observed for
SS0.10, SS0.15, and whole genotype data (0.31), whereas
using SS0.05 resulted in marginal decrease in accuracy
(0.31 to 0.25). For the yield components, there was a
14–39% decrease in accuracy when using the marker SS
for predictions. Using random SNP marker sets resulted
in accuracies between 0.07 (heading date) and 0.46
(thousand kernel weight). Relative to the GWAS-derived
markers, using the random SNPs caused a significant
(P < 0.0001) reduction in prediction accuracies (0.34 vs.
0.55) for grain yield. In contrast, significantly higher pre-
diction accuracies (P < 0.05) for random markers were
observed for all the other traits except thousand kernel
weight. Among the random marker sets, using RM1
(820 random SNPs) and RM3 (270 random SNPs) re-
sulted in similar prediction accuracy (0.30).
Increasing training population size resulted in in-

creased accuracy across all the measured traits when val-
idation population size was held constant and reached a
maximum at TP150 (Fig. 2; Additional file 1: Table S2).
Comparing TP25 with TP150, prediction accuracies in-
creased from 0.18 to 0.46 for grain yield, from 0.27 to
0.73 for plant height (the most heritable trait), and from
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0.19 to 0.47 for heading date. For yield components, ac-
curacies increased from 0.12 to 0.40 for kernel number
spike− 1, 0.19 to 0.59 for kernel weight spike− 1, and 0.28
to 0.58 for thousand kernel weight. A minimal increase
was observed (between 4.6 and 20.5%) from TP125 to
TP150 as accuracy values hit a plateau. No significant
differences between the mean accuracy of each training
population size across traits were observed for TP100
and TP125 and for TP125 and TP150, whereas accuracy
for TP25 was significantly lower (P < 0.05) compared to
all other training population sizes.

Effect of population structure and fixed effect in the
model
Previous STRUCTURE analyses [26] identified three
subpopulations in the training population: Q1 (N = 59
lines), Q2 (N = 54 lines) and Q3 (N = 126 lines), with Q2
and Q3 being the most related based on population dif-
ferentiation coefficient. On the average, using Q2 to pre-
dict Q3 (and vice versa) resulted in the highest
accuracies, whereas using Q1 to predict Q2 resulted in
the lowest accuracies for yield and yield components
(Fig. 3; Additional file 1: Table S3). For grain yield, there

Table 1 Heritability and yield across different populations of soft red winter wheat used for genomic selection

Population No. of
lines

Dataset Environments a Mean (t ha− 1) Min Max H2 b

Training population 239 ABLUP FAY14, FAY15, KEI15, MAR15, OKL15, NPT15 STU14, ROH15 3.10 0.07 7.14 0.48

BLUP14 FAY14, STU14 2.91 0.37 6.49 0.40

BLUP15 FAY15, KEI15, MAR15, OKL15, NPT15, ROH15 3.31 0.07 7.60 0.80

NBLUP FAY14, FAY15, KEI15, OKL15 3.32 0.07 7.14 0.61

SBLUP MAR14, MAR15, STU14, ROH15 2.88 0.37 5.66 0.60

‘NC-Neuse’ x ‘Bess’ (NB) 100 NB_ALL FAY15, FAY16, FAY17, NPT16, NPT17 3.63 0.03 7.49 0.70

NB_FAY FAY15, FAY16, FAY17 4.38 1.04 7.49 0.70

NB_NPT NPT16, NPT17 2.82 0.03 5.91 0.45

‘Pioneer Brand 26R61’ x ‘AGS
2000’ (PA)

156 PA_ALL FAY12, FAY13, FAY14, GA12, GA13, LA13, MAR13, MAR14,
STU13, STU14, TX12, TX13

4.40c 1.86 6.25 0.33

PA_Cluster1 FAY12, STU12, FAY14 4.09 3.34 4.81 0.50

PA_Cluster2 FAY13, MAR14 4.69 3.34 5.69 0.63

PA_Cluster3 GA12, GA13 5.56 1.47 7.41 0.85

PA_Cluster4 MAR13, STU13, TX12, TX13 4.00 2.81 4.98 0.66
a Indicate site-years included to calculate BLUP for each dataset used for genomic selection
b Broad-sense heritability, calculated using the formula: H2¼ σ2G

σ2Gþσ2GEI
e
þσ2E

er
c Results adapted from Mason et al. [18]

Fig. 1 Accuracy for yield and agronomic traits under different marker sets for genomic selection. GY- grain yield; PH- plant height; HD- heading
date; TKW- thousand kernel weight; KNS- kernel number per spike; KWS- kernel weight per spike. SS0.15- marker subset based on significance level
P < 0.15 (~ 820 SNPs); SS0.10- marker subset based on significance level P < 0.10 (~ 540 SNPs); SS0.05- marker subset based on significance level
P < 0.05 (~ 270 SNPs); WG- whole genotype marker data (~ 5600 SNPs). Bars indicate standard errors
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were no significant differences among GS accuracies
when Q2 was used in predicting Q3 (and vice versa).
Prediction accuracies of 0.09 and 0.10 were observed
when Q1 was used as a training population to predict
Q2 and Q3, respectively (Fig. 3). Prediction accuracies of
0.22 and 0.26 were observed when Q2 was used to pre-
dict Q1 and Q3, respectively; whereas using Q3 to pre-
dict Q1 and Q2 resulted in prediction accuracies of 0.09
and 0.26. Accuracies for kernel number spike− 1 ranged
between 0.07 (Q1/Q2; TP/VP) and 0.25 (Q3/Q2). For
kernel weight spike− 1, accuracies ranged between 0.04
(Q1/Q2) and 0.21 (Q3/Q1) whereas for thousand kernel
weight, accuracy values ranged between 0.08 (Q1/Q2)
and 0.37 (Q3/Q2).

In general, GS accuracy for grain yield increased, al-
though marginally, when Ppd and vrn marker data were
as fixed effect in the model (Fig. 4; Additional file 1:
Table S4). For the ABLUP dataset, there was an in-
crease in accuracy from 0.33 to 0.37 with the addition
of Ppd-D1, whereas no increase was observed when
vrn-A1 was added. Using both Ppd-D1 and vrn-A1 as
fixed effect simultaneously in the model had a greater
effect on accuracy for the ABLUP, BLUP14, and
BLUP15 datasets compared to using only either locus
as a fixed effect. Using Ppd-D1 increased GS accuracy
for all datasets, except for SBLUP. Inclusion of fixed ef-
fect in the SBLUP dataset did not lead to significant
changes in accuracy.

Fig. 2 Effect of training population size on accuracy of genomic selection for yield and agronomic traits. GY- grain yield; PH- plant height; HD-
heading date; TKW- thousand kernel weight; KNS- kernel number per spike; KWS- kernel weight per spike. Size of validation population (VP) = 60

Fig. 3 Accuracy for yield and yield components using different subpopulations, Q as training (TP) and validation populations (VP). Subpopulations
based on STRUCTURE software analyses. Predictions were performed using a constant TP and VP sizes of 50 and 30, respectively under 10-fold
cross-validations. GY- grain yield; KNS- kernel number spike− 1; KWS- kernel weight spike− 1; TKW- thousand kernel weight. Bars indicate
standard errors
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Independent predictions using biparental populations
Accuracy of the TP to predict two related biparental
populations ranged from − 0.14 to 0.43 (Fig. 5; Add-
itional file 1: Table S5). Using NB as a validation popula-
tion resulted in prediction accuracies ranging from 0.06
to 0.22; whereas using PA as a VP resulted in prediction
accuracies between − 0.14 and 0.43. Grouping of site-
years in both the training and validation population sig-
nificantly affected accuracy. For example, PA_Cluster4
was the most predictable (accuracy of 0.40) of the PA
site-year groupings, compared to 0.23 in PA_ALL, where
all VP site-years were included. Simple matching coeffi-
cients reveal a low to moderate similarity between the

training population and the PA (0.48) and between the
TP and NB (0.45).

Selection response for grain yield
Response to selection R for grain yield was highest for
PS + GS (0.34 t ha− 1), followed by PS (0.31 t ha− 1) and
GS (0.21 t ha− 1) (Table 2), equal to a 22, 20, and 14% in-
crease above the population mean, respectively. R for
MS was 0.08 t ha− 1 and for RS was 0.01 t ha− 1, corre-
sponding to a 4 and 0.63% increase above the population
mean. Variance (σ2) was highest for RS and MS (both at
0.13) followed by GS (0.12), whereas PS and PS + GS ex-
hibited the lowest σ2 at 0.03.

Fig. 4 Accuracy for grain yield in the presence or absence (no covariate) of fixed effect in the prediction model. TP size = 144. ABLUP- BLUP
across all environments; BLUP14- BLUP across 2014 environments; BLUP15- BLUP across all 2015 environments; NBLUP- BLUP across Northern
environments; SBLUP- BLUP across southern environments. Bars indicate standard errors

Fig. 5 Accuracy for grain yield under independent validations. Training population (N = 239 lines; ABLUP, NBLUP, and SBLUP datasets) was used
to predict NB (N = 100 lines) and PA (N = 156 lines) across different site years and clusters. NB_ALL- BLUP across all site-years for the NB; NB_FAY-
BLUP across Fayetteville site-years (FAY15, FAY16, FAY17); NB_NPT- BLUP across Newport site-years (NPT16, NPT17); PA_ALL represents 12 site-years
for the PA; PA_Cluster1 includes site-years FAY12, STU12, and FAY14; PA_Cluster2 includes FAY13 and MAR14; PA_Cluster3 includes GA12 and
GA13; PA_Cluster4 includes TX12, TX13, MAR13, and STU13
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Discussion
The impact of various factors on the accuracy of gen-
omic selection for yield and agronomic traits were evalu-
ated through cross-validations using a diverse panel of
soft red winter wheat lines that are adapted to the south-
eastern region of the US. Effects of marker number, size
of TP, relatedness between training and testing set, and
the presence of fixed effect in the model were assessed
under a ridge regression model (RRBLUP). In another
scenario, independent predictions were conducted using
the diverse panel to predict grain yield of biparental pop-
ulations of SRWW. The effects of these parameters in
the accuracy of GS are discussed below.

Accuracy for cross-validations
The number of markers used for GS is crucial to ensure
that marker-QTL relationships will be captured for
optimum accuracy [19, 27]. Grain yield had higher ac-
curacies when subsets of associated markers were used
compared to whole genotype data (0.56 vs 0.33), demon-
strating the effectiveness of these marker subsets in cap-
turing marker-QTL linkage disequilibrium (LD) for this
trait. Our results agree with a previous study in winter
wheat which observed that implementing subsets of
associated markers (P < 0.05) resulted in the best accur-
acies for yield [16]. In other crops such as rice [8] and
soybean [28], prediction accuracies for grain yield
decreased marginally when marker subsets were used.
The use of evenly distributed markers was suggested in
performing predictions for grain yield and related traits
in rice, with the SNP position regarded as the most im-
portant factor for accuracy [8]. In this study, selecting
the most significant markers (P < 0.05) and using them
for predictions did not necessarily result in the highest
accuracies; in some traits (e.g. for plant height and thou-
sand kernel weight), using the marker subset SS0.05 re-
sulted in lower accuracies. For heading date and the
yield components, using marker subsets decreased ac-
curacy, irrespective of heritability which suggests that
these subsets might not have efficiently captured LD be-
tween markers and QTL. Using subsets of markers from
association mapping resulted in significantly (P < 0.0001)
higher accuracies relative to using random SNPs for

predicting grain yield, whereas no significant differences
was observed for thousand kernel weight. In other traits
such as such as plant height and kernel number per
spike, nonetheless, using random markers resulted in
higher accuracies (Additional file 1: Table S2). Overall,
we observed a variable effect of marker number in the
accuracy of GS for the evaluated traits, where the genetic
architecture of the trait also played a role in determining
prediction accuracies. Selecting subsets that can cover
the maximum LD between marker and QTL would be
advantageous; otherwise for some traits, using whole
genotype data will ensure that these relationships will be
captured, consequently resulting to better accuracies.
By performing association analyses exclusively on the

TP and using the significant loci identified from these
as our marker subsets for predictions, we disregarded
the “inside trading” effect that results when prediction
accuracies are evaluated using QTL identified in the
same group of lines [14]. In winter wheat, Arruda et al.
[14] previously demonstrated that “inside trading” can
lead to inflated values (i.e. ~ 32% overall increase) for
GS accuracies for FHB-related traits when significant
QTL were treated as fixed effect in the model. We thus
showed here that even without “inside trading,” it was
still possible improve accuracy for grain yield, which
reached a maximum accuracy of 0.56 when SS0.10 was
used for predictions. In comparison with other studies
that performed cross-validations [29, 30], we observed
relatively high accuracies for grain yield in the current
study, particularly when subsets of markers were used
for predictions. One possible reason for this is that we
used a population with minimal genetic stratification
or structure, hence a smaller number of markers in
this case could capture LD relationships between
markers and QTL. Previously, it was shown that this
panel has only three subpopulations, with no observ-
able clustering of lines based on geographic origin
[26]. Moreover, the mean pairwise Chord distance
value among the lines was 0.28. These then indicate
that genetic relatedness within and among the lines is
crucial in obtaining optimal prediction accuracies, par-
ticularly when models such as RRBLUP are being
implemented.

Table 2 Response to selection, R for grain yield in the training population across different selection strategies

Selection strategy Grain yield (t ha −1) ± SD Variance (σ2) Selection differential, S a Response to selection, R b % change relative to PS

GS 3.61 ± 0.34 0.12 0.44 0.21 −32.3

MS 3.34 ± 0.36 0.13 0.17 0.08 − 74.2

PS 3.82 ± 0.16 0.03 0.65 0.31 –

RS 3.19 ± 0.36 0.13 0.02 0.01 −96.8

PS + GS 3.88 ± 0.18 0.03 0.71 0.34 9.70

GS genomic selection, MS marker-based selection, PS phenotypic selection, PS + GS phenotypic + genomic selection, RS random selection
a S = μsel - μpop; μpop = 3.17 t ha−1
b Calculated as R = H2S where H2 is heritability for grain yield based on published value in Lozada et al. [26]; equal to 0.48
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Increasing training population size increased predic-
tion accuracies across all measured traits but tended to
plateau between TP125 and TP150. Increasing number
of lines at this point, then, did not give any additional
advantage in terms of accuracy. Similarly, in spring
wheat, it was recently noted that accuracy values either
plateaued at the largest training population size or
showed no sign of reaching a plateau depending on the
environment and trait [22]. A positive correlation be-
tween TP size and accuracy had been observed for bipa-
rental and multifamily wheat populations [17, 30], a
soybean nested association mapping (NAM) population
[28], and elite breeding populations of oats [31]. Increas-
ing TP size increases accuracy by improving the estima-
tion of marker effects [17]. Based on our results for
cross-validations, an optimal number of lines (~ 60% of
the entire population) should be included in the training
panel to achieve improved predictions. Beyond this, in-
creasing TP size might not be longer advantageous for
increasing accuracy.
Aside from TP size, the composition and relatedness

of the training and validation populations significantly
affected prediction accuracy. Using Q2 to predict Q3
(and vice versa) for grain yield and component traits
gave an 85% advantage over using the less related sub-
group Q1. These results agree with previous studies that
showed higher prediction accuracies for more related
populations [17, 28]. In barley, the inclusion of unrelated
individuals in a TP reduced accuracy compared to a TP
consisting of only highly related individuals [32]. Close
relatives share long haplotype and linkage blocks result-
ing in minimal statistical bias in estimating breeding
values and more accurate predictions [33]. In contrast,
inconsistent QTL effects of distantly related TP and VP
can result in lower prediction accuracies [34]. Related-
ness between training and test individuals is thus im-
portant for achieving high accuracies; TP should be fully
optimized to ensure that it captures most of the genetic
relationships with the validation sets.
Including Ppd-D1 and vrn-A1 fixed effect in the model

resulted in a general increase (although marginally) in
the accuracy of grain yield. Mason et al. [18] reported
the same trend when using major genes as fixed effect to
predict yield using cross-validations in the PA, particu-
larly for site-year groupings with low heritability. The
same study also reported that inclusion of multiple loci
as fixed effect did not significantly improve prediction
accuracies, which could be due to a limited population
size used. Likewise, Daetwyler et al. [35] observed that
inclusion of marker scores for known rust resistant
genes (Lr34/Sr57/Yr18) increased accuracy for rust re-
sistance in diverse wheat germplasm.
Overall, our results demonstrated the effects of differ-

ent parameters in the accuracy of GS in soft red winter

wheat through cross-validations. Training population
size and its relatedness to the validation population were
the major factors influencing accuracy. Fine-tuning of
these parameters would help achieve optimal prediction
accuracies towards improving genetic gains in plant
breeding programs.

Accuracy for independent predictions
The goal of GS is to predict the performance of new lines
before testing them in the field. With this, we were inter-
ested in evaluating prediction accuracies using a TP (N =
239 lines) to predict grain yield of biparental populations
derived from the cross between parents belonging to the
TP. Lower accuracies for grain yield resulted when NB
(0.06–0.22) and PA (− 0.14–0.43) were used as VP com-
pared to when predicting through cross-validations, which
could be due to low relatedness between the populations.
The prediction model used (i.e. RRBLUP) relies mainly on
the genetic relationships between training and test popula-
tions [36] and hence, its implementation for unrelated
lines would not be as successful. In wheat, RRBLUP was
also observed to perform poorly when training and testing
sets for independent validations were not related [37].
Low accuracies were reported for grain yield, heading
date, and test weight using different (unrelated) sets of
wheat double haploid and recombinant inbred popula-
tions for independent predictions [30]. Highest mean pre-
diction accuracies were observed for Cluster 4, the site-
year grouping with highest heritability, consistent with
previous results [18]. Within this cluster, using NBLUP
dataset which had the highest heritability also resulted in
the highest accuracies for grain yield, also demonstrating
the influence of heritability in obtaining higher prediction
accuracies. The limited relatedness between the TP and
the biparental populations (average genetic similarity coef-
ficient of 0.47) could have affected these results. Inclusion
of fixed effect may only be effective then in improving ac-
curacies under single population cross-validations or when
the training and validation populations are highly related.
Previous GS studies in wheat focused on single popu-

lation cross-validations of biparental [17, 25] and diver-
sity panels [22], whereas previous reports in other
crops such as rice [38] and sugar beet [39] used diverse
mapping populations to predict biparental families.
Accuracies for grain yield observed here (maximum ac-
curacy of 0.43) demonstrated the potential of using
diverse lines to predict complex traits in biparental
populations. Similarly, in rice, it was recently shown
that prediction models can be trained from a diverse
reference population to predict performance among
advanced progenies of biparental crosses, with reported
prediction accuracies reaching a maximum value of
0.54 [38].
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Altogether, we have observed the effects of different
factors in the prediction accuracies for yield and agro-
nomic traits. Results from this study could therefore be
used as foundation in employing genomic selection ap-
proaches in different crops evaluated in multiple envi-
ronments. For instance, we have observed that a close
relatedness between training and test populations
would result in optimal accuracies. When implement-
ing genomic selection, breeding programs should there-
fore create a training population that is able to capture
the maximum genetic relationships between the train-
ing and validation populations to attain increased
accuracies. The size of the training population, particu-
larly for single-population cross-validations, was also
observed to affect accuracies, where an increased num-
ber of lines is related to improved prediction accur-
acies. Plant breeding programs should thus build a
training population that is “large” enough; nevertheless,
caution is warranted as we have observed that there is
an optimal training population size and adding more
lines might not be advantageous in improving predic-
tion accuracies.

Response to selection for grain yield
GS is a tool to complement PS in selecting “better” ge-
notypes through estimation of breeding values of indi-
viduals [19]. Within the parameters of this study, R for
GS could only approach the level of PS and therefore
showed a lower R (− 32% change relative to PS). How-
ever, the highest accuracy was observed when GS was
coupled with PS, resulting to a 10% increase in R com-
pared to using PS alone. Using both phenotype and
breeding values for selections, Belamkar et al. [40] ob-
served the feasibility of selecting higher yielding lines to
advance in the next season in a winter wheat preliminary
yield trial. GS was superior to MS for three significant
loci in terms of R, whereas using four or more significant
QTL for MS might not be beneficial as there would be
lower number of individuals being selected. Arruda et al.
[14] observed higher selection differentials for GS com-
pared to MS using a maximum of five QTL associated
with FHB-related traits in soft red winter wheat. In the
same study, it was shown that decreasing selection in-
tensity (i.e. selecting for fewer lines) resulted in an in-
creased selection differential and hence increased R.
Using simulations in maize double haploid populations,
it was demonstrated that across different QTL number
and trait heritability, the response to GS was 18–43%
greater than response to MS, with an increase in R ob-
served as heritability and the number of QTL increased
[41]. Ultimately, based on our results, the potential of in-
creasing genetic gains for yield can be achieved through
combining GS with PS.

Conclusions
Different factors were observed to affect accuracy for
grain yield and agronomic traits in soft red winter wheat,
with training population size and the number of markers
having the greatest effects. Inclusion of fixed effect in
prediction model increased accuracy for grain yield
under single population cross-validations. Ultimately,
genomic selection could be exploited further with trad-
itional PS to increase response to selection towards grain
yield improvement and increasing genetic gains in plant
breeding programs. The effects of the evaluated parame-
ters should be considered when implementing genomic
selection not only in winter wheat, but also for other im-
portant crops to improve genetic potential and facilitate
the process of improvement. Altogether, results could be
used as basis in designing and optimizing training popu-
lation, selecting training and validation populations, and
determining the ideal number of markers to be used for
genomic selection.

Methods
Plant material
The genetic materials used for cross-validations in this
study consisted of a panel of soft red winter wheat lines
previously utilized for a genome-wide association study
([26]; referred to as training population, TP for the inde-
pendent validations; N = 239 lines). The TP was com-
prised of genotypes from the SunGrains® (Southeastern
University Grains) Breeding Cooperative (www.sungrains.
lsu.edu.index.shtml) which included lines from Arkansas,
Georgia, Kentucky, Louisiana, North Carolina, and Vir-
ginia, among others; and other sources of germplasm
adapted to the southeastern region of the US. Two add-
itional biparental populations were used for independent
validations: (1) a recombinant inbred line population
(referred to as PA; N = 156 lines, [42, 43]) derived from a
cross between soft red winter wheat cultivars ‘Pioneer
Brand 26R61’ and ‘AGS 2000’ (PI612956), and; (2) a
double haploid (DH) population (referred to as NB;
N= 100 lines [44];) derived from a cross between ‘NC-
Neuse’ (PI633037 [45];) and ‘Bess’ (PI 642794 [46];).

Genotypic data
The TP and PA were genotyped using the Illumina® 9 K
single nucleotide polymorphism (SNP) chip [47] whereas
NB was genotyped with the 90 K iSelect assays [48] at
the USDA-ARS Eastern Regional Genotyping Laboratory
in Raleigh, NC. After filtering and quality control, 5661,
1188, and 2780 SNP markers remained for the training
population, NB, and PA, respectively. A total of 1089
and 1632 common SNP markers were used for inde-
pendent validation with the NB and PA as VP, respect-
ively. Imputation for missing data was done using the
expected maximization algorithm [29] and implemented
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through the package ‘rrBLUP’ [49] in R [50]. Genotype
data were converted into a numeric format for GS using
the ‘GAPIT’ package [51] in R.

Phenotypic data
Collection and analyses of the phenotypic data were de-
scribed previously in [26]. Briefly, data consisted of BLUP
values derived from adjusted means evaluated based on an
augmented design. Adjusted (least square) means for each
genotype were estimated using a restricted maximum like-
lihood (REML) approach using the PROC MIXED func-
tion in SAS v.9.4 [52]. The model used for calculating the
adjusted means was Yijk = μ + Entryj + Loci + Entryj x
Loci + Blockk(Loci) + εijkl,
where Y is the trait of interest; μ is the mean effect;

Blocki is the effect of the ith block; Entryj corresponds
to the un-replicated genotypes; Loci is the effect of the
ith location; Entryj x Loci is the effect of genotype-by-
environment interactions; Blockk(Loci) is the effect of
blocks nested within environments; and ε is the standard
normal errors.
Measured traits included grain yield, plant height,

heading date, kernel number spike− 1, kernel weight
spike− 1, and thousand kernel weight were collected in
eight environments in Arkansas and Oklahoma, U.S. be-
tween 2014 and 2015 planting seasons. Collection and
analyses of the phenotypic data for the PA were de-
scribed previously [18, 42]. The PA was grown in three
growing seasons (2012–2014) over twelve site-years in
Arkansas (Fayetteville (FAY12, FAY13, FAY14); Mar-
ianna (MAR13, MAR14), and Stuttgart (STU13; STU14);
and Georgia (Plains, GA; GA12, GA13), Louisiana
(Baton Rouge, LA; LA13), and Texas (Farmersville, TX;
TX12, TX13) in a randomized complete block design
with two replications per site-year. Site-year groupings
based from previous site-regression analyses [39] were
used for PA as validation population for GS.
Grain yield data for NB was collected in five environ-

ments, including in Fayetteville (AR) during seasons
2015, 2016 and 2017 (FAY15, FAY16, and FAY17), and
Newport (AR) during 2016 and 2017 (NPT16 and
NPT17) in a randomized complete block design with
two replications per site year except for FAY15 that
had only one replication. Grain yield was recorded by
harvesting whole plots, weighing the grains, and adjust-
ing for 13% moisture. BLUP across all locations (NB_
ALL), across Fayetteville (NB_FAY) and Newport (NB_
NPT) were used for NB as VP dataset for genomic
prediction.
Broad sense heritability (H2) was calculated by using the

formula: H2 ¼ σ2G
σ2Gþσ2GEI

e
þσ2E

er

, where σ2G, σ
2
GEI , and σ2E are var-

iances due to genotype, genotype-by-environment, and
error, respectively; e and r are the number of

environments and replications. Genotype, environment,
and genotype by environment interactions were consid-
ered as random effects. Variance components were esti-
mated through PROC Mixed in SAS v 9.4.

Genomic selection model
Ridge regression best linear unbiased prediction
(RRBLUP) model was used for genomic selection (GS)
through the ‘rrBLUP’ package [49] in R. RRBLUP con-
siders additive marker effects and is based on the infini-
tesimal model with all markers sharing a common
variance and all effects are shrunken toward zero but al-
lows for markers to have uneven effects [2, 14, 53, 54].
‘rrBLUP’ uses the function ‘mixed.solve’ which fits any
mixed model of the form:

y ¼ Xβþ Zuþ ε

u � N 0;Kσ2u
� �

;

where X is a full-rank design matrix for the fixed ef-
fects, β; Z is the design matrix for the random effects u,
K is a positive semidefinite covariance matrix, obtained
from markers using ‘A.mat’ which is an additive relation
matrix function; residuals are normal with a mean of
zero, with constant variance and u and ε being statisti-
cally independent [49].

Genomic selection scenarios
Two GS scenarios were evaluated in this study: (1) a
standard single population cross-validation scheme
where the effects of different factors such as marker
number, size of the TP, relatedness between TP and VP,
and fixed effect on accuracy were evaluated; and (2) in-
dependent predictions, where the population in GS sce-
nario 1 was used as a TP to predict grain yield in NB
and PA.

Different factors affecting genomic selection accuracy
Number of markers and size of the training population
Subsets of markers with varying levels of significance,
namely, subset SS0.15 (P < 0.15), SS0.10 (P < 0.10), and
SS0.05 (P < 0.05) derived from genome-wide association
analysis were used to perform predictions to examine
the effects of marker number on GS accuracy. To deter-
mine the marker subsets, a total of 10 different TP (N =
219 lines) and VP (N = 20 lines) sets were generated,
and an independent association analyses using the
GAPIT package [51] in R under a kinship-principal
component (K-PC) model (with number of PC = 3) was
performed with each TP and the ABLUP dataset. This
was done to prevent “inside trading” effect, which occurs
when prediction accuracies are evaluated using QTL that
were previously identified in the same group of lines, po-
tentially resulting to overestimated accuracies [14].
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Whole genotype data were filtered for p-values corre-
sponding to marker SS0.15, SS0.10, and SS0.05 from each
cycle of GWAS. Mean accuracy for each round of
GWAS-GS (total of 10 cycles) for each marker subset
was recorded. Model performance using marker sets
chosen at random was also evaluated, wherein three dif-
ferent sets corresponding to the average number of
markers for SS0.15, SS0.10, and SS0.05 (i.e. 820, 540, and
270 random SNP markers, respectively) were used for
predictions.
To test the effect of training population size on the ac-

curacy for the evaluated traits, 50 different subsets of 25,
50, 75, 100, 125, and 150 lines were sampled as TP at a
constant VP size of 60. Mean accuracy for each TP size
was recorded.

Relatedness between training and validation population
and fixed effect in the model
The effects of relatedness between the training and valid-
ation population were evaluated by grouping the lines
based on corresponding membership coefficient, Q values
derived from STRUCTURE [26] and performing predic-
tions where each subpopulation was used to predict the
grain yield and component traits of other subgroups.
Given that there was an uneven number of lines belonging
to each of the subgroups, a subset of 50 and 30 lines were
used as TP and VP, respectively, to perform predictions.
Genotypes for major genes including growth habit genes,
namely photoperiod (Ppd-D1) and vernalization require-
ment (vrn-A1) were included in the model as fixed effect,
either individually or in combination. GS accuracies with
or without the presence of the fixed effect were compared
under 10-fold cross-validations for TP size = 144 lines
under different datasets- BLUP for all environments
(ABLUP), BLUP for 2014 site-years (BLUP14), BLUP for
2015 site-years (BLUP15), BLUP for northern environ-
ments (Fayetteville and Keiser, AR; Okmulgee, OK;
NBLUP) and BLUP for southern environments (Marianna,
Stuttgart, and Rohwer, AR; SBLUP).

Independent validation of genomic selection model using
biparental populations
The TP (N = 239 lines) was used to predict grain yield
in the PA (N = 157 lines) and NB (N = 100 lines) bi-
parental populations using RRBLUP model. Datasets
used for the training set were BLUP across all envi-
ronments (ABLUP), across northern (NBLUP) and
southern locations (SBLUP). Simple matching coeffi-
cients between the training and validation populations
were calculated using the nominal clustering ‘nom-
clust’ package and simple matching ‘sm’ function in R
to evaluate relatedness between the training and val-
idation populations.

Response to selection for grain yield
Response to selection, R for mean grain yield across
eight site-years was calculated using the formula R =
H2S [55], where H2 is the heritability for grain yield pre-
viously reported by Lozada et al. [26], equal to 0.48; and
S is the selection differential calculated as the difference
between the population mean and mean of population
with selection, S = μS – μP, under a selection intensity of
10% (i.e. selecting the top 25 lines based on average
grain yield and genomic estimated breeding values
across all environments, 2014, and 2015 site-years). Se-
lection strategies included phenotypic selection (PS),
marker-based selection (MS), genomic selection (GS),
random selection (RS), and a combination of PS and GS
(PS + GS). Mean for grain yield under PS (μPS) was cal-
culated based on the top 25 highest yielding lines; μMS

was equal to the mean grain yield of the lines having the
favorable alleles for three loci, wsnp_Ex_c2723_5047696
(3B), wsnp_Ex_c13849_21698240 (4B), and wsnp_Ex_
c48922_53681502 (4B), previously identified to be
significantly associated with grain yield in the TP [26];
μGS was equal to the mean of lines having the highest es-
timated breeding values (top 25 lines) in 10 different
rounds of GS under a 10-fold cross-validation in
RRBLUP, with TP size =144 lines; μRS was computed
based on a function to generate 25 random selections,
10 different times and calculating the mean for these se-
lections; μGS + PS was equal to the mean of the lines with
the highest grain yield and estimated breeding values.
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