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Abstract

Background: Single nucleotide polymorphisms (SNPs) which capture a significant impact on a trait can be identified
with genome-wide association studies. High linkage disequilibrium (LD) among SNPs makes it difficult to identify
causative variants correctly. Thus, often target regions instead of single SNPs are reported. Sample size has not only a
crucial impact on the precision of parameter estimates, it also ensures that a desired level of statistical power can be
reached. We study the design of experiments for fine-mapping of signals of a quantitative trait locus in such a target
region.

Methods: A multi-locus model allows to identify causative variants simultaneously, to state their positions more
precisely and to account for existing dependencies. Based on the commonly applied SNP-BLUP approach, we
determine the z-score statistic for locally testing non-zero SNP effects and investigate its distribution under the
alternative hypothesis. This quantity employs the theoretical instead of observed dependence between SNPs; it can
be set up as a function of paternal and maternal LD for any given population structure.

Results: We simulated multiple paternal half-sib families and considered a target region of 1Mbp. A bimodal
distribution of estimated sample size was observed, particularly if more than two causative variants were assumed.
The median of estimates constituted the final proposal of optimal sample size; it was consistently less than sample
size estimated from single-SNP investigation which was used as a baseline approach. The second mode pointed to
inflated sample sizes and could be explained by blocks of varying linkage phases leading to negative correlations
between SNPs. Optimal sample size increased almost linearly with number of signals to be identified but depended
much stronger on the assumption on heritability. For instance, three times as many samples were required if
heritability was 0.1 compared to 0.3. An R package is provided that comprises all required tools.

Conclusions: Our approach incorporates information about the population structure into the design of experiments.
Compared to a conventional method, this leads to a reduced estimate of sample size enabling the resource-saving
design of future experiments for fine-mapping of candidate variants.
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Background
Genomewide association studies (GWAS) help exploring
the relationship between genetic and phenotypic vari-
ation. Genetic variation is often expressed in terms of
genomic markers such as single nucleotide polymor-
phisms (SNPs). Identified variants may or may not be part
of known genes. In a candidate-gene approach, variants
are then assigned to the closest known gene and their
functional importance can be studied further (e.g., [1]).
The functional meaning of a variant may be differently
interpreted if, due to statistical uncertainty, it was identi-
fied a few kbp upstream or downstream of its position. In
general, it could be a complicated task to detect single loci
as reported by Sahana et al. [2] in a study on udder health
in dairy cattle. Instead of identifying important SNPs
for clinical mastitis, only target regions were found. For
instance, a window of about 1Mbp length was detected
on BTA6. A statistical reason for this complication lies
in the high multicollinearity among predictor variables
due to linkage and linkage disequilibrium (LD) between
SNPs (e.g., [3]). Region-based aggregation tests in biolog-
ically relevant regions (e.g., genes; [4]) or fine-mapping
approaches in independent partitions of the genome [5]
have been suggested as powerful options. To eventually
unravel which of the variants in a target region might be
truly related to the trait, a follow-up experiment is rec-
ommended. The experimental design should account for
the dependence between SNPs to ensure sufficient sta-
tistical power. This will be reflected in the sample size
required. Statistical tools for the design of experiments
(e.g., QUANTO; [6]) could not provide this until now.
However, the denser the SNP chip is, the higher will be the
correlation between SNPs. For instance, the target region
on BTA6 of Sahana’s paper covers 17 SNPs using a 50k
SNP panel, 192 SNPs based on a 700k SNP panel and
21 796 SNPs in case of DNA sequence [2, 7].
In theory, it can be determined what sample size is

needed for discovering a new variant in a single-locus
model at a given power, e.g., 80%. Such investigations
are based on ANOVA (one way classification; [8]) and
can also account for a hypothetical degree of LD between
causative variant and SNP [9, 10]. Proposals for an opti-
mum experimental design have been made for mapping
of a quantitative trait locus (QTL) in different population
structures (e.g., F2, backcross or daughter design; [11]).
However, it is not clear what sample size is required to
distinguish multiple independent signals of a QTL using
dense marker data.
Moreover, the power of association analysis depends

not only on sample size and population parameters (e.g.,
heritability) but also on the underlying statistical model.
Among myriad options for whole genome regression
models, SNP-BLUP is an obvious choice for estimating
genetic effects captured by all SNPs simultaneously. Also

because of its direct relationship to GBLUP (e.g., [12]),
it is widely used in livestock (e.g., [13, 14]) and beyond
(e.g., [15, 16]). Being enormously relevant in practice, it
has been upgraded to comprise information of individu-
als with and without genotypic data in the framework of
single-stepmethods [17, 18]. Though directly or indirectly
estimated SNP effects are tested for being significantly dif-
ferent from zero [18], reports on statistical power of the
underlying study design are lacking.
This paper addresses the question how to design a

follow-up experiment based on a SNP-BLUP approach
knowing that the predictor variables are so highly corre-
lated. Our objective is the theoretical inference of optimal
sample size to fine-map a QTL signal or to find evidence
for multiple independent signals in a specified chunk of
DNA. Eventually, it should be possible to detect variants
at their actual position with high power. This paper con-
centrates on the case study of paternal half-sib families
which is a typical family structure in livestock (e.g., dairy
cattle). But the methodology developed enables sample
size calculation for any population structure (e.g., full
siblings, half siblings, mixture of both, unrelated indi-
viduals). Given the number of families, SNPs, signals of
QTL and heritability, the optimal sample size is then
presented as overall number of progeny. We validated
our approach using simulated data. Furthermore, pub-
licly available bovine HD SNP chip data helped verifying
that the simulated linkage blocks resemble the genome
structure in dairy cattle. A discussion of our achievements
complements this study.

Methods
The design of experiment requires a statistical model that
combines phenotype with genotype data. Here, we assume
a multiple-SNP approach that considers information of as
many SNPs as desired simultaneously. For comparing the
outcome with a conventionally used approach, a single-
SNP model is specified.

Multi-SNPmodel
For a joint association analysis of p SNPs with additive
effects, a regression model is fitted to a phenotype y =
(y1, . . . , yn)′ of n individuals,

y = Xβ + e .

The n× p design matrix X contains the genotype codes:
Xj,k ∈ {1, 0,−1} for j = 1, . . . , n and k = 1, . . . , p. The
columns of X and the vector y are centered within fam-
ily and scaled afterwards to ensure 1

nX
′
.,kX.,k = 1 ∀k and

1
ny

′y = 1. This way the model becomes independent of
allele frequency. The residual error term is e ∼ N(0, Inσ 2

e ).
Then the coefficient vector β is estimated using a ridge
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regression approach as

̂β = (

X′X + λIp
)−1 X′y .

This step requires a penalty term λ which is practically
obtained via cross-validation or REML approach.
Next, we investigate amultiple testing problem. For each

SNP k, k = 1, . . . , p, it is tested

H0 : βk = 0 vs. HA : βk �= 0 (1)

with a suitable test statistic which is defined as the esti-
mator of the k-th regression coefficient over its standard
deviation, i.e.,

Tk = ̂βk

SD(̂βk)
. (2)

The calculation of power π requires the distribution of
Tk under HA, then

π(μk) = Pr(Tk ≥ q1−α/2) + Pr(Tk < qα/2) ,

where q1−α/2 and qα/2 denote the upper and lower thresh-
old, respectively, of the distribution of Tk under H0 with
respect to a type-I error α. Due to the ridge approach,
requirements for fulfilling a t distribution do not hold
([19], p. 57). Hence the distribution of Tk is approximated
as normal with mean μk and variance 1. The distribution
mean μk is obtained from the expectation and variance of
the estimator ̂βk . The moments are

E(̂β) = (

X′X + λIp
)−1 X′Xβ ,

V (̂β) = (

X′X + λIp
)−1 X′X

(

X′X + λIp
)−1

σ 2
e .

The central point of our investigation is to substitute the
correlation matrix 1

nX
′X to be observed in the progeny

generation by the theoretical correlation matrix R. For any
SNP pair k, l ∈ {1, . . . , p}, 1

nX
′
.,kX.,l is a plausible approx-

imation to its expectation E(Xj,kXj,l) = cor(Xj,k ,Xj,l)
because of centered and scaled genotype codes. The
derivation of R is shown in the Appendix; it requires a
genetic map and genetic information of parents.
Then the mean of the test statistic becomes

μk =
{

E(̂β)
}

k
√

{

V (̂β)
}

k,k

=
√
n

σe

{

(R + λ
n Ip)

−1Rβ
}

k
√

{

(R + λ
n Ip)−1R(R + λ

n Ip)−1
}

k,k

. (3)

Under H0, μk = 0. In order to calculate the opti-
mal sample size, the experimenter has to specify a set of
parameters: number of SNPs (p) in the investigated win-
dow of DNA, number of QTL signals to be detected (κ),
proportion of variance explained by the QTL signals in
that window (h2) and number of families (e.g., N sires).
The input parameters for statistical power calculation are
inferred from this experimental set-up:

1. R requires haplotypes of N sires (plus genetic map
and maternal LD in general).

2. We assume that all variants corresponding to the
QTL signals contribute equally to the genetic
variance. Hence the relative effect size is determined
at κ QTL signals as

βl
σe

=
√

h2

κ(1 − h2)
for l in the set of QTL signals . (4)

The remaining β ’s are 0.
3. The shrinkage parameter is derived corresponding to

Hoerl et al. [20],

λ = p
σ 2
e

β ′β

= p
1 − h2

h2
.

This is a rough approximation assuming linkage
equilibrium between variants corresponding to the
QTL signals.

We circumvent doing any assumption about the
unknown positions of QTL signals by taking a random
sample of κ positions. Then the optimal sample size is
calculated over a range of n’s (e.g., 1 − 5 000) employing
the method of bisection. The minimum n that exceeds
the given power is selected as “optimal” and denoted as
nopt. Here, we considered a power level of 80% which is
arbitrary but often used for statistical analysis (e.g., [21]).
In order to get a reliable estimate of optimal sample size,
sampling is repeated 100 times, and the median of nopt
is suggested as final n∗

opt. The overall type-I error was
α = 0.01.

Single-SNPmodel
For comparison, we consider a single SNP k ∈ {1, . . . , p} in
a sliding window over the target region. Using the param-
eter definitions as above, the linear model in its simplest
form is

y = Xkβk + e .

Then the regression coefficient is estimated via ordinary
least squares as

̂βk = (

X′
kXk

)−1 X′
ky .

The null hypothesis testing problem (1) and the cor-
responding test statistic (2) also apply in the single-SNP
analysis. The test statistic is t-distributed with n − 1
degrees of freedom and non-centrality parameter δk ([19],
pp. 110),

δk = βk
σe

√
n .

This approach neglects any impact of the other SNPs in
the target region on y. Thus, a reduced pointwise error
level (αk) has to be employed to keep the overall type-I
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error at α. Knowing the effective number of independent
tests (Meff), a suitable type-I-error correction is

αk = α/Meff .

In accordance with the simpleM method of Gao et al.
[22], we suggest using R instead of 1

nX
′X for calculating

Meff. More precisely, the number of eigenvalues of R that
contribute at least 99.5% to the sum of all eigenvalues
yieldsMeff.

Data and validation study
The software R version 3.6.1 [23] was employed in this
study. Unless otherwise stated, we implemented own R
scripts.
Population genetic data were simulated using the R

package AlphaSimR version 0.11.0 [24]. In total, 300
SNPs were uniformly spread in a chunk of DNA of 1 cM
length corresponding approximately to 1Mbp. The SNP
density roughly resembled HD data. Five traits were simu-
lated simultaneously, one for each number of QTL signals
affecting the trait, κ = 1, . . . , 5. The founder population
comprised 2 000 individuals (gender ratio 1:1) and consti-
tuted the parent generation. Other population parameters
were kept at default settings (e.g., effective population size
100, mutation rate 2.5 · 10−8). Using this information,
the coalescent simulation program MaCS [25] was inter-
nally called: it generated parental haplotypes with realistic
amount of LD. As the data simulation yielded no con-
sistent pattern of SNP dependence, the simulation of the
parent population was repeated 100 times. The maternal
LD in terms of r2 between adjacent SNPs was on average
0.45 and reflected high multicollinearity. In each repeti-
tion, N = 10 sires were selected with best phenotypes
with respect to κ = 1 andmated with 1 000 dams. In order
to resemble dairy cattle, one progeny per cross was sim-
ulated yielding 100 half-siblings per family. At each SNP,
the major allele was coded as reference. Then, haplotypes
of all selected sires, or a subset thereof if N = 1 or N = 5,
and maternal haplotypes of 1 000 progeny were used to
set up the R matrix. Few loci with no variation were dis-
regarded. Optimal sample size was estimated based on R.
Separately for each κ but using the same parent genera-
tion, N males were selected based on their phenotype as
sires of half-siblings in the progeny generation. The num-
ber of dams was determined according to optimal sample
size required and assuming balanced family sizes. The
simulation of the progeny generation was also repeated
100 times to estimate and test SNP effects for validation
purposes; this yielded 100 × 100 data sets in total. Heri-
tability was h2 ∈ {0.1, 0.2, 0.3} which was partitioned into
κ QTL effects of equal size. QTL positions were drawn at
random out of the segregating sites. For each h2, data sets
were simulated independently.

Additionally, to explore a direct relationship between
positions of QTL signals and nopt, we selected arbitrar-
ily a single repetition of simulation with h2 = 0.1 and
N = 10. For this particular data set, we determined nopt
for each SNP position (i.e., assuming one QTL signal)
and for all possible SNP pairs (i.e., assuming two QTL
signals).
The R package asreml version 3.0 [26] was used for

association analysis. Other suitable R packages, such as
rrBLUP [27] or ridge [28], had difficulties to con-
verge or produced almost zero variance components due
to the high multicollinearity of predictor variables. The
multi-SNP model was applied to all simulated scenar-
ios as described in Multi-SNP model section. Unlike in
Single-SNP model section, the single-SNP model consid-
ered an additional factor u ∼ N(0,Aσ 2

a ) that accounts
for background genetic effects due to the relationship
between individuals. This was modeled similarly, e.g., in
EMMAX [29] but we used the numerator relationship
matrix A for computational convenience. The pointwise
testing of SNP effects was followed by p-value correction
according to Benjamini & Hochberg [30]. P-values from
the multi-SNP model were not altered. The outcome was
used to assess sensitivity and specificity of the multi-SNP
and single-SNP model. For this, a window of 0.01 cM to
both sides of a QTL signal (covering 2-3 SNPs) was speci-
fied in order to accept a significant SNP as a true positive
result. Then, the true-positive rate (TPR) reflected sen-
sitivity. Specificity was obtained as 1− the false-positive
rate (FPR), and ROC curves were produced from TPR and
FPR.
To evaluate how realistically the simulation of genetic

data worked, empirical HD SNP chip data from the Dryad
repository have been used [31]. These data included 1 151
dairy cows with no pedigree specification. We selected
an arbitrary window on BTA7 comprising 300 SNPs on
1.16Mbp and phased haplotypes of all animals using
AlphaPhase [32]. We selected randomly 10 animals and
marked them as sires in order to set up amatrix R. Because
of the high SNP density, genetic distances were approx-
imated linearly, i.e., 1Mbp ≈ 1 cM. Maternal LD was
roughly approximated from haplotype frequencies of all
animals. Furthermore, this R matrix was used for the
inspection of optimal sample size assuming κ = 1, . . . , 5
QTL signals and h2 = 0.1 and following the workflow of
Multi-SNP model section.

Results
The optimal sample size suggested by the single-SNP
model required the effective number of independent tests
which was on average Meff = 53 if h2 = 0.1 and rather
constant for R set up from N = 1, 5 or 10 sires (h2 = 0.2:
Meff = 54; h2 = 0.3: Meff = 56). Hence results are
reported for Meff based on N = 10. Table 1 presents the
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Table 1 Median of optimal sample size for detecting different number of QTL signals from 100 repetitions of simulations

QTL h2 = 0.1 h2 = 0.2 h2 = 0.3

N = 1 N = 5 N = 10 Single N = 1 N = 5 N = 10 Single N = 1 N = 5 N = 10 Single

1 128 126 127 195 57 58 57 91 34 33 34 56

2 275 269 273 382 125 126 122 175 73 70 73 106

3 421 426 436 569 214 201 205 259 126 120 120 155

4 613 540 584 756 291 288 281 342 177 170 170 204

5 763 713 685 943 385 349 344 426 228 208 207 253

Results are based on the multi-SNP approach (N = 1, 5, 10 families) or single-SNP approach. In each repetition, sample size was repeatedly determined for randomly drawn
QTL positions and the median was calculated

median of n∗
opt from 100 repetitions of simulation. The

median increased almost linearly with number of QTL
signals but reduced with increasing heritability, and it was
rather unaffected by the number of families. As an exam-
ple, 127 individuals were required to fine-map a single
QTL signal based on the multi-SNP model if h2 = 0.1.
Almost twice as much were required to distinguish two
signals if h2 = 0.1 or only 34 individuals were required
to detect a single signal correctly when h2 = 0.3 instead
of h2 = 0.1. Optimal sample size suggested by the multi-
SNP model was 17% to 39% less than estimated from the
single-SNP model. Figure S.1 (Additional file 1) visualizes
the dependence of optimal sample size estimated from
the single-SNP model on heritability. It also shows that a
much larger sample was required if QTL heritability was
less than 0.2.
In case of h2 = 0.1, the distribution of nopt is rep-

resented in Fig. 1; a separate panel is shown for each
number of QTL signals to be detected. Based on 100×100
estimates of nopt, we derived a bimodal distribution of
optimal sample size in the multi-SNP model. The median
of nopt was consistently less than sample size estimated
from single-SNP investigations. With increasing heritabil-
ity, the first mode approached the median of nopt but was
still less than optimal sample size based on the single-SNP
model, see Figures S.2 (h2 = 0.2) and S.3 (h2 = 0.3) (Addi-
tional file 1). The second mode appeared due to strong
negative correlations between SNPs. Particularly this out-
come was observed when all possible pairs of SNPs were
evaluated for detecting two QTL signals in a single repeti-
tion of simulation. Figure 2a shows the correlation matrix
for a single data set. Those entries of R have been selected
that belonged to 10% of the highest estimates of sample
size, i.e., nopt ≥ 864 (h2 = 0.1). Correspondingly, Fig. 2b
indicates that, with few exceptions, negative correlations
caused this outcome. The separation of SNP dependence
into maternal and paternal contribution revealed further
insight, and most often negative maternal LD was the
driving term (Fig. S.4, Additional file 1). The distance
between two QTL signals hardly influenced nopt (Fig S.5,
Additional file 1); any possible association was overlaid by

the strong impact of correlation between loci. An addi-
tional inspection of the relationship between position of
a single QTL signal and nopt was not conclusive. Neither
extreme maternal allele frequency nor missing sire het-
erozygosity led to obviously increased nopt for detecting
one QTL signal (Fig. S.6, Additional file 1).
The association analysis of data sets of optimal sample

size was validated in terms of sensitivity and specificity of
testing SNP effects. The shape of ROC curves was similar
for all investigated simulation scenarios. As an example,
if N = 10 and κ = 2, the median of n∗

opt was 273, and
the outcome is displayed in Fig. 3. The analysis showed
superiority of the multi-SNP model over the single-SNP
model. In general, it was observed that the smaller n∗

opt
was estimated, the larger both TPR and FPR turned out for
the single-SNP model. The multi-SNP model performed
rather robust against changes in sample size. However,
the flat appearance of the ROC curve complicates fine-
mapping of QTL signals based on the suggested multi-
SNP approach. For instance, a TPR of 80% is accompanied
with a FPR larger than 20%.
Blocks of varying linkage phases, as shown in Fig. 2,

might be an artifact of data simulation. Based on empir-
ical bovine HD SNP chip data, a possible R matrix was
set up, see Fig. 4. The blocking structure was less pro-
nounced. Using this R for estimating n∗

opt led to results
being similar to the simulation study for one and two
QTL signals but larger samples were required to detect
more QTL signals: n∗

opt was 123 (1 signal), 288 (2 sig-
nals), 516 (3 signals), 800 (4 signals) and 1 342 (5 signals)
if h2 = 0.1. The number of repetitions of randomly
drawing the positions of QTL signals did not substan-
tially affect the final n∗

opt. For instance, the median devi-
ated less than 4% if nopt was calculated 1 000 instead of
100 times.

Discussion
Our investigation contributes to the design of powerful
experiments for fine-mapping of causative variant(s) in
a genomic target region. We incorporated the expected
dependence among SNPs in this region and estimated
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Fig. 1 Distribution of optimal sample size. Violinplot of nopt vs. number of half-sib families for different numbers of QTL signals in a multi-SNP model.
The parent generation was simulated 100 times and 100 random draws of positions of QTL signals were analyzed in each run, h2 = 0.1. The
diamond indicates the median of nopt and the blue line marks the results based on a single-SNP model
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Fig. 2 Dependence between SNPs in a single simulated data set with N = 10 sires. a Correlation matrix R, b entries selected from R which belong to
10% highest sample size (nopt ≥ 864). All possible SNP pairs were evaluated to detect two QTL signals (h2 = 0.1)
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Fig. 3 Sensitivity and specificity of testing SNP effects. ROC curve is based on 100 ×100 repeated simulations of genotypes and phenotypes in
progeny generation comprising N = 10 half-sib families (two QTL signals, h2 = 0.1). Optimal sample size suggested by the multi-SNP model was
considered for setting up the progeny generation

optimal sample size based on a SNP-BLUP approach. The
outcome was compared to a single-SNP model. Nega-
tive correlations between SNPs, which were mainly due
to negative maternal LD, caused essentially inflated sam-
ple size estimates. In case of positive correlations, the
majority of sample size estimates was less than sam-
ple size estimated from the single-SNP approach. The
less the heritability, the higher the deviation between
models was.

Population parameters
Our approach is applicable to any population structure.
The matrix K of covariance between SNPs can be set up
for any kind of family stratification by adapting the deriva-
tions of the Appendix or, in case of unrelated individuals,
by using population LD in K.
Due to the way of model parametrization (columns Xk

have been scaled), the dependence on allele frequency has
been excluded. For instance, in a random mating pop-
ulation, the column-scaling term is

√

2pk(1 − pk) with
allele frequency pk at SNP k. Likewise, a scaling term

can be derived for half-sib families as the square root of
Eq. (7) in the Appendix by investigating maternally and
paternally inherited SNP alleles separately. Results of our
association analyses suggested that there was no clear
relationship between high nopt and maternal allele fre-
quency or sire heterozygosity (Fig. S.6, Additional file 1).
However, regions with large or low variation have to be
taken into account when selecting sires for fine-mapping
of QTL signals in a follow-up experiment. The lower sire
heterozygosity or maternal minor allele frequency is, the
lower the effect size βk on the model scale will be and,
consequently, higher n∗

opt is required in order to detect
QTL signals. To investigate this, we employed the rela-
tionship Xkβk = X(o)

k β
(o)
k at SNP k. Here X(o)

j,k is the allele
count at SNP k for individual j, and β

(o)
k is the coefficient

on the observed genotype scale, i.e., β
(o)
k sk = βk with

scaling term sk = √

V (Xj,k). The relationship between
allele frequency and optimal sample size for detecting one
QTL signal based on the single-SNP model is presented
in Figure S.7 (Additional file 1). Extreme alleles, roughly
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Fig. 4 Empirical bovine HD SNP chip data. a Correlation matrix for a randomly selected window containing 300 SNPs on BTA7. b Violinplot of nopt
vs. number of QTL signals to be detected. The diamond indicates the median of nopt and the blue dots mark the results based on a single-SNP
model, N = 10 and h2 = 0.1

spoken with major allele frequency > 0.95, require drasti-
cally increased sample size.
In the simulation study, equal effects of QTL signals

were simulated on the observed genotype scale. For com-
parison with relative effect sizes derived from heritabil-
ity (Eqn. 4), allele frequencies in the (random mating)
founder population and the residual variance component
were used to calculate the corresponding relative effect
sizes: β(o)

k
√

2pk(1 − pk)/σe. Figure 5 shows the effect sizes
of all repetitions of simulation with h2 = 0.1 separated by
the number of simulated QTL signals (κ). As expected, the

relative effect size decreased with increasing κ but a high
fluctuation has been observed which was due to the high
variation of allele frequencies in the simulated data. This
observation underlines the difficulty of detecting multiple
QTL signals at given h2 – the lower the effect size, the
higher nopt required.
The suggested optimal sample size is divided into N

sires which are selected for most heterogeneity in the tar-
get region. The actual number of sires is of minor impor-
tance. The choice of individuals depends on the objectives
of the follow-up study. Sires can be chosen independently
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Fig. 5 Relative effect size depending on number of QTL signals. The
relative effects (blue dots) were calculated based on the assumption
of heritability and number of QTL signals. The simulated relative
effects (grey dots) were derived from simulated QTL effects on the
observed genotype scale, allele frequencies at positions of QTL
signals in the founder population and residual variance component.
Simulation was based on h2 = 0.1

from the GWAS population in order to confirm and fine-
map QTL signal(s). However, if the initial study indicated
the presence of rare variants, sires under suspicion should
be re-used. Selective genotyping is an option to increase
power [11] but this might have negative impact on repro-
ducibility of the study design [4]. In our investigation of
paternal half-sib families, mothers are treated as random
samples from a dam population. Thus, the choice of dams
for future matings is not addressed here but is definitely
an issue for other family designs.
Being equally important for fine-mapping of QTL sig-

nals is the positive correlation between SNPs. Positive cor-
relatedness is a matter of genotype coding. Coding has to
be consistent throughout the target region to avoid unnec-
essary sign changes in correlation.We employed coding in
terms of counting the major allele in the population. But
in regions of intermediate frequency, the codingmight not
be appropriate and hence a dynamic approach of coding
the SNP alleles can circumvent negative correlations. A
strategy on this is worth further investigation.

Power calculations are needed to quantify and judge
the prospects of identifying causative variants with a
hypothesized effect size in a particular population. In
practice, however, experiments are usually not planned
to obtain maximum power but data are regularly col-
lected for purposes of breeding as a standard routine.
Thus, experimental designs being theoretically optimal
could be compared with available field data to understand
the possible shortcomings of such data and to under-
stand differences between theoretical/expected and actu-
ally achieved power. Based on the results, decisions can
be made whether the amount of data is sufficient or, in
case of underpowered experiments, more data should be
acquired.

Necessity of fine-mapping of QTL signals using an
appropriate design
The QTL databases of livestock species [33] contain infor-
mation on several thousands QTL for a wide range of
traits. This shows that the variability of most of the traits
studied has a polygenic origin, with multiple QTL con-
tributing to the overall genetic variance. Despite the num-
ber of QTL, only a handful of causal mutations could
be detected and verified in the different livestock species
[34]. This is partly due to the fact that GWAS show
considerable weaknesses in the fine-mapping of QTL sig-
nals which are related to the SNP panel requirements for
a genomewide distribution and high LD to neighboring
markers [5]. Accordingly, these SNPs are usually indica-
tive of a large genomic region that likely comprises the
unmeasured causal SNP but does not provide informa-
tion about the causal variant itself. Statistical methods
for fine-mapping have been designed to overcome these
issues and perform fine-mapping using the available SNP
information from a SNP-chip or GBS (summarized by
[5]). However, even these methods require a high SNP
density in the region of interest, which favors a targeted
sequencing strategy that enable the dissection of QTL
regions and increase the chance of detecting causal vari-
ants [35]. Major factors to be considered for designing
a targeted sequencing study are effect size, the number
of causal SNPs, local LD structure and sample size [5].
The approach proposed in this study incorporates infor-
mation on κ , h2 and R derived from the data to estimate
the optimal sample size (n∗

opt) and thus provides all the
information needed to design a fine-mapping experiment.
Currently, several fine-mapping studies are based on

imputation strategies or the integration of results with
functional enrichment analysis to identify promising can-
didate genes and QTNs (e.g., [36–38]). These approaches
largely depend on imputation accuracy and the status
of genome annotation, thus limiting the ability to detect
causal variants, especially those with a low minor allele
frequency [39]. Specific examples for the fine-mapping of
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important genomic regions with a resequencing strategy
are still rare nowadays. Fraser et al. [40] focused in their
study on collagenous lectins in horses by resequencing
658 kb DNA consisting of different candidate genes and
regulatory regions. Therefore, a case-control design with
pooled samples was used and with this approach 113 vari-
ants were identified, which differed between the groups.
Although the results are promising, the authors concluded
that a large-scale genotyping of individual samples is nec-
essary for deeper insights. In this context, and considering
that targeted sequencing for a reasonable set of samples is
becoming increasingly affordable, an accurate estimate of
sample size is advisable.

Other random effects
Association analysis of empirical data with certain pedi-
gree structure requires an additional model term to
account for genetic effects beyond the target window (Zu).
Then u = (u1, . . . ,un), u ∼ N(0,Gσ 2

u ), is the vector of
individual genetic effects with suitable relationship matrix
G. The calculation of optimal sample size should con-
sider the presence of additional random effects (genetic
or environmental) for the design of experiments. For
instance, the coefficients of the single-SNPmodel could be
estimated via BLUE. This affects sample size calculation
because the variance of the estimator ̂βk ,

V (̂βk) = (

X′
kV

−1Xk
)−1 with V = ZZ′σ 2

u + Inσ 2
e ,

has impact on the distribution of the test statistic.
Accounting for V in the denominator of test statistic
increases the denominator of non-centrality parameter.
However, in order to keep it simple, it would be suffi-
cient to increase σ 2

e or reduce h2 appropriately without
any other alterations.
It is possible to consider other kinds of genetic effects

with the proposed methods. For instance, exploring dom-
inance genetic effects requires only one modification.
Instead of coding SNP genotypes for additive effects via
Xj,k ∈ {1, 0,−1}, genotypes can be coded as Xj,k ∈ {0, 1, 0}
to account for dominance effects. The covariance between
dominance effects has been worked out by Bonk et al. [41].
Feeding the Equation (3) with the corresponding domi-
nance correlation matrix will provide estimates of optimal
sample size to fine-map QTL signals with dominance
effect.

Conclusion
For planning the design of experiment, we recommend
a multi-SNP approach which considers the expected
dependence among SNPs. Compared to a conventional
approach, this leads to a reduced estimate of sample
size and thus promises a more efficient use of animal
resources. The benefit depends strongly on heritability:
the lower heritability, the more resources can be saved.

In general, optimal sample size increases almost linearly
with the number of QTL signals to be detected. This
study constitutes a frequentist framework for the design
of experiments in specific populations that may be charac-
terized by family stratification. It will help differentiating
independent signals in QTL regions that can be further
examined for cellular and molecular properties.

Appendix: Derivation of correlationmatrix
We study the dependence between pairs of SNPs, each
with two alleles A and B, in a population consisting of N
paternal half-sib families. Let Xj,k be the genotype code
at SNP k ∈ {1, . . . , p} of individual j ∈ {1, . . . , n} being
progeny of sire s and dam d. Homozygous genotypes A/A
and B/B are coded as 1 and -1, respectively, and the
heterozygous genotype A/B is indicated as 0. The family-
specific (i.e., sire-specific) covariance between SNPs k and
l of individual j is, according to Bonk et al. [41] and
Wittenburg et al. [42],

Ks
k,l = E(Xj,kXj,l|Ss) − E(Xj,k|Ss)E(Xj,l|Ss)

= Dd
k,l + Ds

k,l

a function of maternal and paternal contribution and
depends on the sire diplotype Ss. The Dd

k,l denotes the
LD of maternal gametes in a dam population. The sire
term depends on the phase of paternal haplotypes and
recombination rate (θk,l). It is determined as

Ds
k,l =

⎧

⎪

⎨

⎪

⎩

1
4 (1 − 2θk,l) , for sire with haplotypes A-A and B-B
− 1

4 (1 − 2θk,l) , for sire with haplotypes A-B and B-A
0 , else .

(5)

To achieve the covariance between a pair of SNPs, we
employ conditioning on families,

E(Xj,kXj,l) =
N

∑

s=1
Pr(Ss)E(Xj,kXj,l|Ss)

E(Xj,k) =
N

∑

s=1
Pr(Ss)E(Xj,k|Ss)

cov(Xj,k ,Xj,l) =
N

∑

s=1
wsE(Xj,kXj,l|Ss)

−
N

∑

s=1
wsE(Xj,k|Ss)

N
∑

s=1
wsE(Xj,l|Ss)

and approximate Pr(Ss) by family weights ws = ns
n with

∑N
s=1 ns = n. The aim is now to derive an expression that

depends on already known terms. For instance, using

E(Xj,kXj,l|Ss) = Ks
k,l + E(Xj,k|Ss)E(Xj,l|Ss)



Wittenburg et al. BMC Genetics           (2020) 21:66 Page 12 of 14

yields

E(Xj,kXj,l) =
N

∑

s=1
ws

(

Ks
k,l + E(Xj,k|Ss)E(Xj,l|Ss)

)

.

We exploit the separation into independently inherited
maternal and paternal SNP alleles: Xj,k = Xj,k,s + Xj,k,d,
where Xj,k,s and Xj,k,d take a value of 1

2 if the A allele was
inherited but − 1

2 otherwise. Then

E(Xj,k|Ss) = E(Xj,k,d|Ss) + E(Xj,k,s|Ss)

E(Xj,k,d|Ss) = E(Xj,k,d) = pk − 1
2
,

where pk denotes the maternal allele frequency at SNP k.
Furthermore,

E(Xj,k,s|Ss) =
⎧

⎨

⎩

1
2 , for sire genotype A/A
0 , for sire genotype A/B
− 1

2 , for sire genotype B/B .
(6)

Putting it all together,

Kk,l =
N

∑

s=1
ws(Dd

k,l + Ds
k,l)

+
N

∑

s=1
ws

[(

pk − 1
2

)

+ E(Xj,k,s|Ss)

]

[(

pl − 1
2

)

+ E(Xj,l,s|Ss)

]

−
N

∑

s=1
ws

[(

pk − 1
2

)

+ E(Xj,k,s|Ss)

]

N
∑

s=1
ws

[(

pl − 1
2

)

+ E(Xj,l,s|Ss)

]

.

This reduces to

Kk,l = Dd
k,l +

N
∑

s=1
wsDs

k,l +
N

∑

s=1
wsE(Xj,k,s|Ss)E(Xj,l,s|Ss)

−
N

∑

s=1
wsE(Xj,k,s|Ss)

N
∑

s=1
wsE(Xj,l,s|Ss) ,

and this is evaluated using the sire-specific terms in (5)
and (6).
Now the variance of genotype codes at SNP k is derived

explicitly – it also serves as a scaling term in a regression
model for association analysis. The second moment of the
paternally inherited SNP allele is constant E(X2

j,k,s|Ss) = 1
4

for all s. Hence

V (Xj,k,s) = 1
4

−
( N

∑

s=1
wsE(Xj,k,s|Ss)

)2

.

Then, the variance at SNP k is
V (Xj,k) = V (Xj,k,d) + V (Xj,k,s)

= pk(1 − pk) + 1
4

−
⎛

⎝

N
∑

s=1
wsE(Xj,k,s|Ss)

⎞

⎠

2

= Kk,k .
(7)

Finally, the correlation matrix R = {

Rk,l
}

k,l=1,...,p is
calculated by scaling the entries correspondingly,

Rk,l = Kk,l
√

Kk,kKl,l
.

Note that the covariance based on non-centered
genotype codes (as derived above) is identical to the
one based on centered genotype codes (as used in
Methods section). Centering is used to study within-
family genetic effects, and it allows the direct estimation
of allele substitution effects [43].
The R package hscovar for the calculation of K and R

is provided at CRAN repository.
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