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Abstract

Background: Genome-wide association studies have identified the CDC7-TGFBR3 intergenic region on chromosome
1 to be strongly associated with optic disc area size. The mechanism of its function remained unclear until new
data on eQTL markers emerged from the Genotype-Tissue Expression project. The target region was found to
contain a strong silencer of the distal (800 kb) Transcription Factor (TF) gene GFI1 (Growth Factor Independent
Transcription Repressor 1) specifically in neuroendocrine cells (pituitary gland). GFI1 has also been reported to be
involved in the development of sensory neurons and hematopoiesis. Therefore, GFI1, being a developmental gene,
is likely to affect optic disc area size by altering the expression of the associated genes via long-range interactions.

Results: Distribution of haplotypes in the putative enhancer region has been assessed using the data on four
continental supergroups generated by the 1000 Genomes Project. The East Asian (EAS) populations were shown to
manifest a highly homogenous unimodal haplotype distribution pattern within the region with the major haplotype
occurring with the frequency of 0.9. Another European specific haplotype was observed with the frequency of 0.21.
The major haplotype appears to be involved in silencing GFI1repressor gene expression, which might be the cause of
increased optic disc area characteristic of the EAS populations.
The enhancer/eQTL region overlaps AluJo element, which implies that this particular regulatory element is primate-
specific and confined to few tissues.

Conclusion: Population specific distribution of GFI1 enhancer alleles may predispose certain ethnic groups to
glaucoma.
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Background
Genome-wide association studies (GWAS) identified
thousands of common single nucleotide polymorphisms
(SNPs) associated with complex diseases and quantita-
tive traits [1]. These SNPs affect a trait in different ways.
They cause an amino acid substitution, change the

splicing process, and change the transcription rate or
translational efficiency [2]. Identified variants were lo-
cated in various regions of the genome including coding
and regulatory genes regions. A large part of SNPs sig-
nificantly associated with complex traits are located in
non-coding regions: about 45 and 43% of such SNPs are
located in introns or intergenic regions, respectively [1].
Gene regulation studies provide convincing evidence

that a significant part of non-coding GWAS loci func-
tion as enhancers that can regulate specific genes up to
1Mb away. The enhancers exhibit Transcription Factor
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Binding Sites (TFBS) clusters, open chromatin and cor-
responding histone marks. Thus, TFBS genome-wide lo-
cations identified by ChIP-Seq data, cell line specific
chromatin state landscape, DNAse hypersensitive sites
(DHS) at the intronic/intergenic sites can point to the
enhancer loci. The results on the phenomenon were out-
lined in papers connected with the emergence of chromatin
state segmentation routine [3–5]. As a practical outcome
therein, the authors were able to associate a range of either
target or tightly linked noncoding SNPs from GWAS studies
with chromatin states corresponding to strong enhancers [4].
In particular, they identified two SNPs strengthening tissue –
specific transcription factor binding sites: SNP rs9374080 asso-
ciated with red blood cells (RBC) phenotype in close proximity
(100 bp) to a strong enhancer in the K562 cell line, which re-
inforces the binding motif for GFI1B, a predicted repressor in
K562, by strengthening it. Another lupus-associated SNP
(rs9271055) locates within a lymphoblastoid (GM12878)
strong enhancer and strengthens the binding motif for ETS1,
a predicted activator of lymphoblastoid enhancers [4].
With an advent of Hi-C technology [6], Assay for Transpo-

sase Accessible Chromatin (ATAC-Seq) [7], and large-scale
Multiplex Reporter Assays (MRA) [8], the enhancers identifi-
cation was given renewed impetus resulting in the accumula-
tion of a plethora of enhancer loci. VISTA, an experimentally
verified enhancer source (https://enhancer.lbl.gov/) [9] in-
cludes around 2000 entries. Modern enhancer databases based
on circumstantial evidence include entries on several million
enhancers [10]. GeneHancer database appears to be the most
comprehensive enhancer resource to-date [11]. It uses more
than 1 million enhancers compiled from seven different
genome-wide databases: the Encyclopedia of DNA Elements
(ENCODE), Z-Lab Enhancer-like regions (http://zlab-annota-
tions.umassmed.edu/enhancers/), the Functional Annotation
of the Mammalian Genome (FANTOM) project [12], the
Ensembl regulatory build [13], dbSUPER super-enhancers
[14], EPDnew promoters [15] and UCNEbase of ultra-
conserved non-coding elements [16].
The filtering criteria applied at the GeneHancer pipe-

line (as of 2018 version) underscores 285,000 enhancer
loci, with 94,000 having more than one source of evi-
dence (“double elite”).
The next crucial step in enhancer annotation (even

more important than identification of enhancer itself) is
annotating the genes associated with a particular enhan-
cer. The Gene-GeneHancer associations were ascer-
tained using 5 criteria/evidence sources:

1) eQTLs (expression quantitative trait loci) from The
Genotype-Tissue Expression Consortium (GTEx;
https://www.gtexportal.org/home/; [17]; version
v6p)

2) Capture Hi-C promoter-enhancer long range
interactions

3) FANTOM5 eRNA-gene expression correlations
4) Cross-tissue expression correlations between a

transcription factor interacting with a GeneHancer
and a candidate target gene;

5) Distance-based associations, including several
approaches:
a. Nearest neighbors, where each GeneHancer is

associated with its two proximal genes
b. Overlaps with the gene territory (intragenic)
c. Proximity to the gene TSS (< 2 kb)

In particular, eQTL database is a large-scale project of
GTEx consortium [17]. It comprises 1,5 mln eQTL SNPs
across 44 tissues (v.6p). Notably, GWAS SNPs often
overlap the eQTL ones while not being themselves
causative SNPs [18]. Thus, GWAS, chromatin state [19],
and eQTL data complement each other with a task of
elucidating causative SNPs in gene-enhancer interaction.
Speaking of gene-enhancer associations, there are cur-

rently numerous examples undermining the view, popular
several years ago, that the majority of GWAS signals de-
tected in intergenic/intronic regions are due to the func-
tions of the nearest genes. For example, FTO intronic
locus linked to obesity phenotype was proved to be a (800
kb) distal IRX3 gene enhancer [20]. A range of intergenic
enhancers is annotated in VISTA database [9].
This study is focused on optic disc area as a

glaucoma-related trait. Previous research efforts have
established 3 major traits impacting glaucoma risk rate:
optic disc size (area), optic disc morphology, and retinal
nerve fiber layer (RNFL) thickness [21].
At least four genome-wide association studies known to

date (GWAS) [21–24] have demonstrated with high sig-
nificance that rs1192415is associated with optic disc pa-
rameters (P < 8E-17; 3E-28; 8E-56; 6E-81, respectively).
In particular, SNPs rs1192415, rs4658101, and

rs1192419 significantly associated with optic disc area
have been localized between genes CDC7 and TGFBR3
[21–25]. The former encodes a cell division cycle protein
with kinase activity that is critical for the G1/S transition
and the latter encodes a transforming growth factor. The
previous association of the above GWAS markers was
majorly to the TGFBR3 gene [25]. This study will focus
on the inferred function of the locus as GFI1 gene
enhancer.
The ultimate aim of the project was to analyze popula-

tion specific distribution of genome-wide significant
SNPs for optical disc area, which was not approached
before.

Results
Choosing the region of interest
Several GWAS optic disc area projects identified
ATOH7 gene and CDC7-TGFBR3 intergenic region as
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major determinants of optic disc area. According to the
most recent meta-analysis studies the rate of associations
is P < 1E-112 and P < 6E-81 for ATOH7 and CDC7-
TGFBR3 intergenic region, respectively [24]. While
ATOH7 gene was shown to be part of the embryonic
optic disc area gene regulatory network, the locus associ-
ation and mechanism of gene causality remained un-
clear. According to GWAS data, the locus represents a
short 4 kb region starting with rs1192415 and ending
with rs1192419 (Fig. 1).
The GTEx eQTL data repository emerged in 2015 [17]

and proved to be the largest eQTL resource to date. It
comprises 1.6 mln unique eQTL associations across 43
tissue types [17]. We queried GTEx data across our 4 kb
region of interest (chr1 92.077mb – 92.082mb). It was
found that the single tissue (pituitary gland) exhibits a set
of SNPs associated with GFI1gene (eQTL p-value: 1.7 ×
10− 5) located 840 kb downstream the target locus. GFI1
gene is a growth factor gene largely involved in early em-
bryogenesis of a subset of tissues, including retinal.

GeneHancer elements associated with GFI1
From GeneHancer database nine enhancer elements
manifesting GFI1 as a target and located in the vicinity
of GFI1 (all GeneHancer elements are cis relative to a
target gene(s)), GH01J091608 annotation corresponds to

the target enhancer element. Single evidence of associ-
ation of the latter with GFI1 was ascertained via GTEx
eQTL data as the only source.
Still, it maintains active state in 19 of 68 ENCODE cell

lines/tissues (see ENSR00000009735 at www.ensembl.org),
mostly related to embryonic stage (A549, Fetal Adrenal
Gland, Fetal Stomach, H1-mesenchymal, H1-trophoblast,
HMEC, HSMM, HSMMtube, HeLa-S3, IMR90, Left Ven-
tricle, Lung, MSC (VB), NH-A, NHDF-AD, NHEK, NHLF,
Osteoblasts, Placenta). The correspondent eQTL SNPs
from GTEx exhibit a repressive effect for GFI1 in only one
of 43 tissues considered (pituitary gland). GeneHancer and
Gene share a Topological Associated Domain (TAD) with
evidence in 3/20 biosamples (HiC data).

Distribution of alleles elucidated as eQTL locus
On the basis of SNPs data from both GWAS and GTEx
we compiled a set of 15 SNPs (Table 1) evenly spanning
within 4 kb (Fig. 1).
The profiles of MAF alleles across all supergroups

(Fig. 2) underscore that GWAS related haplotype out-
stands from haploblock linkage in all supergroups other
than EAS. Overall, the region maintains a high linkage
rate (r > 0.9) for all eQTL SNPs, as well as within GWAS
SNPs(r > 0.9).

Fig. 1 Chromosome location depicts evenly distributed 15 target SNPs within sequence span of 4 kb. Green shaded are GWAS SNPs; red shaded
is the causal eQTL SNP (Table 1)
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The highly interlinked 4 kb locus has proved to be
eQTL allele (Fig. 2; blue shaded) for the GFI1 gene.
Three GWAS SNPs differed in their MAF values from
the core haplotype in EUR populations (Fig. 2; enlarged
blue markers, green shadowed), and thus are non-

equally linked with others (r < 0.8) in the supergroups
other than EAS (full linkage overall), while highly inter-
linked with each other (r > 0.9) in European and South
Asian supergroups. SNPs are sorted according to their
order on the chromosome.

Distribution of haplotypes
We retrieved 15-fold haplotypes frequencies from 1000G
phased data for each of the supergroups (Table 2) that are
higher than 0.1 total across all populations. Due to a high link-
age rate within the locus, three haplotypes encompass > 95%
of variance in all supergroups except AFR (Table 2). All eQTL
SNPs are completely linked and represent 2 dichotomous al-
leles. The major haplotype exhibits no variation and is inter-
linked with GWAS SNPs, so all variations reside in minor
allele spectra. The haplotypes composition manifests overlap-
ping GWAS 3-fold haplotype with completely linked 12-fold
eQTL haplotype. Thus, as a major (tag) haplotype we may set
the highest associated with trait GWAS polymorphism
rs4658101 (Table 1) complemented with most ‘enhancer’
manifested, presumably casual, eQTL SNP rs10874833.
After performing PCA for Table 2 data, we found

the haplotype spectra quite distinctly distributed
across 4 major continental supergroups (Fig. 3), im-
plying it can affect specifically the Asian populations
due to a single mode haplotype distribution with
highly linked optical disc size allele and eQTL SNPs.
Also, we may underscore the unique European–des-
cent haplotype, which apparently disrupts the silencer
site (eQTL) (Fig. 3).

Table 1 15 SNPs minor frequencies for merged GWAS and
GTEx SNP sets considered in the study for European (EUR),
South Asian (SAS), East Asian (EAS) and African (AFR)
supergroups

EUR SAS EAS AFR maf allele

rs1192415** 0.173 0.3037 0.1399 0.2103 G

rs4658101** 0.175 0.3037 0.1399 0.3829 A

rs4658103 0.3867 0.3507 0.1399 0.4276 G

rs11165071 0.3867 0.3517 0.1399 0.4276 G

rs10874833a 0.3877 0.3517 0.1399 0.4375 C

rs11165072 0.3877 0.3517 0.1399 0.4375 T

rs12037771 0.3946 0.3569 0.1399 0.4375 T

rs12036943 0.3877 0.3517 0.1399 0.4375 A

rs4658246 0.3877 0.3517 0.1399 0.4375 T

rs1192419** 0.1759 0.3047 0.1339 0.2927 A

rs981554 0.3857 0.3282 0.1359 0.4355 A

rs6671034 0.3867 0.3272 0.1339 0.4365 A

rs6604047 0.3867 0.3262 0.1339 0.4365 A

rs6604048 0.3867 0.3272 0.1339 0.4365 T

rs6604049 0.3867 0.3272 0.1339 0.4365 A

**GWAs SNPs with minimal P values: (P < 8E-17; 6E-81; 8E-56), respectively
aGTEx causal SNP

Fig. 2 Graphic representation of MAF frequencies from Table 1 for European (EUR), South Asian (SAS), East Asian (EAS) and African (AFR)
supergroups. GWAS SNPs are plotted with enlarged markers
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Allele dosage estimation
If the causal eQTL SNP rs1087483 G is considered as
the risk one (it doesn’t decrease GFI1 expression) and
co-dominant, then the estimated homozygous state in
EAS would be p (GG) = 0.74 within the major haplotype.
In contrast, in EUR supergroup it would be p (GG) =
0.36, 2 times lower than in EAS. Overall, the major allele
in EUR, AFR, SAS supergroups occurs with approxi-
mately similar frequency (Table 2).

Discussion
The advance of the resources and technologies on en-
hancer validation made it possible to move the task of

annotating GWAS associated loci toward a new stage.
While the information on the enhancers, and especially,
their target regions is still far from complete, the range
of targets conceived to date have been ascertained.
We studied the CDC7-TGFB3 intergenic region to

elucidate the exact target of a 4 kb loci enriched with
GWAS SNPs associated with optical disc size, at the
same time manifesting eQTL SNPs pointing to GFI1
gene target at least in pituitary gland tissue based on
eQTL GTEX database evidence. We justify the likeli-
hood of this enhancer to be also active in embryonic ret-
inal tissues by presenting two observations.
First, we assessed the tissue specific distribution of

eQTL regions against the number of tissues they are ac-
tive. As we can see from Fig. 4, there is a strong tenfold
overrepresentation of single-tissue eQTL regions not fit-
ting exponential distribution, otherwise highly concord-
ant (R2 = 0.93, df = 42; p < 2.6E-51).
We assume that overabundance of single – tissue en-

hancers implies they may get activated at certain embry-
onic stages, or in some specific tissues not currently
presented in GTEX tissue panel.
While there is a promising approach for detecting em-

bryonic enhancers reported quite recently [26], it may
require some time to address the issue explicitly.
As the second observation corroborating the hypoth-

esis stated above, we correspond that none of the

Table 2 Distribution of top haplotypes frequencies in 4 major
supergroupsa

Haplotype (15 letters) ‘Tag’ haplotype AFR EAS EUR SAS

AGAAGGCGAGGGGAG GG 0.562 0.86 0.605 0.642

GAGGCTTATAAAATA AC 0.209 0.132 0.172 0.28

AGGGCTTATGAAATA GC 0.043 0 0.21 0.045

SUM: 0.814 0.992 0.987 0.967
a Supergroup denotations are given in Fig. 2. GWAS SNPs are marked with
bold, eQTL causal SNP is marked in bold Cyrillic. The first allele is a major one
(f > 0.5 in all supergroups), two others are minor ones. The ‘tag’ haplotype
represents convoluted GWAS/eQTL 2-letter haplotype of tag SNPs (pos.
5:rs4658101, pos. 10:rs10874833). Two African–specific low frequency
haplotypes AAGGCTTATGAAATA (0.099) and AAGGCTTATAAAATA (0.07) were
omitted from consideration according to selection criterion

Fig. 3 PCA plot of 3 major haplotypes (Table 2) in European (EUR), South Asian (SAS), East Asian (EAS) and African (AFR) supergroups. GWAS SNPs
(Table 1) are marked in bold. eQTL casual repressive SNP rs1087483 G- > C (pos. 5) is marked in bold italics. Underlined is the high-risk allele
according to GWAS reports. The low-risk allele (GWAS haplotype: AGG; on the right) is highly elevated at EAS supergroup, and is present at least
at 50% in the others (Table 2)
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distinct enhancers reported in GeneHancer database
overlap each other. That means that virtually no random
overlapping may occur for the embryonic-related CDC7-
TGDBR3 enhancer and pituitary specific one.
Based on these observations, we speculate that the pituit-

ary specific enhancer may possibly get activated in embry-
onic nerve tissue in the course of optic disc development.
GFI1 was first ascertained as an oncogene in lymph-

omas [27, 28]. Further studies showed that GFI1 mRNA
is expressed in many precursors that give rise to neur-
onal cells during embryonic development in mouse [29].
GFI1 mRNA is expressed both in the CNS and PNS, fea-
turing many sensory epithelia cells including the devel-
oping retina, the eye, presumptive Merkel cells, the lung
and hair cells of the inner ear [30]. It has homologues in
fly (senseless) and worm (pag-3).
GFI1 was proved to maintain tissue specific distal en-

hancers up to 100 kb in early hematopoietic cells [31],
later ascertained to be involved in a complex interplay of
enhancers and silencers, as well as genes within Gene
Regulation Networks in hematopoietic lineage specifica-
tion [32]. Similarly, GFI1 plays a crucial role during em-
bryogenesis of other tissues [33]. During embryogenesis
the enhancers’ network is one of the expanded regula-
tory networks and often incorporates Transposable Ele-
ments (TE) including Alus, which later become
repressed [34–36]. Currently, GeneHancer resource pro-
vides evidence (eQTL only) for the target region as an
enhancer of GFI1 [11].

The tissue restricted enhancer in the region spanning
target GWAS SNPs (Fig. 5; yellow track for hESC cell
line) comprises several TFBS, including CTCF and p300,
which regularly accompany Hi-C looping factors [11]. It
looks probable that the enhancer site changes chromatin
context in the locus vicinity upon activation and accom-
plishes interaction of the locus with the promoter region
of GFI1 via Hi-C mechanism. Since GWAS SNPs are
also heavily interlinked with eQTL SNPs which decrease
the expression of GFI1 (Table 1), we speculate that three
GFI1 expression alteration hypotheses are possible: 1)
GWAS SNPs are the cause of abrogation of the afore-
mentioned looping, e.g. by disruption of CTCF or other
binding sites, resulting in the alteration of GFI1 expres-
sion; 2) GFI1 binding site located in AluJo/AluSo seg-
ment [37] is probably involved in local autoregulation of
GFI1 expression. Note that the causative eQTL SNP
rs10874833 is only 10 bp away from the core consensus
of GFI1 within AluJo (‘AATC’; [37]) and may affect the
binding affinity of GFI1 to this site; 3) AluJo comprises
CTCF binding site which is altered by eQTL SNP
followed by long-range interaction abrogation (loop
disruption).
Since zinc finger protein GFI1 contains at least 3 zinc

finger motifs, the consensus should be much more ex-
tended, and it is partially reflected in overall consensus
length of 10 positions in Hocomoco database (Add-
itional File 1), though other positions are not informative
probably due to (single dependence) weight matrix

Fig. 4 Distribution of enhancers’ number given the number of tissues it is active in, and its exponential approximation based on GeneHancer
elements database
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approach utilized in Hocomoco [38], not accounting for
possible interaction of the positions, including palin-
dromic structure preference [39], and, more importantly
for the ZNF-related TFs, the orientation-related specifics
mediated by specific pairwise position correlations [40].
It should be noted the Alu related abundance of GFI1
motif.
The target locus maintains specific structure compris-

ing tandem Alu pair flanked with enhancer- specific
H3K27ac histone marks (Fig. 5). At least 4 eQTL SNPs
fall into 3 Alus, including the causal eQTL SNP
(rs1087483; Fig. 5, red arrow). Since eQTL SNPs are
highly interlinked in the region in all supergroups, we
may speculate that since the highest ranked SNPs, both
GWAS and eQTL ones (rs4658101 and rs10874833, re-
spectively; Fig. 5) belong to the region flanked with en-
hancer border marks (Fig. 5, yellow boxes of chromatin

segmentation track), other SNPs outside the region are
presumably non-causative.
As mentioned above, we should add that GFI1 TFBS

residing in a transposable element like Alu is an anno-
tated event [29, 38], and suggests multiple factors, in-
cluding DNA methylation and heterochromatization
that may play a role in accessibility of such a site in a tis-
sue and stage-specific manner. It is worth noting that
Alu TEs proved to be involved in developmental stages
[37], and comprise the following TFBSs: GFI1
(V$GFI1.01), PITX2 (PITX2.Q2), PAX6 (PAX6.01), SIX3
(SIX3.01) for the factors implicated in eye development
[38], as well as in Hi-C conformation [41, 42]. Notably,
eQTL causative SNP rs10874833, being located within
the GFI1 TFBS in Alu, may disrupt the binding site of
GFI1, which can be the cause of negative feedback on
GFI1 expression rate reported in GTEx survey.

Fig. 5 Fifteen target SNPs (top track) spanning the region enriched with enhancer histone marks (yellow boxes manifested in H1-hESC cell line)
comprising 3 GWAS SNPs (green shaded in the top track) and 12 GTEx eQTL SNPs (top track; “GFI1 pituitary” labels, middle track), as well as 6Alu
sequences (bottom track). Marked are highest ranked SNPs (rs4658101, blue arrow, and rs10874833, red arrow; another one pointing to target
Alu5’ region, bottom track). Enhancer GH01J091608 (‘GeneHancer Regulatory Elements’ track, middle positioned; grey shaded box) overlaps the
yellow shaded box
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Using GTEX v8 RNA-Seq profiles we also ascertained
that GFI1 highest expression rate across 53 tissues available
is maintained in EBV-transformed lymphocytes (cell cul-
ture): its average expression rate is 2.16 Tpm while standard
deviation being 0.64 (100 samples considered). Notably,
GFI1 gene maintains high expression correlation rate with
another oncogene Malat1 ncRNA, while both maintain
negative correlation to TP53 (Table 3) as reported earlier
[43]. It most probably reflects EBV induced immortality in
cells. GFI1 expression rate in pituitary tissue is about 0.13
(±0.08) Tpm. While this value is more than a median
across 53 tissues, still it’s rather low for the robust assess-
ments of its interactions/pathways, implying a necessity of
addressing embryonic cells for the final verdict.
It’s worth noting that pituitary gland contains stem/

progenitor cells pool [44], and anatomically is located
within close vicinity of the optical chiasm [45], which
may imply common mechanisms of their early embry-
onic development, including retinal tissues. Pituitary tis-
sue is the top one in Malat1 expression rate throughout
the 53 tissues maintained by GTEX Consortium v.8
dataset (personal observation), underlining its high stem
cell specific genes turnover [43].
Still, it is necessary to state that the target enhancer score

in current GeneHancer database version is small (score =
232 from 700 maximal) accounting for the distance to the
target gene (840 kb), GFI1 small expression rate in the tis-
sues considered (see above), sparse tissue manifestation in-
stances and single (eQTL) source of evidence.
Along with gaining the insight into the target and mecha-

nisms for GWAS intergenic locus supported by GTEx
eQTL data considering optic disc size trait, we also per-
formed haplotyping of GWAS encompassed locus for 4 su-
pergroups. It was elucidated that EAS supergroup maintains
the unimodal allele frequency distribution spanning 15 SNPs
belonging to the major low-risk allele. But it also implies ‘G’
eQTL allele at causative SNP, and thus probably maximizing
the optic disc size trait leading to the elevated myopia inci-
dence observed in EAS populations [24]. Note, that on the
contrary, AFR, SAS supergroups maintain elevated fre-
quency of risk associated allele (Table 2; Fig. 3). Also, AFR
supergroup maintains African- specific low frequency haplo-
types with GWAS SNPs triplets AA(G/A) and causal eQTL

SNPs to be a ‘C’ variant (Table 2, Caption), which possibly
impacts the elevated rate of glaucoma incidence in this
group as well.

Conclusion
Besides outlining that Alu TEs are apparently involved in
regulation of the target site, we report unequal frequency
profiles of GWAS/eQTL enhancer-related haplotypes in
continental supergroups (Table 2, Fig. 3), implying the op-
tical disc area trait may pertain to the specific
correspondent enhancer site involvement. We underscore
the presence of unique European specific minor haplotype
along with high homogeneity for major haplotype in East
Asian population. Based on the observation, we speculate
that there may be 2 alternative factors modulating enhan-
cer effects for the eye disc area. To assess it, it would be
reasonable to experimentally elaborate on haplotypes con-
sisted of 2 tag SNPs (Table 2). It may shed the light if
there are specific risks of each haplotype state.
Concerning the possible implications in other GWAS/

eQTL functional annotations, we’d underline the essen-
tial obstacles of inherently developmentally onset traits
analysis rendering assessment of gene expression rate
dynamics at specific tissues/organs developmental stages.
Extensive chromatin remodeling dynamics during em-
bryogenesis also adds to the complexity of developmen-
tally onset traits analysis.

Methods
eQTL data
GTEx data of eQTL score profiles [17] in the region
were downloaded from UCSC resource (www.genome.
ucsc.edu; genome.ucsc.edu > exeqtlcluster)
GeneHancer data on the promoter and enhancer regions

were downloaded from ucsc resource (www.genome.ucsc.
edu; genehancer_reg_elements_doubleelite track)

1000 Genomes data
We downloaded a subset of 1000 Genomes Consortium
(1000GP) phase 3 data [46] (http://www.internationalgen-
ome.org/) for 4 supergroups: 1) African (AFR; 504 individ-
uals total); 2) East Asian (EAS; 504 individuals total), 3)
European (EUR; 503 individuals total), 4) South Asian
(SAS; 489 individuals total). We omitted American native
supergroup (AMR) from 1000G since it significantly over-
laps with other 4 supergroups by alleles profiles ([46], per-
sonal observation). A total of 2000 individuals were
analyzed. The data are presented in Additional File 2.

Retrieval and statistical tools
We employed the PLINK toolset [47] for extracting and
managing the haplotype data. We used XLStat software
for Principal Component Analysis (PCA; www.xlstat.
com).

Table 3 Pairwise Pearson correlation rate of three genes based
on 100 random samples of EBV-transformed lymphocytes RNA-
Seq data (GTEx Consortium; v.8; https://www.gtexportal.org)

Variables GFI1 TP53RK TP53 MALAT1

GFI1 1 −0.222 −0.058 0.386

TP53RK −0.222 1 0.410 −0.405

TP53 −0.058 0.410 1 −0.331

MALAT1 0.386 −0.405 −0.331 1

Values in bold are different from 0 with a significance level alpha = 0.05
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