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Abstract

Background: R package mbend was developed for bending symmetric non-positive-definite matrices to positive-
definite (PD). Bending is a procedure of transforming non-PD matrices to PD. The covariance matrices used in
multi-trait best linear unbiased prediction (BLUP) should be PD. Two bending methods are implemented in mbend.
The first is an unweighted bending with small positive values in a descending order replacing negative eigenvalues
(LRS14), and the second method is a weighted (precision-based) bending with a custom small positive value (ϵ)
replacing smaller eigenvalues (HJ03). Weighted bending is beneficial, as it relaxes low precision elements to change
and it reduces or prohibits the change in high precision elements. Therefore, a weighted version of LRS14 was
developed in mbend. In cases where the precision of matrix elements is unknown, the package provides an
unweighted version of HJ03. Another unweighted bending method (DB88) was tested, by which all eigenvalues are
changed (eigenvalues less than ϵ replaced with 100 × ϵ), and it is originally designed for correlation matrices.

Results: Different bending procedures were conducted on a 5 × 5 covariance matrix (V), V converted to a
correlation matrix (C) and an ill-conditioned 1000 × 1000 genomic relationship matrix (G). Considering weighted
distance statistics between matrix elements before and after bending, weighting considerably improved the
bending quality. For weighted and unweighted bending of V and C, HJ03–4 (HJ03, ϵ = 10−4) performed the best.
HJ03–2 (HJ03, ϵ = 10−2) ranked better than LRS14 for V, but not for C. Though the differences were marginal, LRS14
performed the best for G. DB88–4 (DB88, ϵ = 10−4) was used for unweighted bending and it ranked the last. This
method could perform considerably better with a lower ϵ.

Conclusions: R package mbend provides necessary tools for transforming symmetric non-PD matrices to PD, using
different methods and parameters. There were benefits in both weighted bending and small positive values in a
descending order replacing negative eigenvalues. Thus, weighted LRS14 was implemented in mbend. Different
bending methods might be preferable for different matrices, depending on the matrix type (covariance vs.
correlation), number and the magnitude of negative eigenvalues, and the matrix size.
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Background
Even in their simplest form, multivariate animal
models rely on genetic and residual variance-
covariance matrices across traits [1]. These matrices
are in the order of the number of traits in the model,
and their inverses are incorporated in the mixed
model equations. Inversion of a matrix is often done
using Cholesky decomposition, which requires the
matrix to be positive-definite (PD). For models in-
cluding additional random effects (e.g., animal per-
manent environment, maternal genetic, and maternal
permanent environment), additional covariance matri-
ces and their inverses are also required. To date, re-
stricted (or residual) maximum likelihood (REML) [2]
is the preferred method for estimating the variance
components associated with the model. REML esti-
mates are always PD, but the starting matrices need
to be PD. Elements of these matrices are usually from
different sources of information and the resulting
matrices are, therefore, likely to be non-PD [3].
Another complexity is the estimation of covariance

matrices for several traits at a time. This complexity in-
creases by both the number of traits, and the number of
random effects. In many situations, there might not be
enough data points to support accurate inferences about
all the variance components, simultaneously. Therefore,
when many traits are included, variance components are
usually estimated for subsets of traits [4]. The assembly
of these small matrices to a large matrix, together with
best guesses for missing elements (from literature or
phenotypic covariances and heritabilities) can be non-
PD.
The procedure of “bending”, which involves modifying

eigenvalues of a non-PD matrix, was first introduced by
Hayes and Hill [5]. Latter studies in the field of animal
breeding and genetics presented different bending proce-
dures. Jorjani et al. [4] introduced weighted bending,
where a weight matrix is provided for the matrix to be
bent. Meyer and Kirkpatrick [6] developed a bending
procedure, based on penalized maximum likelihood and
reducing bias in the estimates of canonical heritabilities
(the eigenvalues of P−1G, where P and G are the pheno-
typic and genetic covariance matrices, respectively).
Also, Schaeffer [3] introduced a bending procedure,
which involves changing negative eigenvalues to small
positive values and reconstructing the matrix. A bending
method for correlation matrices (also called smoothing),
used in the field of psychology, involves changing all ei-
genvalues [7]. All these bending methods aim to produce
a PD matrix, least deviated from the original non-PD
matrix.
The aim of this study was to introduce R package

mbend [8], which is a free and open source tool for
bending symmetric non-PD matrices to PD, based on

eigenvalue modification of the non-PD matrix. Com-
parison of different methods were provided, using ex-
ample covariance and correlation matrices, as well as
an artificial ill-conditioned genomic relationship
matrix (G). R package mbend covers methods of Jor-
jani et al. [4] and Schaeffer [3], as well as extensions
to these methods.

Implementation
R package mbend [8] is written in R, and it is available
on CRAN repository (https://cran.r-project.org) and can
be installed, using the command install.packa-
ges(“mbend”). In this study, the functionality of this
package was presented using the same 5 × 5 non-PD
matrix used by Jorjani et al. [4] and Schaeffer [3].

V ¼

100 95 80 40 40
100 95 80 40

100 95 80
100 95

Sym: 100

2
66664

3
77775

To study bending on a correlation matrix, C = V/100
was used. Jorjani et al. [4] used a matrix of weighting
factors (W) as the reciprocal of the number of animals
involved in the estimation of variance components. The
same matrix is also used in this study for weighted
bending.

W ¼ 1=

1000 500 20 50 200
1000 500 5 50

1000 20 20
1000 200

Sym: 1000

2
66664

3
77775

For further comparisons, an ill-conditioned G matrix
was constructed using random genotypes on 5000 SNP
and 1000 animals, without any quality control checks,
and 10 duplicated genotypes, which resulted in a G with
5 negative eigenvalues (ranging between –224e–17 to −
3.5e–17) and 357 eigenvalues between 0 and 1. Matrix G
was constructed using method 1 of VanRaden [9]. The
code for constructing the G matrix together with all the
(R) code used in this study are provided in the data
repository.
R package mbend [8] was used throughout this study.

It provides different methods for weighted and un-
weighted bending of symmetric non-PD matrices to PD.
Two bending methods of Jorjani et al. [4] and Schaeffer
[3] and extensions to them are implemented in R pack-
age mbend [8].

Method of Jorjani et al. [4]
This method (HJ03) is an iterative weighting procedure
that converts a non-PD covariance matrix to a PD
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matrix at convergence. It considers different precision
associated with different elements of the covariance
matrix. Therefore, minimising the change in matrix ele-
ments with high accuracy, through a weight matrix.
Given the non-PD covariance matrix V, the weight
matrix W, and a small positive real number (e.g., ϵ =
10−4), the procedure is as follows:

1. Decompose Vn to UnDnUn′, where Un and Dn are
the matrix of eigenvectors and diagonal matrix of
eigenvalues, and n is the iteration number.

2. Replace eigenvalues less than ϵ with ϵ in Dn to get
Δn.

3. Vn + 1 =Vn − [Vn −UnΔnUn′] ∘W, where ∘ is the
Hadamard function.

4. Repeat until Vn + 1 is PD.

The smaller the wij (element in W), the higher the
relative certainty about vij (element in V). Accordingly,
to retain an element of the matrix fixed during bending,
that element would receive a weight of zero. In com-
parison with the weighted procedure, in the unweighted
procedure, Vn + 1 =UnΔnUn′. If no weight matrix is pro-
vided, the program performs an unweighted bending.
Also, if the matrix is already PD, the program returns a
message that “No action was required. The matrix is
positive-definite”.
Jorjani et al. [4] extended their weighted bending

method for covariance matrices to correlation matrices.
R package mbend took a different approach for correl-
ation matrices. First, it automatically recognises correl-
ation matrices by checking all diagonal values against 1.
Second, it treats correlation matrices as covariance
matrices that should keep their diagonal elements con-
stant during bending, by setting wii = 0. To avoid this re-
striction for a non-correlation matrix with all diagonal
elements of 1 (e.g., a phenotypic matrix with variables
standardised for phenotypic variances of 1), simply the
matrix is multiplied by a positive constant, and then the
resulting bent matrix is divided by that constant. A dif-
ferent approach that could be used for correlation matri-
ces was treating them as covariance matrices and
transforming the bent matrix ( V̂ ) to TV̂T0 , where T2

¼ diagð1= diagðV̂ÞÞ.

Method of Schaeffer [3]
This method (LRS14) is an unweighted bending proced-
ure, which means that different matrix elements are of
the same precision. Negative eigenvalues are replaced
with small positive values that are in a descending order
(unlike equal values for HJ03). In this method, each of
the m negative eigenvalues (λi) is replaced with ρ(s
− λi)

2/(100s2 + 1), where ρ is the smallest positive

eigenvalue and s ¼ 2
Pm
i¼1

λi . In R package mbend, a

weighted bending derivate of LRS14 is implemented by
combining this method with HJ03 [8].

Method of Bock et al. [7]
This method (DB88) is used for bending correlation
matrices [7]. In this method, eigenvalues smaller than ϵ
are replaced with 100 × ϵ. Also, unlike Jorjani et al. [4]
and Schaeffer [3], eigenvalues greater than ϵ are changed
to sum the number of those eigenvalues. The logic be-
hind it might be that the sum of eigenvalues in a PD
correlation matrix is equal to the size (trace) of the
matrix. This method is implemented in function
cor.smooth of R package psych (psych::cor.s-
mooth) [10]. As this method is designed for bending
correlation matrices, covariance matrices are first trans-
formed to correlation matrices, after bending, the result-
ing matrix is transformed back to a covariance matrix

(i.e., TĈT0 , where T2 = diag (diag(V))). That means, only
the off-diagonal elements of the matrix change by
bending.

Deviation and correlation
R package mbend returns the following statistics:

1. Minimum deviation (V̂−V), together with matrix
indices of the element

2. Maximum deviation, together with matrix indices
of the element

3. Average deviation of the upper triangle elements
4. Average absolute deviation of the upper triangle

elements (AAD)
5. Weighted AAD
6. Correlation between the upper triangle elements
7. Weighted correlation between the upper triangle

elements
8. Root of mean squared deviation of the upper

triangle elements (RMSD)
9. Weighted RMSD

AAD ¼
Pn

i¼1

Pn
j¼1; j≥ i v̂ij−vij

�� ��
n nþ 1ð Þ=2 ;

Weighted AAD wij>0ð Þ ¼
Pn

i¼1

Pn
j¼1; j≥ i v̂ij−vij

� �
=wij

�� ��Pn
i¼1

Pn
j¼1; j≥ i 1=wij

� � ;

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Pn
j¼1; j≥ i v̂ij−vij

� �2
n nþ 1ð Þ=2

s
;

Weighted RMSD wij>0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Pn
j¼1; j≥ i v̂ij−vij

� �
=wij

� �2
Pn

i¼1

Pn
j¼1; j≥ i 1=w2

ij

� �
vuuut ;
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where, n is the size of the matrix, and wij, vij and v̂ij are
the elements of W, V and V̂, respectively. The weighted
statistics (weighted correlation, weighted AAD and
weighted RMSD) are calculated for matrix elements with
wij > 0. For correlation matrices, upper triangle elements
did not include diagonal elements. Thus,

AAD ¼
Pn−1

i¼1

Pn
j¼2; j≥ i v̂ij−vi j

�� ��
n n−1ð Þ=2 ;

Weighted AAD wij>0ð Þ ¼
Pn−1

i¼1

Pn
j¼2; j≥ i v̂ij−vij

� �
=wij

�� ��Pn−1
i¼1

Pn
j¼2; j≥ i 1=wij

� � ;

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn−1

i¼1

Pn
j¼2; j≥ i v̂ij−vij

� �2
n n−1ð Þ=2

s
;

Weighted RMSD wij>0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn−1
i¼1

Pn
j¼2; j≥ i v̂ij−vij

� �
=wij

� �2
Pn−1

i¼1

Pn
j¼2; j≥ i 1=w2

ij

� �
vuuut :

Function “bend”
R package mbend has a function called bend that is used
with the syntax: bend (inmat, wtmat, recipro-
cal = FALSE, max.iter = 10,000, small.posi-
tive = 0.0001, method = “hj”). If any of the last 4
arguments are missing, the function will use the default
value (FALSE, 10000, 0.0001, and “hj”, respect-
ively). Arguments inmat and wtmat are for the matrix
to be bent and the weight matrix. If wtmat is missing, an
unweighted bending is performed. Argument recipro-
cal takes TRUE or FALSE as input, and if TRUE, recipro-
cals of W elements are used. Where wij = 0, it would
remain 0. This argument is ignored if no weight matrix is
provided to the function. The maximum number of itera-
tions is defined by max.iter. The argument small.-
positive is used for HJ03 and ignored for LRS14. It is
a user-defined small positive value (ϵ) replacing smaller
eigenvalues in D [4]. Argument method takes “hj” or
“lrs” for HJ03 and LRS14, respectively.

The function returns V̂ , eigenvalues of V and V̂ , and
the statistics described in “Deviation and correlation”, all
in a single list. Where weighted bending is applied, the
number of upper triangle elements with wij > 0 (w_gt_
0) is reported, as the weighted statistics rely on these ob-
servations. An example of weighted bending a correlation
matrix, using bend function of mbend package is pro-
vided in the Additional file 1.

Results
The covariance matrix (V)
Matrix V is a non-PD covariance matrix. The following
command in R shows eigenvalues from the eigendecom-
position of V.
> round (eigen(V)$values, 2)

[1] 399.48 98.52 23.65 -3.12 -18.52.
Table 1 shows deviations and correlations between V

and V̂ for unweighted bending, using HJ03–2 (HJ03, ϵ =
10−2), HJ03–4 (HJ03, ϵ = 10−4), LRS14 and DB88–4
(DB88, ϵ = 10−4). The unweighted HJ03 is like the itera-
tive spectral method [11], which is a simplified form of
altering projections method [12]. The difference between
the unweighted HJ03 and the iterative spectral method
is that, in the iterative spectral method, negative eigen-
values are replaced with the small positive value, but in
HJ03, eigenvalues smaller than the small positive value
are replaced with the small positive value. An un-
weighted HJ03 is equivalent to HJ03 with W = 11′.
Though some differences were small, the methods can
be ranked from HJ03–4 being the best performer to
HJ03–2, LRS14 and DB88–4. All the processes con-
verged in 1 iteration.
Table 2 shows deviations and correlations between

V and V̂ for weighted bending, using HJ03–2, HJ03–4
and LRS14. The weighted bending procedures pro-
duced the same weighted correlation coefficients
(0.9955) between the upper triangle elements of V
and V̂ . As expected, HJ03–4 performed better than
HJ03–2. LRS14 produced the closest mean of devi-
ation to zero. However, it performed worse than
HJ03–2 (considering the range of deviations, weighted
AAD, weighted RMSD, and the number of iterations
to convergence). LRS14 took the maximum (787)
number of iterations to converge. However, it was not
a concern, as the convergence was made in less than
0.2 s, due to the small size of V.
The program provides weighted statistics for

weighted bending. Those statistics were manually cal-
culated for unweighted bending of V and C matrices.
The code is available in the data repository, and the
results are provided in Table S1. Comparing Tables 1,
2 and S1 shows lower weighted AAD and weighted

Table 1 Deviation and correlation between the upper triangle
elements of V(5 × 5) (the covariance matrix) and its unweighted
bent matrix

Statistics HJ03–2a HJ03–4b LRS14c DB88–4d

Min (dev.) −5.9320 −5.9296 −5.9370 −10.9546

Max (dev.) 6.5016 6.4973 6.5418 2.6427

Mean (dev.) 0.7241 0.7235 0.7330 −2.9890

AAD 3.3754 3.3727 3.4087 3.6937

Correlation 0.9856 0.9856 0.9855 0.9833

RMSD 3.9300 3.9275 3.9542 5.0784

Number of iterations 1 1 1 1

dev. = bend(V) – V; AAD = average absolute deviation; RMSD = root of mean
squared deviation; a Method of Jorjani et al. [4] with ϵ = 10−2; b Method of
Jorjani et al. [4] with ϵ = 10−4; c Method of Schaeffer [3]; d Method of Bock
et al. [7] with ϵ = 10−4
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RMSD, and higher weighted correlation for weighted
bending compared to unweighted bending, at the cost
of greater deviations, AAD and RMSD, and lower
correlation coefficients.

The correlation matrix (C)
Table 3 shows deviations and correlations between C
and Ĉ for unweighted bending, for different methods.
The differences between results from different methods
were marginal. Overall, the methods can be ranked from
HJ03–4 being the best performer to LRS14, HJ03–2 and
DB88–4. The criteria for this ranking were the mean of
deviations, AAD and RMSD. Likely, DB88 with ϵ < 10−4

could perform as good as HJ03–4 and LRS14, because in
this method, eigenvalues smaller than ϵ are replaced
with 100 × ϵ.

Table 4 shows deviations and correlations between C
and Ĉ for weighted bending, using HJ03–2, HJ03–4 and
LRS14. HJ03–4 and LRS14 performed almost equally
better than HJ03–2. It took LRS14 a considerably greater
number of iterations to converge, which might be a chal-
lenge for large matrices.
Like comparing Tables 1, 2 and S1, comparing Ta-

bles 3, 4 and S1 shows lower weighted AAD and
weighted RMSD, and higher weighted correlation for
weighted compared to unweighted bending, at the cost
of greater deviations, AAD and RMSD, and lower correl-
ation coefficients.

The ill-conditioned genomic relationship matrix (G)
The G matrix was bent using HJ03–4, LRS14 and
DB88–4. Assuming all genotypes of the same quality,
unweighted bending was carried out. The distributions

of the upper triangle elements of Ĝ−G are shown in

Fig. 1, where Ĝ is the bent G. All the three methods per-
formed well providing minimal deviations. DB88–4
showed larger deviations with 10 elements showing devi-
ations between −0.0131 and −0.0135. LRS14 performed
the best. The AAD values were 8.5e–15, 1e–7 and
1.47e–5, and the RMSD values were 11e–15, 4e–7 and
6.17e–5 for LRS14, HJ03–4 and DB88–4, respectively. It
took HJ03–4, LRS14 and DB88–4, 6 s, 47 s and 3 s time

to derive Ĝ, in 1, 8 and 1 iterations, respectively.

Discussion
The covariance (V), the correlation (C) and the genomic
relationship (G) matrices were successfully bent using
different methods. In situations where the precision of
different matrix elements is known (e.g., the number of

Table 2 Deviation and correlation between the upper triangle
elements of V(5 × 5) (the covariance matrix) and its weighted
(using W(5 × 5)) bent matrix

Statistics HJ03–2a HJ03–4b LRS14c

Min (dev.) −20.0068 −20.0008 −19.9923

Max (dev.) 5.8467 5.8456 5.8638

Mean (dev.) −1.7167 −1.7161 −1.7158

AAD 3.6262 3.6253 3.6338

Weighted AAD 0.6102 0.6100 0.6122

Correlation 0.9623 0.9623 0.9622

Weighted correlation 0.9955 0.9955 0.9955

RMSD 6.3706 6.3687 6.3748

Weighted RMSD 0.5328 0.5327 0.5347

Number of iterations 248 428 787

dev. = bend(V) – V; AAD = average absolute deviation; RMSD = root of mean
squared deviation; a Method of Jorjani et al. [4] with ϵ = 10−2; b Method of
Jorjani et al. [4] with ϵ = 10−4; c Method of Schaeffer [3]

Table 3 Deviation and correlation between the upper triangle
(excluding diagonal) elements of C(5 × 5) (the correlation matrix)
and its unweighted bent matrix

Statistics HJ03–2a HJ03–4b LRS14c DB88–4d

Min (dev.) −0.0826 −0.0797 −0.0788 −0.1095

Max (dev.) 0.0725 0.0702 0.0717 0.0264

Mean (dev.) −0.0200 −0.0194 −0.0204 −0.0448

AAD 0.0490 0.0475 0.0491 0.0554

Correlation 0.9841 0.9853 0.9854 0.9896

RMSD 0.0537 0.0520 0.0530 0.0622

Number of iterations 4 13 39 1

dev. = bend(V) – V; AAD = average absolute deviation; RMSD = root of mean
squared deviation; a Method of Jorjani et al. [4] with ϵ = 10−2; b Method of
Jorjani et al. [4] with ϵ = 10−4; c Method of Schaeffer [3]; d Method of Bock
et al. [7] with ϵ = 10−4

Table 4 Deviation and correlation between the upper triangle
(excluding diagonal) elements of C(5 × 5) (the correlation matrix)
and its weighted (using W(5 × 5)) bent matrix

Statistics HJ03–2a HJ03–4b LRS14c

Min (dev.) −0.2056 −0.1995 −0.1994

Max (dev.) 0.0644 0.0630 0.0632

Mean (dev.) −0.0293 −0.0284 −0.0284

AAD 0.0569 0.0554 0.0555

Weighted AAD 0.0146 0.0142 0.0142

Correlation 0.9428 0.9463 0.9462

Weighted correlation 0.9939 0.9943 0.9942

RMSD 0.0828 0.0803 0.0804

Weighted RMSD 0.0110 0.0107 0.0108

Number of iterations 88 286 694

dev. = bend(V) – V; AAD = average absolute deviation; RMSD = root of mean
squared deviation; a Method of Jorjani et al. [4] with ϵ = 10−2; b Method of
Jorjani et al. [4] with ϵ = 10−4; c Method of Schaeffer [3]
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observations involved or the standard errors), weighted
bending is highly recommended. It may cost an overall
larger deviation between the original and the bent matri-
ces, but minimising the deviations or preserving the ele-
ments with higher precision. The extension of LRS14 to
a weighted bending worked perfectly and proved to be
better than LRS14. An improvement made to HJ03 was
changing W to W/max(W), internally [8]. This reduced
the number of iterations to convergence, by changing
max(W) to 1. This practice is recommended as elements
of [11′ – W] and W are positive and convex combina-
tions of each other (i.e., Vn + 1 =Vn − [Vn −UnΔnUn′] ∘
W =Vn ∘ [11 ′ −W] + [UnΔnUn′] ∘W).
The unweighted bending of the covariance matrices

(V and G) took an iteration to converge, except LRS14
for G, which took 8 iterations to converge. For the un-
weighted bending of the correlation matrix, except
DB88–4, the other methods converged in more than 1
iteration. The reason was that unweighted bending for
correlation matrices is equivalent to a weighted bending
(except for DB88–4) with off-diagonal weights equal to
1, and diagonal weights equal to 0. As a result, correl-
ation coefficients between the original and the bent
matrix decreased from Table 1 to Table 3 (covariance
to correlation), but it increased for DB88–4 from
0.9833 to 0.9896, because this method is mainly de-
signed for bending correlation matrices. Probably for
the same reason, it did not perform as good as HJ03–4
and LRS14 for bending G (Fig. 1). As a result of DB88
being designed for correlation matrices, when it comes
to covariance matrices, the diagonal elements are not
allowed to change, which puts more force on the off-
diagonal elements to change. Contrary to weighted
bending of the covariance matrix, weighted bending of
the correlation matrix converged in fewer number of
iterations.

The most important statistics to judge among different
bending methods are absolute distance measures such as
AAD and RMSD. Correlation coefficients between the
original and the bent matrix are not important as such
but showing the direction of changes corresponding to
the value of elements in the original matrix. Where
weighted bending is involved, weighted AAD and
weighted RMSD should be considered.
Although, LRS14 is not based on any known statistical

properties [3], it performed close to HJ03–2 (slightly better
for C and slightly worse for V) and it was the best per-
former for G. In the first iteration of bending C by LRS14,
the eigenvalues −0.0312 and −0.1852 were replaced with
0.0019 and 0.0007, respectively. Therefore, the benefit over
HJ03–2 may come from a combination of these values be-
ing in a descending (rather than equal) order and less than
10−2. In the first iteration of bending V by LRS14, the ei-
genvalues −3.1229 and −18.5235 were replaced with 0.2036
and 0.0774. Given these values are greater than 10−2 (com-
pared to HJ03–2), the benefit in replacing negative eigen-
values with small positive values in a decreasing order
becomes evident. It would be interesting to see how LRS14
performs with increasing the denominator (100 s2 + 1).

Other methods
There are many other bending methods used in other
fields, such as psychology, economics, finance and engin-
eering. Most of those are designed for bending correl-
ation matrices. Therefore, applying them to covariance
matrices would result in unchanged diagonal elements
and consequently further changes in off-diagonal ele-
ments. Several of those methods are explained by Marée
[11], and Lorenzo-Seva and Ferrando [13]. As examples,
here, a few methods are explained briefly.
Rebonato and Jäckel [14] used hypersphere decompos-

ition methodology for creating a valid correlation matrix

Fig. 1 Boxplot of the upper triangle elements of Ĝ−G for different methods. Ĝ = bent G; a Method of Jorjani et al. [4] with ϵ = 10−4; b Method of
Schaeffer [3]; c Method of Bock et al. [7] with ϵ = 10−4
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for the use in risk management and option pricing. In

this trigonometric-based method, Ĉ ¼ BB0 and the row
vectors of B are coordinates of angles (θij) lying on a
unit hypersphere. The elements of B are calculated as:

bij ¼
cosθij for j ¼ 1
cosθij:Π

j−1
k¼1 sinθik for j ¼ 2 to n−1

Π j−1
k¼1 sinθik for j ¼ n

8<
:

Rapisarda et al. [15] simplified this method by redu-
cing B to a lower triangle matrix. This method resem-
bles deriving the Cholesky decomposition of a PD
correlation matrix close to the non-PD correlation
matrix. The elements of B are calculated as:

bij ¼

1 for i ¼ j ¼ 1
cosθij for i≥2; j ¼ 1
Π j−1

k¼1 sinθik for i ¼ j; 2≤ i≤n

cosθijΠ
j−1
k¼1 sinθik for 2≤ j≤ i−1

0 for iþ 1≤ j≤n

8>>>><
>>>>:

Numpacharoen and Atsawarungruangkit [16] intro-
duced a method for obtaining the theoretical bounds
of correlation coefficients and an algorithm for per-
muting random correlation matrices within those
boundaries.
Bentler and Yuan [17] developed a bending method

via off-diagonal scaling of the matrix. The symmetric
PD matrix is obtained as V̂ ¼ ΔðV−DV ÞΔþDV ,
where DV = diag (diag(V)), Δ is a diagonal matrix
such that 0 < Δ2 diag (diag(V −D)) <DV, and D is a di-
agonal matrix such that V – D is PD. D can be a di-
agonal matrix of small negative values, or according
to Bentler and Yuan [17], it can be obtained by mini-
mum trace factor analysis [18, 19].
An alternative approach to bending is fitting a reduced

rank factor-analytic model. Multi-trait BLUP can be
reformulated by changing the covariance structure
among n traits to the factor-analytic structure of n or-
thogonal factors [20]. In a reduced rank factor-analytic
model, specific factors (not explaining the common vari-
ance) are absent, by setting the corresponding eigen-
values to zero [20].
Obviously, there should be some confidence around

matrix elements. Neither a rank reduced factor-analytic
model nor bending can solve the problem of major flaws
in matrix elements. For both methodologies, the refer-
ence is the original matrix. In bending, only if uncer-
tainty around some matrix elements causes non-PDness,
the matrix is bent with as minimal as possible impact on
the original matrix. Similarly, when it comes to G
matrix, prevention (i.e., quality control and discarding
problematic genotypes) is better than cure (i.e.,
bending).

Conclusions
This study introduced a new R package for bending
symmetric non-PD matrices to PD, with the flexibility of
choosing between weighted and unweighted bending,
two different bending methods, the smallest positive
eigenvalue (for one of the methods), and direct or recip-
rocal use of the weight matrix elements for weighted
bending. Together with the bent matrix, several bending
performance statistics are provided by the program.
Where precision of matrix elements is available,
weighted bending is recommended. There was benefit in
small positive values in a descending order replacing
negative eigenvalues. This method can further benefit
from the possibility of choosing the smallest positive
eigenvalue, which can be a topic for future research.
The differences between the performance of different
methods were minor and the methods ranked differ-
ently for different matrices. Therefore, testing differ-
ent methods, and ϵ values (for HJ03) are
recommended. Bending methods may perform differ-
ently for different matrices, depending on whether a
covariance or a correlation matrix is being bent, the
number of negative eigenvalues and their magnitude
relative to the smallest positive eigenvalue, and the
size of the matrix (i.e., number of diagonal elements
relative to all elements).
There are many bending methods available, and those

have approached the problem in various ways. Some
methods are preferable for correlation matrices. This
study showed that eigendecomposition-based methods
are simple, robust and computationally efficient. Finally,
the application of bending and R package mbend is not
limited to multi-trait BLUP, but also other multivariate
mixed models, genetic selection indices [5], or any situ-
ation, where a symmetric non-PD matrix needs to be
transformed to a PD matrix.
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(using W(5 × 5)) between the upper triangle elements of V(5 × 5) (the
covariance matrix) and C(5 × 5) (the correlation matrix) and their
unweighted bent matrices.
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