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Abstract

Background: Methane emission by ruminants has contributed considerably to the global warming and
understanding the genomic architecture of methane production may help livestock producers to reduce the
methane emission from the livestock production system. The goal of our study was to identify genomic regions
affecting the predicted methane emission (PME) from volatile fatty acids (VFAs) indicators and VFA traits using
imputed whole-genome sequence data in Iranian Holstein cattle.

Results: Based on the significant-association threshold (p < 5 × 10− 8), 33 single nucleotide polymorphisms (SNPs)
were detected for PME per kg milk (n = 2), PME per kg fat (n = 14), and valeric acid (n = 17). Besides, 69 genes were
identified for valeric acid (n = 18), PME per kg milk (n = 4) and PME per kg fat (n = 47) that were located within 1 Mb
of significant SNPs. Based on the gene ontology (GO) term analysis, six promising candidate genes were
significantly clustered in organelle organization (GO:0004984, p = 3.9 × 10− 2) for valeric acid, and 17 candidate
genes significantly clustered in olfactory receptors activity (GO:0004984, p = 4 × 10− 10) for PME traits. Annotation
results revealed 31 quantitative trait loci (QTLs) for milk yield and its components, body weight, and residual feed
intake within 1 Mb of significant SNPs.

Conclusions: Our results identified 33 SNPs associated with PME and valeric acid traits, as well as 17 olfactory
receptors activity genes for PME traits related to feed intake and preference. Identified SNPs were close to 31 QTLs
for milk yield and its components, body weight, and residual feed intake traits. In addition, these traits had high
correlations with PME trait. Overall, our findings suggest that marker-assisted and genomic selection could be used
to improve the difficult and expensive-to-measure phenotypes such as PME. Moreover, prediction of methane
emission by VFA indicators could be useful for increasing the size of reference population required in genome-wide
association studies and genomic selection.
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Background
Methane is the second most abundant global anthropo-
genic greenhouse gas behind carbon dioxide [1]. The ru-
minant production system has considerable contribution
to climate change by emitting methane, either directly
from enteric fermentation or indirectly from feed produc-
tion activities, deforestation, manure, etc. [2]. The majority
of enteric methane (87%) is produced in the rumen [3] by
the activity of methanogenic archaea under anaerobic con-
ditions [2]. Traditionally, several strategies such as diet
manipulations, chemo-genomics, chemical and biological
feed additives and anti-methanogen vaccines, have been
designed to mitigate methane emissions besides improv-
ing the efficiency of production system. However, a funda-
mental problem is that the ruminal microbiota is able to
adapt rapidly to intervention strategies [4].
The amount of enteric-methane emissions from rumi-

nants is affected by a variety of factors including feed in-
take and composition, fermentation process e.g. passage
rate and rumen volume, physiological state of the ani-
mal, and variation among individual animals [4–6]. Re-
ducing the methane produced by cattle through genetic
selection is a highly desirable approach compared with
other strategies (e.g. adding supplements such as nitrates
to feed) because genetic improvement is heritable and
cumulative across generations. De Haas et al. [7] re-
ported that the estimated heritability of predicted me-
thane emission (PME) per milk production and PME per
milk production corrected for fat and protein content
were 0.35 and 0.58, respectively. Moreover, genome-
wide association studies (GWAS) have identified several
single nucleotide polymorphisms (SNPs) associated with
measured or predicted rate of methane emission in Hol-
stein cattle [7] and Angus cattle [8]. Thus, genetic selec-
tion can be employed to reduce PME per unit of milk
production. However, routine measurement of methane
production is difficult and expensive in farm, and identi-
fied SNPs associated with methane production can only
explain a small proportion of its genetic variation [9].

Nowadays, via the availability of sequence data that po-
tentially consists of causative mutations, the prediction
accuracy of genomic selection and resolution of GWAS
can be improved [10]. Therefore, the goal of our study
was to identify genomic regions affecting the predicted
methane emission (PME) from volatile fatty acids (VFAs)
indicators and VFA traits using imputed whole-genome
sequence data in Iranian Holstein cattle.

Results
The descriptive statistics for studied traits are presented
in Table 1. In the least squares analysis of the studied
traits, the contemporary group effect was statistically sig-
nificant (p < 0.05) for PME, butyric acid and isovaleric
acid, and the effect of age was only significant for PME
(p < 0.05).

Genome-wide association studies for volatile fatty acids
After removing the genotypes with low imputation ac-
curacy (R2 < 0.30) and other criteria (e.g. call rate < 95%,
MAF < 0.05, and Chi-square < 10− 6 of Hardy-Weinberg
equilibrium), a total of 6,583,595 SNPs on 29 Bos taurus
autosomes (BTAs) were remained. The number of
quality-control passed imputed variants used for associ-
ation analyses ranged from 125,756 on BTA25 to 443,
774 on BTA1.
The results demonstrated that 76 (on BTA3, 6, and

17), 3 (on BTA12), 5 (on BTA3 and 17), 274 (on BTA2,
4, 5, 9, 10, 11, 12, 22, 24, 25, 26 and 27) and 285 (BTA2,
3, 4, 9, 10, 11, 12 and 28) SNPs passed the suggestive-
association threshold (p < 10− 5) for acetic acid (%), bu-
tyric acid (%), propionic acid (%), isovaleric acid (%) and
valeric acid (%) traits, respectively (Fig. 1). Further, using
the chromosome-wide Bonferroni correction threshold,
we found two SNPs significantly associated with isovale-
ric acid (BTA9 and 28) and 29 SNPs with valeric acid
(BTA5, 11, and 25). However, we did not discover any
significant association for other VFA traits based on
chromosome-wide Bonferroni correction. Moreover,

Table 1 Descriptive statistics for predicted methane emission (PME), PME per kg milk, PME per kg fat, and volatile fatty acids traits in
Iranian Holstein cattle

Trait Number Mean Range Standard deviation CV (%)

PME (ml) 146 14819.88 8564–19315 2235.15 15.08

PME per kg milk (ml) 146 384.42 316.5–478 31.50 8.19

PME per kg fat (ml) 146 15390.92 8556–31503 3340.50 21.70

Milk estimated breeding value 150 870.22 − 1299.20-2475.05 903.41 103.81

Acetic acid (%) 146 53.71 44.39–60.02 3.15 5.87

Propionic acid (%) 146 22.37 17.10–29.23 2.40 10.74

Butyric acid (%) 146 16.42 12.28–21.66 1.73 10.56

Valeric acid (%) 147 3.24 1.53–6.16 0.60 19.97

Isovaleric acid (%) 147 4.25 2.12–9.57 1.39 32.77
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Fig. 1 Manhattan plot of the genome-wide p values of association for VFA traits: a acetic acid; b propionic acid; c butyric acid; d valeric acid; e
isovaleric acid. The solid line represents the p < 10− 5 significance threshold
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using the recommended significant threshold of 5 ×
10− 8, 18 SNPs (two on BTA5 and 16 on BTA 25) were
associated with valeric acid variation, two on BTA5
found to be significant at the genome-wide Bonferroni
correction threshold of 7.59 × 10− 9 (Table 2).

Genome-wide association studies for predicted methane
emission
The GWAS results for PME, PME per kg milk, and
PME per kg fat are presented in Manhattan plots in
Fig. 2. According to suggestive regions (p < 10− 5), we
found 53 SNPs (BTA8, 10, 15, 18, 23, and 26) for PME;
41 SNPs (BTA15) for PME per kg milk; and 308 SNPs
(BTA1, 2, 4, 5, 8, 10, 13, 14, 16, 19, 20, 21, 26, and 28)
for PME per kg fat. Although, the association studies did
not show any significant SNPs for PME trait, the
chromosome-wide Bonferroni correction identified five
significant SNPs on BTA15 for PME per kg milk, 20 sig-
nificant SNPs on BTA4, 13, 19, and 21 for PME per kg
fat. PME per animal that were not adjusted per unit of
product showed a decreased variation compared to the
adjusted PME per kg of milk or fat i.e. two animals with
an equal rate of methane emission do not necessarily
have an equal efficiency for methane production (me-
thane emission per unit of product). As a result, the
power of the association studies to capture quantitative
trait loci (QTL) without considering the adjustment of
PME per unit of product can be diminished. Using the
recommended Bonferroni correction threshold (p < 5 ×
10− 8), we identified two SNPs on BTA15 for PME per
kg milk, 14 SNPs on BTA4, 13, 19, and 28 for PME per
kg fat (Table 2); and two SNPs on BTA4 and 19 passed
the genome-wide Bonferroni correction for PME per kg
fat (Table 2).

Post-GWAS bioinformatics analysis
The candidate genes were identified within 1Mb of most
significant SNPs based on p < 5 × 10− 8. For valeric acid,
two and 16 candidate genes were discovered around 5:
16795260 and 25:37967076 SNPs, respectively (Table 3).
For PME per kg milk, four candidate genes around 15:

25797132 SNP, and for PME per kg fat 11, 3, 32 and 1
candidate genes were discovered around 4:115131249,
13:81673732, 19:24494923 and 28:21771233 SNPs, re-
spectively (Table 4). Ten genes of 17 candidate genes for
valeric acid remained for Gene Ontology (GO) term ana-
lysis as known and non-ambiguous genes. Based on the
GO terms, six promising candidate genes were signifi-
cantly clustered in organelle organization (GO:0004984,
p = 3.9 × 10− 2) including BAIAP2L1, SMURF1, ARPC1A,
ARPC1B, BHLHA15 and TRRAP. For methane emission
trait, twenty-five genes of 40 candidate genes remained
for GO term analysis as known and non-ambiguous
genes. Based on the GO terms, 17 candidate genes were
significantly clustered in olfactory receptors activity
(GO:0004984, p = 4 × 10− 10) including LOC538966,
LOC522582, LOC540082, LOC618593, LOC508980,
LOC509525, LOC509526, LOC617122, LOC532238,
OR1E1, LOC618124, OR1G1, LOC511509, LOC526294,
LOC615901, LOC618112 and LOC101902679.
The results of gene networks analyses for valeric acid

and methane emission traits were shown in Figs. 3 and 4,
respectively. Furthermore, the summary of significant
SNPs (p < 5 × 10− 8) associated with PME and valeric acid
traits that are in close distance to reported QTLs is pre-
sented in Table 5.

Discussion
The results of GWAS showed some suggestive SNPs as-
sociated with VFA traits and some regions (e.g. BTA3)
associated with both acetic and propionic acid traits.
Alemu et al. [11] also reported a strong correlation (−
0.85) between acetic and propionic acid. Further, we
only found two SNPs significantly associated with isova-
leric acid (BTA9 and 28) and 29 SNPs with valeric acid
(BTA5, 11, and 25) based on the chromosome-wide
Bonferroni correction threshold. The isoacids (e.g. isobu-
tyric, 2-methylbutyric, isovaleric acid, and straight-chain
valeric acid) produced in the digestion process of rumi-
nants are mainly generated from the degradation prod-
ucts of the amino acids valine, isoleucine, leucine, and
proline [12]. Isoacids are either required by, or stimulate

Table 2 Characteristics of most significant single nucleotide polymorphisms (SNPs) in significant regions based on 5 × 10− 8

threshold

Chromosome SNP Trait Position (bp) Allele substitution effect S.E. P-value

5 5:16795260 Valeric acid 16795260 −1.91 0.28 3.84e-10

25 25:37967076 Valeric acid 37967076 −1.30 0.22 3.42e-08

15 15:25797132 PME per kg milk 25797132 −22.66 3.93 5.00e-08

4 4:115131249 PME per kg fat 115131249 −10183.45 1484.85 2.14e-10

19 19:24494923 PME per kg fat 24494923 −13241.11 2120.06 4.89e-09

28 28:21771233 PME per kg fat 21771233 − 4709.37 811.77 4.30e-08

13 13:81673732 PME per kg fat 81673732 −10135.38 1745.10 4.17e-08
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the growth of ruminal cellulolytic bacteria. Therefore,
they play a critical role in microbial fermentation [12].
According to the previous studies, milk production in
dairy cattle could increase by 5 to 10% with the addition
of isoacids to the diet [13]. Therefore, the existence of
significant association between host genome and both
iso-valeric acid, and valeric acid traits can help dairy

farmers to improve these acids availability in rumen for
ruminal cellulolytic bacteria using genetic selection.
Given that animals in this study were sampled based

on highest and lowest percentiles of milk production
EBV with an equal number of animals, this strategy can
enhance the ability of QTL detection especially in popu-
lation with small sample size. However, it has been

Fig. 2 Manhattan plot of the genome-wide p values of association for PME traits: a PME; b PME per kg milk; c PME per kg fat. The solid line
represents p < 1 × 10− 5 significance threshold
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reported that Bonferroni correction can increase the
number of type II errors, particularly when the sample
size is small [14]. Thus, chromosome-wide Bonferroni
correction can be considered more accurate than
genome-wide Bonferroni correction [15]. Since, the sam-
ple size in our GWAS was relatively small, the power of
finding SNPs that are associated with PME traits was
limited, and thus a few number of SNPs passed the
genome-wide Bonferroni correction stringent p-value
threshold.
Cattle have a considerable ability to produce high-

quality proteins from non-edible plant cell wall compo-
nents for human consumption [16]. However, it is well
established that gastrointestinal microbiota contributes
to feed digestion and enteric methane emission in rumi-
nants [17–20], as approximately 17% of global methane
emissions generated through ruminants [8]. Methane
emission is a difficult and expensive trait to measure and
is not routinely measured in dairy cattle. Furthermore,
this trait has not been directly considered in the selec-
tion index of dairy cattle. However, the detrimental en-
vironmental effects of cattle production can be reduced
significantly by improving the efficiency of cattle in con-
verting feed to milk and meat, rather than wasting en-
ergy as enteric methane. To improve this efficiency in
dairy cattle, it is crucial to understand the sources of
genetic variation in methane production among individ-
ual animals, and the genetic architecture of methane

production. van Engelen et al. [21] reported that the her-
itability of predicted methane yields ranged from 0.12 to
0.44 in Dutch Holstein-Friesian cows, and suggested that
PME based on milk fatty acids could be reduced using
genetic selection programs. de Haas et al. [7] estimated
the heritability of PME and PME per fat- and protein-
corrected milk yield to be 0.35 and 0.58, respectively.
However, they reported that seven SNPs associated with
PME in Holstein cattle could explain only 0.2% of the
total genetic variance [7]. In another GWAS, 3304 sig-
nificant SNPs were identified for PME (p < 0.005) in
which 630 of them were associated with weight-at-test
and dry-matter intake [8]. It has been estimated that 19
to 23% of methane emissions per kg of milk can be re-
duced and converted to production when cows are se-
lected based on milk fat plus protein (19%), or based on
the average genetic merit of milk fat plus protein yield
(23%) [22]. According to Yan et al. [23], an effective
method for mitigating methane emissions in dairy cows
is to select the animals based on increased milk-
production efficiency and increased energy-utilization
performance.
Understanding the genetic variation and underlying

genes associated with PME allows reduction of methane
production in cattle through marker-assisted or genomic
selection. It has been reported that genomic selection
can reduce PME up to approximately 5% over 10 years
[24]. The results of our study showed a large variation of

Table 3 The candidate or nearest genes to the most significant single nucleotide polymorphisms (SNPs) in significant regions based
on 5 × 10−8 threshold for valeric acid trait

SNP name SNP position Ensembl gene ID Gene start Gene end Gene name

5:16795260 16795260 ENSBTAG00000046197 16534698 16534778 MGAT4Ca

ENSBTAG00000020784 17207296 17208334 PTGR2a

25:37967076 37967076 ENSBTAG00000040568 37431139 37469998 ZNF789a

ENSBTAG00000020440 37513721 37524164 LOC101910000

ENSBTAG00000002090 37500102 37512370 CPSF4

ENSBTAG00000020439 37524461 37532400 BUD31

ENSBTAG00000044040 37532740 37544696 PDAP1

ENSBTAG00000046248 37546485 37559078 ARPC1B

ENSBTAG00000004242 37564390 37587556 ARPC1A

ENSBTAG00000015737 37664542 37691692 KPNA7

ENSBTAG00000007118 37777779 37801407 SMURF1

ENSBTAG00000007113 37807383 37895047 TRRAP

ENSBTAG00000005679 37902689 37918783 TMEM130

ENSBTAG00000045896 38041960 38053172 NPTX2

ENSBTAG00000019181 38227396 38280018 BAIAP2L1

ENSBTAG00000022825 38281392 38287463 BRI3

ENSBTAG00000046010 38342493 38343056 BHLHA15

ENSBTAG00000004135 38348134 38395453 LMTK2
aunknown genes in cow, the names in the table are their orthologues in other species
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Table 4 The candidate or nearest genes to the most significant single nucleotide polymorphisms (SNPs) in significant regions based
on 5 × 10− 8 for predicted methane emission (PME) per kg milk and fat traits

Trait SNP name SNP position Ensembl gene ID Gene start Gene end Gene name

Methane per kg fat 4:115131249 115131249 ENSBTAG00000046461 114631249 115631249 SUMF1a

ENSBTAG00000014372 114680160 114615444 SMARCD3

ENSBTAG00000004540 114725191 114689767 NUB1

ENSBTAG00000006232 114755250 114730382 WDR86

ENSBTAG00000003019 114779653 114773449 CRYGN

ENSBTAG00000031861 114855282 114803157 RHEB

ENSBTAG00000002917 114925565 114885501 PRKAG2

ENSBTAG00000045535 115301688 115246102 GALNTL5

ENSBTAG00000021260 115360689 115335971 GALNT11

ENSBTAG00000024199 115524670 115368063 KMT2C

ENSBTAG00000014871 115631329 115629803 CCT8L2

13:81673732 81673732 ENSBTAG00000007917 81601021 81604089 TSHZ2

ENSBTAG00000030556 81854047 81863004 ZNF217

ENSBTAG00000000835 82162091 82259990 BCAS1

19:24494923 24494923 ENSBTAG00000008324 24481721 24480297 LOC618593

ENSBTAG00000017440 24023406 23961074 METTL16

ENSBTAG00000016806 24158415 24088805 PAFAH1B1

ENSBTAG00000011786 24181331 24168990 CLUH

ENSBTAG00000020000 24452796 24395974 RAP1GAP2

ENSBTAG00000039018 24507032 24506058 OR1G1

ENSBTAG00000040362 24521504 24520572 LOC540082

ENSBTAG00000039411 24528384 24527446 LOC532238

ENSBTAG00000039633 24539905 24538976 LOC522582

ENSBTAG00000048282 24599226 24598261 LOC509525

ENSBTAG00000048099 24613735 24612770 LOC509526

ENSBTAG00000047049 24632514 24631549 LOC617122

ENSBTAG00000026859 24655261 24654314 LOC508980

ENSBTAG00000018221 24669376 24668411 LOC101902679

ENSBTAG00000046652 24677969 24677022 LOC538966

ENSBTAG00000037529 24708485 24707451 OR3A2a

ENSBTAG00000038059 24712313 24711369 OR1E1

ENSBTAG00000046960 24724257 24723313 LOC615901

ENSBTAG00000045667 24731754 24730810 LOC618124

ENSBTAG00000046217 24750164 24749223 LOC511509

ENSBTAG00000047458 24756645 24755704 LOC618112

ENSBTAG00000045899 24763240 24762296 LOC526294

ENSBTAG00000032457 24802537 24801593 OR3A3a

ENSBTAG00000015763 24824295 24809409 SPATA22

ENSBTAG00000003629 24847108 24825866 ASPA

ENSBTAG00000000020 24885437 24854533 TRPV3

ENSBTAG00000018880 24913053 24890751 TRPV1

ENSBTAG00000000829 24951464 24933750 SHPK

ENSBTAG00000000831 24972141 24951988 CTNS
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PME traits indicating that mitigation of methane emis-
sions in dairy cattle might be possible using the VFA
profile of the rumen as an indicator of methane produc-
tion. Moreover, reduction in methane emissions can also
improve feed-conversion efficiency in dairy cattle. In

addition, unlike other strategies developed to reduce me-
thane emissions in dairy cattle such as changing the
dietary formulations, feed additives, and anti-
methanogen vaccines, genetic improvements have the
benefits of being heritable, cumulative, and permanent.

Table 4 The candidate or nearest genes to the most significant single nucleotide polymorphisms (SNPs) in significant regions based
on 5 × 10− 8 for predicted methane emission (PME) per kg milk and fat traits (Continued)

Trait SNP name SNP position Ensembl gene ID Gene start Gene end Gene name

ENSBTAG00000000833 24977062 24971932 TAX1BP3

ENSBTAG00000025121 24978133 24977284 EMC6

ENSBTAG00000015258 24996301 24983919 P2RX5

28:21771233 21771233 ENSBTAG00000036111 21868711 21867759 AP2M1

PME per kg milk 15:25797132 25797132 ENSBTAG00000005843 25304051 25293299 REXO2

ENSBTAG00000005945 25434051 25419219 NXPE4

ENSBTAG00000031362 25524857 25515542 NXPE2

ENSBTAG00000000977 26451509 26101411 CADM1
aunknown genes in cow, the names in the table are their orthologues in other species

Fig. 3 Gene networks analysis for valeric acid trait. Dark circles with and without slash represent candidate genes and associated genes,
respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein
domains, respectively
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Sixty-nine genes were identified for valeric acid (n =
18), PME per kg milk (n = 4) and PME per kg fat (n =
47) that were located within 1Mb of significant SNPs.
For valeric acid two of the most promising candidate
genes (ARPC1A and TRRAP) were related to residual
feed intake (RFI) [25, 26]. It has been observed that low-
RFI pigs had a tendency toward lower valeric acid (p =
0.07) and isovaleric acid (p = 0.09) concentrations [27].
Therefore, available valeric acid concentration might be
influenced by these genes in cattle. The UniProt Knowl-
edgebase (https://www.uniprot.org/uniprot/) was used to
identify the molecular functions of ARPC1A and TRRAP
genes. ARPC1A is a component of the Arp2/3 complex,
involved in regulation of actin polymerization and to-
gether with an activating nucleation-promoting factor
mediates the formation of branched actin networks.
TRRAP is an adapter protein which can be found in dif-
ferent multiprotein chromatin complexes with histone
acetyltransferase activity that gives a specific tag for epi-
genetic transcription activation. Further, TRRAP is

required for mitotic checkpoint and normal cell cycle
progression. Furthermore, 17 candidate genes signifi-
cantly clustered in olfactory receptors activity (GO:
0004984, p = 4 × 10− 10) for PME traits. Olfactory recep-
tors genes influenced feeding behavior such as feed in-
take and preferences [28]. Furthermore, they are
associated with RFI and modulated olfactory transduc-
tion pathways in pig [29]. Since there was a positive gen-
etic correlation (ranging from 0.18 to 0.84) between RFI
and PME in Holstein-Friesian cows [7], olfactory recep-
tors genes might affect methane mission per animal. In
addition, five candidate genes including CYP51A1 on
BTA 4, PPP1R16B on BTA 13, and NTHL1, TSC2, and
PKD1 on BTA 25 suggested by Pszczola et al. [30], in-
volved in a number of metabolic processes that might be
related to methane emission. PKD1 gene was associated
with development of the digestive tract [30]. Based on
the results of gene networks analyses, there were some
contributions among candidate genes by co-expression,
pathway, physical interactions and shared protein

Fig. 4 Gene networks analysis for PME per kg milk and fat traits. Dark circles with and without slash represent candidate genes and associated
genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein
domains, respectively
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domains for valeric acid and methane emission traits.
Most of these contributions were related to physical in-
teractions between genes that was indicative of protein-
protein interaction and if two genes showed the same
protein-protein interaction, their products were linked
together. Therefore, identified candidate genes in our
study had a significant protein-protein interaction either
together or with associated genes.
Thirty-one QTLs were identified for valeric acid (n =

10), PME per kg milk (n = 2) and PME per kg fat (n =
19) that were located within 1Mb of significant SNPs.
Given that methane emission is a complex trait

influenced by many genes, and is not measured routinely
in dairy cattle (unlike the traits of milk production and
body weight), there are very limited number of QTLs as-
sociated with methane emission in the QTLdb website.
Most of the QTLs that are in close distance to SNPs as-
sociated with PME traits have been found to influence
milk production and its components, body weight, and
RFI, rather than methane production. However, all SNPs
associated with valeric acid in our study were close to
the reported QTLs for milk production and its compo-
nents, and RFI. The correlation coefficients between
EBV for methane intensity with milk yield, fat yield,

Table 5 QTLs located in close distance to the most significant single nucleotide polymorphisms (SNPs) associated with valeric acid
and predicted methane emission (PME) per kg milk and fat traits

Trait SNP name QTL Trait QTL Symbol

PME per kg fat 4:115131249 Not Available

19:24494923 Milk protein percentage PP

Milk fat yield FY

Milk stearic acid percentage MFA-C18:0

Milk conjugated linoleic acid percentage CLAC18:2

Milk trans-vaccenic acid percentage MFA-C18:1 T

Milk oleic acid percentage MFA-C18:1

Milk fat yield FY

Average daily gain ADG

Body weight (18 months) BW

Body weight (24 months) BW

Body weight (6 months) BW

Body weight (birth) BW

Body weight (yearling) W365

Residual feed intake RFI

Body weight (weaning) WWT

28:21771233 Milk yield MY

Body weight (mature) MWT

Body weight (birth) BW

Body weight (birth) BW

PME per kg milk 15:25797132 Milk protein percentage PP

Height (mature) MHT

Valeric acid 5:16795260 Milk fat percentage FP

Milk yield MY

Milk protein yield PY

Milk yield (daughter deviation) DDMY

Milk fat yield FY

Milk alpha-lactalbumin percentage MALACTP

Milk protein percentage PP

Retail product yield YIELD

25:37967076 Milk yield MY

Residual feed intake RFI

Jalil Sarghale et al. BMC Genetics          (2020) 21:129 Page 10 of 14



protein yield, and somatic cell score were estimated as −
0.68, − 0.13, − 0.47, and 0.07, respectively [31]. Further, a
positive genetic correlation between RFI and PME (ran-
ging from 0.18 to 0.84) was reported in Holstein-
Friesian cows [7]. Herd et al. [32] also reported a high
correlation between daily methane production and year-
ling weight (0.85), and dry-matter intake (0.79) in beef
cattle. These reports indicated that some common genes
and QTLs were influencing traits related to methane
emission and milk production that was confirmed by
our study. However, as the cows were selected based on
milk production EBVs in this study, the identified QTLs
and genes around significant SNPs might be increasing
milk or fat production and consequently lowering me-
thane emission per milk or fat amount. Therefore, fur-
ther studies are needed to validate the results of our
GWAS and investigate the biological effects of the vali-
dated SNPs on milk production and methane emission.

Conclusions
Although 1045 SNPs passed the suggestive-association
threshold (p < 10− 5) in our GWAS, only 33 of them
reached the significant-association threshold (p <
5 × 10− 8) for PME per kg milk (2 SNPs); PME per kg fat
(14 SNPs) and valeric acid (17 SNPs) traits. Furthermore,
17 and 40 candidate genes were discovered around the
significant SNPs for valeric acid and PME (per kg milk
and fat) traits. According to the GO term analysis, six
promising candidate genes were clustered in organelle
organization for valeric acid trait, and 17 candidate
genes were clustered in olfactory receptors activity for
PME trait. Moreover, the SNPs that were found in our
GWAS were close to QTLs for milk yield and its com-
ponents, body weight, and RFI. High correlations of
these traits with PME traits and overlap of our identified
genomics regions with previously reported QTLs, as well
as the existence of olfactory receptors activity genes for
PME traits associated with feed intake and preferences
could confirm that these SNPs can be good candidates
for methane emission. Overall, our findings suggest that
marker-assisted and genomic selection could be used to
improve the difficult and expensive-to-measure pheno-
types such as PME. Moreover, prediction of methane
emission by VFA indicators could be useful for increas-
ing the size of the reference population required in
GWAS and genomic selection.

Methods
Animals and data
Animals were selected using two-tailed strategy pro-
posed by Jiménez-Montero et al. [33] based on the esti-
mated breeding values (EBVs) for milk yield because
there was a high negative genetic correlation (− 0.68) be-
tween milk yield EBVs and methane intensity e.g. [31],

which was almost confirmed by our data set in which
the phenotypic correlation between milk yield EBVs and
predicted methane emission was estimated to be − 0.47.
Hair and rumen digesta samples were collected from
150 Iranian Holstein cattle in a breeding population
(Ferdous Pars Dairy Farm, Isfahan, Iran) in May 2016.
Animals were not euthanized after the study because of
the safe methods used for sampling. Estimation of breed-
ing values were performed by National Animal Breeding
Centre of Iran (Karaj, Iran) using lactation model follow-
ing the Eq. 1 [34]:

yij ¼ μþ hysi þ aij þ eij ð1Þ

where yij is milk yield (adjusted to 305 days and twice a
day milking); μ is the population mean; hysi is the effect
of herd-year-season group i; aij is the animal breeding
for jth animal and ith herd-year-season group, and eij is
the random residual effects. The mean of the accuracy
of estimated breeding values for milk yield was 0.61 [34].
The sampled animals were progeny of 42 sires and 150

dams and were born from 2011 to 2013. All animals
were fed the same diet of 57.1% concentrate (barley,
corn, soybean meal, lime, fish meal, meat meal, salt, fat
meal, bentonite, soybean, biosaf, mineral supplement
and magnesium oxide) and 42.9% forage (alfalfa, straw
and corn silage) for at least two months before the sam-
ple collection. Animals were fed four times per day
(morning, noon, evening and night) and had ad libitum
access to water. The diet was a total mixed ration with
49% of dry matter (DM), 16.5% crude protein (60%
rumen degradable protein and 40% rumen undegradable
protein), 29% neutral detergent fiber, 21% acid detergent
fiber, 4%lignin, 7% ash and net energy for lactation of
1.77 Mcal per kg of DM. The average amount of dry
matter intake was 27.3 kg per cow per day.

Traits studied and data collection
The rumen digesta samples were shipped to the Univer-
sity of Tehran’s Animal Nutrition Laboratory (Karaj,
Iran) and VFA measurements were performed on these
samples using the method proposed by Ottenstein and
Bartley [35].
The methane emission was predicted using the Eq. 2

[36]:

CH4 mlð Þ ¼ 22:4
� 0:5� Ac − 0:25� Prþ 0:5� Buð Þ

ð2Þ
where CH4 is the PME, and Ac, Pr, and Bu are the con-
centration of acetic acid (mM), propionic acid (mM),
and butyric acid (mM), respectively.
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The traits include PME (ml), PME per kg milk (ml),
PME per kg fat (ml), acetic acid (%), propionic acid (%),
butyric acid (%), valeric acid (%) and isovaleric acid (%).
The ratio of PME per cow per day to the milk or fat
products per cow per day was used to estimate PME per
kg product. After removing the outlier values (observa-
tions more than 3 standard deviations away from the
mean), 147 samples for valeric acid and isovaleric acid,
and 146 samples for the rest of the traits were remained
for GWAS analyses. In our study, acetic acid (%), pro-
pionic acid (%) and butyric acid (%) had high correlation
with PME (0.85, − 0.89 and − 0.14, respectively) and
PME per kg of milk (0.60, − 0.62 and − 0.09, respectively)
and low correlation with PME per kg of fat (0.17, − 0.17
and − 0.11, respectively).

Genotypic data
A total of 150 cows were genotyped using the GGP-LD
v4 SNP panel consists of 30,108 SNPs following the
manufacturer’s protocol (GeneSeek, Nebraska, United
States). The SNPs were removed from the genotyping
data for call rate < 95%, minor allele frequency (MAF) <
0.05, and Chi-square < 10− 6 of Hardy-Weinberg equilib-
rium test. A total of 23,835 SNPs were retained in the
analysis after the filtering. Given the markers density
largely affects the power of QTL detection, imputation
from BovineSNP30 panel to sequence data was carried
out using stepwise imputation from the BovineSNP30 to
the BovineHD beadchip (578,505 SNPs) and to sequence
data (12,063,146 SNPs) [37]. The R2 was between 0.85
and 0.93 for imputation of high density to sequence, and
between 0.65 and 0.84 for imputation of 54 k to se-
quence [38]. Furthermore, Van Binsbergen et al. [37]
could improve the mean accuracy of imputation from
0.37 to 0.65 using the stepwise imputation (Bovi-
neSNP50 (3132 SNPs) to BovineHD (40,492 SNPs) and
then to sequence data (1,737,471 SNPs) using chromo-
some 1 data). In the present study, stepwise imputation
was carried out using Minimac3 software [39].
The 1000 Bull Genomes Project database including 129,

43, 15, and 47 key ancestors from global Holstein-Friesian,
Fleckvieh, Jersey, and Angus breeds, respectively was used
for imputation [10]. The same quality control was per-
formed on sequence data, and a total of 12,063,146 SNPs
were retained for the analysis after filtering. Moreover,
Eagle (version 2.3) was used to phase genotypes before
using Minimac3 for reference and target populations sep-
arately [40]. Finally, the imputed genotypes with accuracy
lower than 0.30 were removed [41] and a total of 6,583,
595 SNPs were retained for further analysis.

Analysis of fixed effects
Data were analyzed by the least squares analysis of vari-
ance using the general linear model procedure of the

SAS 9.0 (SAS, Institute Inc., Cary, NC). For analyzing
PME, PME per kg milk, PME per kg fat, acetic acid, pro-
pionic acid, butyric acid, valeric acid and isovaleric acid,
the contemporary group (11 levels) and age were fitted
to the model as fixed effect and covariate factor,
respectively.

Genome-wide association studies
Association studies between the imputed genotypes and
the phenotypes—PME (ml); PME (ml) per kg milk; PME
(ml) per kg fat; and VFAs—were performed using
EMMAX [42]. EMMAX simultaneously adjusted the
tests for both population stratification and relatedness in
the association study. The model used for GWAS is
shown in Eq. 3:

y ¼ Xβþ Zuþ e ð3Þ

where y is the vector of phenotypic values; X is the de-
sign matrix relating phenotypes to their corresponding
fixed effects; β is the vector of fixed effects (contempor-
ary group, age, and one SNP at a time); Z is the design
matrix relating the phenotypes to their corresponding
random polygenic effects; u is the vector of random
polygenic effects; and e is the vector of random residual
effects. Further, we assumed that u ~N (0, Kσ2

gÞ and
e ~N (0, Iσ2

eÞ, where I is an identity matrix, and K is the
kinship matrix constructed from sequence data.

Significance levels
The following methods were used to determine the sig-
nificance threshold of SNPs: 1) significance threshold of
p < 5 × 10− 8 as proposed by Reed et al. [43]; 2) genome-
wide Bonferroni correction with significance threshold
of p < 7.59 × 10− 9 = p < 0.05 / total number of SNPs [44];
and 3) chromosome-wide Bonferroni correction with
significance threshold of p < 0.05 / total number of SNPs
on each chromosome [45]. The latter was used because
Bonferroni correction would ignore the linkage between
SNPs leading to conservative correction and high false-
negative rate [15].

Post-GWAS bioinformatics analysis
Ensembl annotation of UMD3.1 genome version
(http://www.ensembl.org/biomart/martview) was used
to identify the candidate genes and then human genes
orthologous in Ensemble BioMart were identified
using the gene identifiers. The DAVID Bioinformatics
Resources version 6.7 (http://david.abcc.ncifcrf.gov)
was used to carry out gene ontology (GO) analysis.
Finally, the gene networks were drawn by GeneMA-
NIA webserver (http://genemania.org/).
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Annotating the discovered QTL with previously reported
QTL for other traits
The cattle QTLdb (https://www.animalgenome.org/cgi-
bin/QTLdb/BT/index) was used to annotate QTLs
within 1Mb of the significant variants associated with
the studied traits.
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