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Abstract

Background: Multi-parent populations (MPPs) are important resources for studying plant genetic architecture and
detecting quantitative trait loci (QTLs). In MPPs, the QTL effects can show various levels of allelic diversity, which can
be an important factor influencing the detection of QTLs. In MPPs, the allelic effects can be more or less specific. They
can depend on an ancestor, a parent or the combination of parents in a cross. In this paper, we evaluated the effect of
QTL allelic diversity on the QTL detection power in MPPs.

Results: We simulated: a) cross-specific QTLs; b) parental and ancestral QTLs; and c) bi-allelic QTLs. Inspired by a real
application in sugar beet, we tested different MPP designs (diallel, chessboard, factorial, and NAM) derived from five or
nine parents to explore the ability to sample genetic diversity and detect QTLs. Using a fixed total population size, the
QTL detection power was larger in MPPs with fewer but larger crosses derived from a reduced number of parents. The
use of a larger set of parents was useful to detect rare alleles with a large phenotypic effect. The benefit of using a
larger set of parents was however conditioned on an increase of the total population size. We also determined
empirical confidence intervals for QTL location to compare the resolution of different designs. For QTLs representing
6% of the phenotypic variation, using 1600 F2 offspring individuals, we found average 95% confidence intervals over
different designs of 49 and 25 cM for cross-specific and bi-allelic QTLs, respectively.

Conclusions: MPPs derived from less parents with few but large crosses generally increased the QTL detection
power. Using a larger set of parents to cover a wider genetic diversity can be useful to detect QTLs with a reduced
minor allele frequency when the QTL effect is large and when the total population size is increased.

Keywords: Multi-parent populations (MPPs), Quantitative trait locus (QTL), Allelic diversity, Simulation, R package
mppR

Background
The use of multi-parent populations (MPPs) for quantita-
tive trait locus (QTL) detection is growing in popularity.
With respect to bi-parental crosses, MPPs represent
greater genetic diversity. With respect to association pan-
els, the use of MPP designs increases the knowledge about
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the population structure. This information can be inte-
grated in the QTL analysis to reduce the chance of false
positive detection [1]. Here, we focus on MPPs com-
posed of bi-parental crosses without further intercrossing.
This definition does not cover MPPs like the multi-parent
advanced generation inter-cross (MAGIC) populations
[2]. Different statistical procedures exist to detect QTLs in
MPPs but generally those methods, like the one adapting
models used in genome-wide association studies [3, 4], do
not model properly the diversity of allelic effects present
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in MPPs. Similarly, most of the MPPs simulation studies
have not addressed the wide range of QTL allelic effects
present in those populations. Therefore, we investigated
the QTL detection power in MPPs using scenarios that
accounted better for the MPP QTL allelic diversity.

MPP design
Many MPP designs have been evaluated through simu-
lation studies [3, 5–7]. The nested association mapping
(NAM) design is a collection of crosses between a central
parent and peripheral lines [3] (Fig. 1). In a diallel design,
each of p parent is crossed with the p−1 other parents [8].
In a factorial design, a set of parents A, is fully or partially
crossed with another set of parents B [8].
To define an MPP design, we can look at the crossing

scheme, the number of parents or crosses, and the num-
ber of individuals per cross. A larger set of parents covers
a wider genetic diversity by sampling more alleles. For a
given amount of resources (fixed total population size),
more parents imply more crosses and therefore reduces
the number of individuals per cross. When more alle-
les segregate, each allele has a lower frequency in the
population. Therefore, the number of parents represents
a trade-off between the number of alleles sampled and
the sample size (total number of offspring lines in the
breeding population) to detect their effect.
According to the literature, MPP designs with a reduced

number of large crosses are more powerful [5, 9, 10].
Some authors tried to determine an optimal number of
parents and of individuals per cross. For example, in dial-
lel and single round robin designs, [11] found that the
optimal number of parents followed from the crosses
having 100 offspring lines. In MPPs with a fixed popu-
lation size, [7] determined analytically that the detection
power was only influenced by the number of parents and
not by the MPP design. She showed however that the
power reached a plateau after six parents. The trade-off
between the required genetic diversity to be covered and

the sample size to detect QTL alleles is a question that
deserves further investigation. The answer to this ques-
tion will be influenced by the QTL allelic diversity present
in MPPs.

QTL allelic diversity
In MPPs, since the crosses are derived from multiple par-
ents, more alleles can potentially segregate with effects
that are more or less diverse/consistent. We define four
types of QTL allelic effects from the most diverse to
the most consistent. In an MPP, the QTL effects can be
defined in terms of allele origin and/or mode of action
(Fig. 2). The first QTL allelic effect (cross-specific) repre-
sents an epistatic interaction between a QTL allele and a
cross genetic background [12]. Thus, cross-specific QTL
effects can only be estimated within crosses. The other
QTL allelic effects are defined in terms of parental, ances-
tral, or single nucleotide polymorphism (SNP) alleles with
consistent effects across crosses. The QTL allelic effects
can be consistent because the alleles are specific to: 1)
a common parent (parental), 2) a common ancestral line
(ancestral), or 3) a common causal SNP (bi-allelic).
In the rest of the paper, we will refer to these four

types of QTL effects calling them: cross-specific, parental,
ancestral, and bi-allelic. Generally, the number of allelic
effects that needs to be estimated decreases from the
cross-specific to the bi-allelic QTLs. Therefore, the sam-
ple size required to accurately estimate the individual
allelic or cross-specific QTL effects increases from the
cross-specific to the bi-allelic QTLs. We hypothesize that
the QTL allelic diversity has a strong influence on the
detection of QTLs in MPPs.

Statistical models
In MPPs, the choice of the statistical model used for
QTL detection should consider the MPP design fea-
tures and the variety of QTL effects. Xie et al. [10],
Xu [9] and Verhoeven et al. [5] assumed cross-specific

Fig. 1 Diallel: regular pattern of pairwise crosses between a set of parents. Chessboard: diallel omitting a subset of crosses in diagonal fashion.
Factorial: crosses between a set of parents A and another set of parents B. NAM: Crosses between a central parent and a set of peripheral parents
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Fig. 2 QTL effects illustration. a) cross-specific QTL: the allelic effects are different in every crosses due to some interaction between a QTL effect and
the cross genetic background b) parental QTL: each parent carries a unique allele with consistent effect across the MPP c) ancestral QTL: parents
inherit a reduced number of alleles due to shared ancestor. Each ancestral allele has a consistent effect across the MPP d) bi-allelic QTL: parent with
the same SNP marker score are assumed to have inherited the same allele

QTL effects, which statistically corresponds to a satu-
ratedmodel.Muranty [7] and Leroux et al. [13] considered
the connection between crosses due to common parents
using consistent parental QTL effects. Jansen et al. [6] and
Klasen et al. [14] estimated multi-allelic QTL effects with
an allele number between two and the number of parents.
Liu et al. [11] used bi-allelic QTL models similar to the
ones used in association studies. The Bayesian approach
proposed by [15] is an elegant solution that estimates the
number of alleles and the global QTL variance. However,
according to the authors, with 600 individuals, it can only
distinguish five alleles effectively. The computation in a
Bayesian approach can also be intensive.
To capture the MPP QTL effect diversity, we used mod-

els assuming the cross-specific, parental, ancestral, and
bi-allelic QTLs defined previously. We ran simulations
based on genetic models with different levels of QTL
allelic diversity that represent the genetic architectures in
MPPs. We evaluated the performance of our models on
four common MPP designs with five or nine parents to
explore the ability to sample genetic diversity for QTL
detection. Besides that, we also evaluated the effects of the

population size, the QTL allelic diversity, the QTL effect
size, and the detection model on the detection power,
the resolution, and the false discovery rate. The results
allowed us to provide guidelines to design MPPs in sugar
beet. Those guidelines could be useful for other MPPs or
crops.

Methods
MPP design
We evaluated the detection of QTLs on four MPP designs
composed of F2 crosses: diallel, chessboard, factorial, and
NAM (Fig. 1). Given a fixed total population size, these
designs represent different strategies to sample the QTL
allelic diversity. The diallel design maximizes the num-
ber of estimable allele genetic background interactions
(each of p parent is used in p − 1 crosses) but limits the
number of individuals per cross. The chessboard design
is a compromise that samples a reduced number of allele
by background interactions (each parent is used in p/2
crosses if p is even, or [ (p−1)/2] or [ (p−1)/2]+1 crosses
if p is odd) but allows more individuals per cross. The fac-
torial design can be useful to cross two contrasting sets
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of parents (e.g. donors and recipients). Finally, the NAM
design can be used to explore allelic diversity with respect
to a reference parent [16]. In our case, the NAM design
had the largest cross size.
We simulated the MPP designs using the genotypic data

from nine parents coming from the sugar beet breeding
program of KWS SAAT SE. Six parents were almost fully
inbred with < 1% of heterozygous markers and three
were partially inbred with around 18% of heterozygous
markers. The use of an existing set of parents provided
a realistic basis to our simulations in terms of genetic
properties. We simulated a reference diallel population
composed of the 36 possible F2 crosses between the nine
parents. Each cross contained 450 genotypes, with recom-
bination and meiosis simulated using a random Poisson
process based on the genetic map. For each in silico QTL
mapping experiment, we simulated the QTL effects on
the reference population and sampled the genotypes from
that population to form realizations of the tested MPP
designs. We fixed the total population size to 800 or 1600
and “crossed” either five or nine parents. The number of
crosses varied from 4 to 36 and the cross size from 22 to
400 individuals (Table 1).

QTL genetic model
The QTL effects were simulated from a genetic map
containing 5000 SNPmarkers spread across nine chromo-
somes for a total length of 968 cM (See Additional file 1).
The average minor allele frequency (MAF) of the 9 par-
ents SNP markers was 0.29 with values between 0.04 and
0.5. The average genetic distance between markers was
equal to 0.2 cM with a maximum of 10.6 cM. We simu-
lated seven types of QTLs (Table 2 and Additional file 2).
Q1 and Q2 were cross-specific and had non-zero allelic
effects in half and one third of the crosses, respectively.
Setting some cross-specific effects to zero implies that
the QTL does not interact with those backgrounds, which

Table 1 MPP designs properties with the number of parents (N
par), the number of crosses (N cr) and the number of individuals
per crosses (N ind/cr)

MPP design N par N cr N ind/cr (N = 800/1600)

Diallel 5 10 80/160

Diallel 9 36 22/44

Chessboard 5 6 133/266

Chessboard 9 20 40/80

Factorial 5 6 133/266

Factorial 9 20 40/80

NAM 5 4 200/400

NAM 9 8 100/200

Table 2 Simulated QTL effects described by type of allelic effect,
segregation, number of alleles or QTL effects, and QTL genetic
model

QTL Allelic eff. Segregation N all. (Q. eff.) Gen. mod.

Q1 cr. sp. 1/2 of the cr. 18 M1 (M5)

Q2 cr. sp. 1/3 of the cr. 12 M1 (M5)

Q3 parental all parents 9 M2 (M5)

Q4 parental 1 parent 2 M2 (M5)

Q5 ancestral all ancestors 4 M3 (M5)

Q6 ancestral 1 ancestor 2 M3 (M5)

Q7 bi-allelic minor SNP allele 2 M4 (M5)

seems a reasonable assumption to make from our expe-
rience of analyzing real data. Q3 and Q4 were parental.
Q3 had a different allelic effect for each parents, while
Q4 only had a single non-zero parental allelic effect ran-
domly assigned to one of the parents. Q5 and Q6 were
ancestral, with ancestry groups determined by cluster-
ing the nine parental lines on local genetic similarity in
a 10 cM window using the R package clusthaplo [13].
On average, we detected 3.9 ancestral alleles along the
genome. While Q5 had a different allelic effect for each
ancestral group, Q6 only had a single non-zero ancestral
allelic effect randomly assigned. Q4 and Q6 were bi-allelic
QTLs with a parental and ancestral basis. The last QTLs
(Q7) were bi-allelic with an effect attached to the minor
SNP allele.
We sampled the non-zero QTL allelic effects from a

uniform distribution (min=1; max=10) with the signs ran-
domly assigned with an equal probability. In each in silico
QTL mapping experiment, we simulated genetic models
with eight QTLs. Each QTL was located on a differ-
ent chromosomes keeping one chromosome free to study
the false discovery rate. We simulated four QTLs with a
small effect and four with a big effect representing 2%
and 6% of the phenotypic variation, respectively. The total
genetic contribution was always equal to 32% of the phe-
notypic variance. The sampled QTL allelic values were
scaled to make the realized QTL variances equal to 2 or
6%. The remaining phenotypic variation representing the
environmental and plot error was drawn from a normal
distribution with proper variance. For details about the
phenotype simulation see Additional files 3 and 4.
We simulated five QTL genetic models (M1-M5). The

first four models used only QTLs with a single type of
allelic effect. M1 contained only cross-specific QTLs (Q1
and Q2), M2 only parental QTLs (Q3 and Q4), M3 only
ancestral QTLs (Q5 and Q6), and M4 only bi-allelic QTLs
(Q7). In the last multi-QTL effects (MQE) model (M5), a
combination of all above defined QTL effects was used.
M5 contained one copy of Q1 to Q6 and two copies
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of Q7 to have two QTLs of each type. We assume that
those models, especially the MQE model, will cover well
the diversity of allelic effects in MPPs. In the rest of
the paper, we will refer to the QTL genetic models call-
ing them cross-specific, parental, ancestral, bi-allelic and
MQE genetic models or we will refer directly to their types
of QTL allelic effects.

QTL detection model and procedure
The QTL detection models had the following form:

y = Xcβc + XQβQ + r

where Xc represented a cross-specific intercept. XQ and
βQ represented the QTL incidence matrix and the QTL
effects that varied according to the number of QTL alleles
or estimated effects [17]. We evaluated the QTL detection
performances of four models assuming: cross-specific,
parental, ancestral, and bi-allelic QTL allelic effects. The
residual term r followed the linear model assumption of
normality with a homogeneous variance r ∼ N(0, Iσ 2

r ).
The QTL detection procedure was composed of a sim-

ple interval mapping scan to select cofactors. On each
chromosome, we selected positions with −log10(p) >

4. We applied an exclusion window of ±50 cM around
the selected cofactors and iterated until no further QTLs
were detected for inclusion in the cofactor set. The large
exclusion window reduced the number of cofactors per
chromosome to avoid model overfitting. Then, using the
cofactors we performed a composite interval mapping to
build a multi-QTL model. The QTLs were selected with
an exclusion window of ±30 cM around the selected posi-
tions with the same procedure and threshold used for
cofactors selection. The final list of QTLs was evaluated
using a backward elimination.
The choice of a −log10(p) > 4 threshold was not based

on precise calculations but supported by values deter-
mined by permutation in real data analyses. For example,
in [18], the threshold values varied between 3.4 to 5.6
for a type I error of 10%. The QTL detection scans were
performed using the R package mppR [19].

Evaluation statistics
We evaluated the QTL detection power at the whole
genome level by calculating the true positive rate (TPR) as
the number of simulated QTLs correctly detected divided
by their total number (in %) (TPR = N simulated QTLs
detected/N simulated QTLs). We assumed a detection
window size around the simulated QTLs of±5, 10, 20 cM,
or the whole chromosome (TPR chr). We calculated the
false discovery rate (FDR) at the whole genome level as
the percentage of detected QTLs that were distant from
a simulated QTL position by more than 5, 10 or 20 cM
(FDR = N falsely detected QTLs/N detected QTLs). The

false discovery rate on the chromosomes without simu-
lated QTLs (FDR chr) was the percentage of runs where
a QTL was wrongly detected on those chromosomes. The
TPR denominator was the number of simulated QTLs (8)
and the FDR denominator was the number of detected
QTLs.
We evaluated the resolution of the QTL detection

(dQTL) by measuring the distance between a simulated
QTL and the largest significant peak on the chromosome.
This information allowed us to determine a distribution
for dQTL and to provide an ad hoc confidence inter-
vals approximation for QTL positions detected in MPPs
composed of F2 crosses. We defined the empirical con-
fidence interval as CIα = 2 ∗ dQTLα , where dQTLα is
the α quantile of the dQTL distribution. The value dQTLα

is multiplied by two to account for situations where the
detected QTL is positioned on the left or the right side of
the true QTL. CIα is the interval around the QTL position
that contains the true QTL position with an α probability.
To evaluate the effect of the different simulation param-

eters, we computed analyses of variance (ANOVAs) with
the TPR defined with a detection limit of at 10 cM as
response and as explanatory factors: the MPP design (D),
the number of parents (Np), the QTL detection model
(M), the QTL size (Qs), and the type of QTL effect (Qe)
(Model 1). We included in the model the two-way interac-
tions between theMPP design, the number of parents, the
QTL detection model, and the QTL size. The error term
was assumed to be normally distributed e ∼ N(0, Iσ 2

e ).

TPR = D + Np + M + Qs + Qe + D × Np
+ D × M + D × Qs + Np × M (1)
+ Np × Qs + M × Qs + e

We interpreted the ANOVA results by calculating least-
squares means, following a model selection procedure
that retained significant interactions and significant main
effects as well as non-significant main effects that under-
lie significant interactions. Least-squares means allowed
us to get predictions averaged over a set of parameters to
understand their effects on the TPR. Model 1 evaluates
jointly the effect of all parameters and determines their
relative contribution while, in most of the MPP simula-
tions, the influence of each parameter was analyzed one
by one. We computed the least-squares means using the R
package emmeans [20].
We performed 50 replications of each in silico QTL

mapping experiment for a different QTL genetic model
(M1-M5). For each replication, we sampled MPPs given
the population sizes (N = 800 or N = 1600), the MPP
design (diallel, chessboard, factorial and NAM), and the
number of parents (five or nine). On each sampled
MPP, we performed QTL detection by the cross-specific,
parental, ancestral, and bi-allelic models. It represented
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a total of 16,000 calculated QTL profiles with 128,000
simulated QTL positions. An R script reproducing all
simulation steps is available in Additional file 4. Due to
restriction about data availability we used the EU-NAM
[21] parent genetic data for the companion example.

Results
Global measurements
Table 3 contains the average TPR and FDR at 5, 10, and
20 cM, and the average dQTL per population size and per
QTL geneticmodel. The results are averaged over all other
parameters (MPP design, number of parents, QTL detec-
tion model, QTL size, and QTL type). The TPR increased
with the window size around the simulated QTL. How-
ever, the increase between the TPR at 20 cM and TPR chr
(no minimum distance) was limited.
FDR chr (no simulated QTL) varied between 0.1 and

1.7%. On the chromosomes where QTLs were simulated,
the FDRs were larger (e.g. at 10 cM around 25% and 20%
for the N = 800 and N = 1600 populations respectively).
The FDR decreased from the cross-specific and parental
QTLs to the ancestral and bi-allelic ones. This tendency
was more pronounced in the N = 1600 populations. For
example, at 10 cM, the FDR was equal to 28%, 24%, 14%
and 13% for the cross-specific, parental, ancestral, and
bi-allelic genetic models, respectively.
dQTL followed a trend similar to the FDR and decreased

from the cross-specific and parental QTLs to the ancestral
and bi-allelic ones. For example, in the N = 1600 popu-
lations, dQTL decreased from 6.5 cM to 3.9 cM for the
cross-specific and bi-allelic QTLs, respectively. In Table 4,
we calculated the empirical confidence intervals for the
90, 95, and 99 percentile values of the dQTL distribution
per QTL and population size for each genetic model. For
an illustration of the dQTL distributions, see Additional

file 5. Table 4 gives an estimation of the QTL confidence
intervals. For example, in a population of N = 800, with
a mix of QTL effects (MQE) explaining each 6% (2%) of
the phenotypic variation, the 95% confidence interval was
equal to 46 cM (70 cM). Finally, we noticed that increas-
ing the population size from 800 to 1600 reduced dQTL
more for the ancestral and bi-allelic QTLs than the cross-
specific and parental ones. In general, the TPR, FDR,
and dQTL results obtained for the MQE genetic model
seemed to be intermediate to the other genetic models.

MPP design
In Fig. 3, we plotted the TPR least-squares means over
the MPP design per QTL size for the N = 800 and N =
1600 populations using the ANOVA results frommodel 1.
Detailed ANOVA results and F-statistics can be found
in Additional file 6. The TPR least-squares means show
that the MPP design was most influential for the cross-
specific QTLs. The cross-specific QTLs are the only ones
for which the TPR increases significantly from the diallel
to the NAM design.

Number of parents
To evaluate the effect of the parent numbers, we plotted
the TPR least-squares means from model 1 against the
number of parents and the QTL size in Fig. 4. We could
observe that generally the MPP designs with nine parents
had a lower TPR. This trend was consistent in the N = 800
populations. However, in the N = 1600 populations, for
the big QTLs, the TPR increased from five to nine parents
for the parental, ancestral, and bi-allelic QTLs.
We investigated in more detail the situations where

sampling nine parents increased the TPR. In Fig. 5, we
plotted the TPR least-squares means against the number
of parents for the big (6%) simulated QTLs (Q1 to Q7) in

Table 3 Average TPR, FDR and dQTL results. The TPR and FDR are measured with detection window sizes around the simulated QTL of
±5, 10 and 20 cM, or the whole chromosome (TPR chr). FDR chr is the average FDR on the chromosome with no simulated QTL. The
results are presented per population size (N = 800 and N = 1600) and QTL genetic model (cross-specific, parental, ancestral, bi-allelic,
and MQE)

N = 800 N = 1600

Genetic model Cr. sp. Par. Anc. Biall. MQE Cr. sp. Par. Anc. Biall. MQE

TPR (%)(5cM) 24 16 25 26 23 42 34 48 50 42

FDR (%)(5cM) 45 47 35 32 40 42 41 26 24 33

TPR (%)(10cM) 32 22 30 31 29 52 43 56 56 51

FDR (%)(10cM) 28 28 21 19 24 28 24 14 13 20

TPR (%)(20cM) 38 27 35 35 34 61 51 61 61 58

FDR (%)(20cM) 12 11 8 7 10 13 10 6 5 9

TPR chr (%) 41 30 37 37 37 66 56 64 63 62

FDR chr (%) 0.3 0.9 0.2 0.6 0.5 1.7 0.9 0.1 0.6 0.7

dQTL (cM) 7.1 8 6.1 5.3 7.1 6.5 6.8 4.3 3.9 5.4
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Table 4 Empirical confidence intervals in cM based on the 90, 95 and 99 percentile values from the dQTL distribution per QTL size
(small 2% and big 6%), per QTL genetic model (cross-specific, parental, ancestral, bi-allelic, and MQE), and per population size (N = 800
and N = 1600)

small QTLs (2%) big QTLs (6%)

Cr. sp. Par. Anc. Biall. MQE Cr. sp. Par. Anc. Biall. MQE

.90 42 48 49 47 53 33 38 30 26 34

N=800 .95 60 61 65 65 70 49 53 41 39 46

.99 114 109 107 141 110 83 105 78 64 81

N det. QTL 1461 802 1030 954 1142 3768 3050 3734 3777 3627

% det. QTL 23 13 16 15 18 59 48 58 59 57

.90 36 43 34 32 37 34 32 17 15 25

N=1600 .95 54 58 49 47 51 49 46 26 25 39

.99 95 93 91 81 88 85 79 56 49 69

N det. QTL 3271 2130 2782 2624 2658 5113 5012 5365 5487 5217

% det. QTL 51 33 43 41 42 80 78 84 86 82

the N = 1600 populations. For the bi-allelic QTLs (Q7), we
split the results in a low and a high MAF category given
that the QTL MAF was below or above the median of all
SNP alleles MAF. For the parental, ancestral and bi-allelic
effects we noticed that sampling a larger number of par-
ents was more useful for the QTLs with a reduced number
of QTL allelic effects and a reduced MAF (Q4, Q6 and
Q7 lowMAF). The best example is the difference between
Q3 and Q4. Q3 had 9 parental alleles different from zero
where Q4 only had one non-zero parental allele. The TPR
of Q3 decreased while the TPR of Q4 increased when we
sampled nine parents in place of five.

QTL detection model
In Fig. 6, we plotted the TPR least-squares means from
model 1 against the QTL detection model and the
QTL sizes. The QTL detection model had a signifi-
cant effect for all QTL genetic models except for the
MQE. The QTL detection model effect was consistent
with the way we simulated the QTLs. The QTL detec-
tion model that corresponded with the data generating
model showed the best performance. For example, ances-
tral QTLs were detected with the largest TPR using an
ancestral model. This result was stronger for the big
QTLs.

Fig. 3 TPR least-squares means over the MPP designs (diallel, chessboard, factorial and NAM) and the QTL sizes (small 2% and big 6%) for all QTL
genetic models (cross-specific, parental, ancestral, bi-allelic, and MQE) per population size (N = 800 and N = 1600)
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Fig. 4 TPR least-squares means over the number of parents (5 and 9) and the QTL sizes (small 2% and big 6%) for all QTL genetic models
(cross-specific, parental, ancestral, bi-allelic, and MQE) per population size (N = 800 and N = 1600)

Discussion
Themain objective of this article was to evaluate the influ-
ence of the QTL allelic diversity on MPP QTL detection.
We simulated QTLs with different levels of allelic diversity
and evaluated the QTL detection power in different MPP
designs (diallel, chessboard, factorial, NAM), derived from
five or nine parents. Changing the number of parents pro-
duced variation in the covered genetic diversity and the
number of individuals per cross. We also varied the total
population size, the size of the QTL effect, and the QTL
detection model used. We evaluated jointly the effect of

all parameters in a statistical model to determine their rel-
ative contribution, and we determined QTL confidence
intervals.

MPP design
According to the least-squares means (Fig. 3) and the
ANOVA results (Additional file 6), the MPP design
was mostly important for the cross-specific QTLs. For
those QTLs, designs with a reduced number of large
crosses like the NAM performed better than designs
with many small crosses like the diallel. Obviously,

Fig. 5 TPR least-squares means over the number of parents (5 and 9) for big (6%) simulated QTLs Q1-7 in populations N = 1600. The bi-allelic QTLs
(Q7) were split into a low and a high MAF category given that their MAF was below or above the median



Garin et al. BMC Genomic Data            (2021) 22:4 Page 9 of 12

Fig. 6 TPR least-squares means over the QTL detection models (cross-specific, parental, ancestral, and bi-allelic) and the QTL sizes (small 2% and big
6%) for all QTL genetic models (cross-specific, parental, ancestral, bi-allelic, and MQE) per population size (N = 800 and N = 1600). The framed results
represent the QTL detection model corresponding to the simulated QTL genetic model

cross-specific QTL effects need large cross sample sizes
to be detected. Therefore, to detect QTL effects that
are potentially diverse and cross-specific we recom-
mend using designs with few large crosses. Sampling a
reduced number of allele genetic background interac-
tions increases the sample size to estimate at least one
allelic effect different from zero and therefore detect the
QTL.
The MPP design was less important for detecting the

other types of QTL allelic effects (parental, ancestral, bi-
allelic). Contrary to the cross-specific QTL effects, the
parental, ancestral and bi-allelic QTL allelic effects are
consistently defined across crosses, which gives them an
increased sample size. The parental, ancestral and bi-
allelic QTL alleles reached more easily the critical sample
size for detection, which made them less dependent on a
particular MPP design. This result is consistent with the
conclusion of [7] who noticed that the form of the design
did not influence the detection of parental and bi-allelic
QTLs.

Number of parents
The number of parents used represents a trade-off
between the number of sampled alleles and the sample
size to detect the QTLs. For a fixed population size, MPP
designs using more parents cover a larger genetic diversity
but with a reduced number of individuals per cross. Gen-
erally, the TPR decreased with a larger set of parents and
reduced cross sizes (Fig. 4). This result was observed for all
types of QTL effects in the N=800 populations and for the
QTLs with a small effect (2%) in the N=1600 populations.
Using MPP designs with large enough crosses is therefore

important for QTL detection in MPPs. This result is con-
sistent with several simulations [5, 9, 10, 15] and empirical
cross-validation studies [22].
In MPPs composed of crosses, an important part of

the QTL variance can happen within crosses rather than
between. In our simulation, on average, 54% of the QTL
genetic variance happened within crosses (100% for the
cross-specific QTLs and around 39% for the other type of
QTLs). Moreover, we used a QTL detection model with
a cross-specific intercept that accounted for part of the
between crosses QTL variance [5, 11]. Therefore, we pre-
fer sampling strategies that increase the sizes of the segre-
gating crosses. In our case, five parents covered probably
a sufficient part of the genetic diversity. Thus, resources
are better spent on enlarging the sizes of the crosses.
This finding is consistent with the conclusions of [7] who
showed that QTL detection power reached a plateau after
six parents. If few parents already enable to cover a rep-
resentative sample of the genetic diversity, MPP designs
should rather have more individuals per cross than extra
crosses (parents).
Still, in some situations, we did find that using nine par-

ents instead of five increased the TPR. This result was
consistent with [3, 7, 11, 15]. In our case, we empha-
sized that using a larger set of parents was only useful to
increase the detection power of QTLs with a low MAF
(Fig. 5). The parental and ancestral QTLs that only segre-
gated from a single parent (Q4) or ancestral group (Q6)
and the low MAF bi-allelic QTLs were the only cases
where using nine parents increased the TPR. We hypoth-
esize that when the QTL MAF was low, using more
parents enabled to sample at least one cross where the
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QTL segregated. However, we noticed that the TPR only
increased in the large populations (N = 1600) and for the
big QTLs. Therefore, the use of more parents should be
combined with an increased total population size and will
be conditioned by the QTL effect size. A large popula-
tion and a big QTL effect increase the chance of detection
when only few individuals carry the QTL allele.
The results concerning the number of parents illustrate

the interest to consider the question of the resource allo-
cation in MPPs given the QTL allelic diversity. In general,
we observed that larger crosses increased the TPR for all
types of QTL effects in the N=800 populations. The neg-
ative effect of cross size reduction was less important for
QTLs with shared effects between crosses like the ances-
tral QTLs. For those QTL alleles, the reduction of the
within cross sample size was compensated by an increased
between cross sample size. However, in the larger popu-
lations (N=1600), we noticed that increasing the number
of parents to cover a larger genetic diversity could be
useful to detect rare QTLs with a large effect. Accord-
ing to [23], those QTLs effects represent an important
part of the genetic variation and are good candidates for
marker assisted selection (MAS). Therefore, in recurrent
MAS breeding programs with population sizes between
800-1000, we advise to prioritize the enlargement of the
cross sizes. However, if the objective is to enrich material
with new traits coming from diverse material, it might be
worthwhile to increase the covered genetic diversity and
the total population size to detect influential alleles.

Mapping resolution
In Table 3, we noticed that the cross-specific and parental
QTLs were subject to larger FDRs and had larger dQTLs
than the ancestral and bi-allelic QTLs. To explain those
differences, we can emphasize that the cross and parental
structures are consistently defined over the offspring
genome while the ancestral and the SNP allele distribu-
tions vary. Therefore, the correlation between two posi-
tions modeled as cross-specific or parental is potentially
larger than the one between two ancestral or bi-allelic loci.
A reduced correlation between ancestral and bi-allelic loci
could explain that less QTL will be wrongly detected away
from the true position, which increases the resolution.
The FDR decreased when the detection window size

around the simulated QTL increased. For example,
around 60% of the QTLs we fail to detect in a 10 cM win-
dow around the simulated QTL position are detected if
we enlarge the window size to 20 cM. Many false positives
could be explained by the extent of the linkage disequilib-
rium, which is relatively large in F2 populations. The FDR
indicates that, in MPPs composed of F2 crosses, the con-
fidence interval around a detected QTL should be wide to
include the true QTL position. For example, in Table 4,
we showed that the 95% empirical confidence interval of

the 2% QTLs detected in the N = 800 MQE populations,
was equal to 70 cM. For the 6% QTLs the 95% confidence
interval was 46 cM. Using a confidence interval of at least
50 cM around the detected QTLs seems to be necessary
in MPPs composed of F2 crosses.
Two reasons can explain the apparent low resolution

we obtained. As we can see comparing Table 4 and
Additional file 7A, the use of a QTL detection model that
does not assume the same type of QTL as the simulated
QTL (e.g. use a bi-allelic model to detect cross-specific
QTL) increases significantly the CI length, especially for
the cross-specific QTLs. This result emphasizes the use-
fulness of using the correct QTL detection model to
improve the resolution and supports the use of strategies
aiming at finding the correct dependency structure at the
QTL position [17, 24]. We hypothesize that the sample
increase from N=800 to N=1800 can increase the num-
ber of low-resolution detections of cross-specific QTLs by
models with other assumptions. This could explain why
for the big cross-specific QTLs the expected increased
resolution due to population increase was absent.
The detection of more than one (most of the time two)

QTLs per chromosome also has a small impact on the
detection resolution (Additional file 7B). In those situ-
ations, The QTLs were generally located on both sides
of the QTL position with a larger distance to the true
position than in the situations where only one QTL is
detected. According to our results, theMPPs composed of
crosses are not the most desirable with respect to detec-
tion resolution. MPPs produced after extra generations of
intercrossing, like the MAGIC populations are expected
to have a better resolution [14, 25].

Simulation validity
The low FDR on the chromosome with no simulated
QTLs confirms that our QTL detection procedure func-
tioned properly. Extrapolating FDR chr to the whole
genome gave us values between 0.9 and 15.3% with an
average of 5.9%. Those results show that a −log10(p) >

4 threshold might be too conservative, especially for
a N=800 population. We also compared the TPR we
obtained with results from the literature. For example,
[26] estimated the QTL detection power of interval map-
ping method in F2 populations with 10 QTLs accounting
for a total of 30% of the phenotypic variation. This sce-
nario was the closest to our simulation settings. In that
case, [26] used a threshold with type I error of 25% and he
obtained powers of 57% and 85% for total population sizes
of 500 and 1000 individuals, respectively. We compared
those values to the TPR obtainedwith the bi-allelic genetic
model scenario detected with the bi-allelic model in the
N=800 populations because this scenario was the closest
to the one used in [26].We looked at the TPRwith nomin-
imum detection window size around the simulated QTL
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obtained in the simple interval mapping scan. We used
−log10(p) = 3 as significance threshold to account for the
larger type I error used by [26]. In that case we obtained
a TPR value of 69% comparable to the values obtained by
[26] between 57% for N=500 and 69% for N=1000, which
supports the credibility of our simulation.

Application to other types of populations and species
The simulations we performed were based on F2 crosses
starting from real sugar beet data. Our main conclusions
were similar to the one of authors that used different
types of populations. Indeed, [10] who used F2, backcross
(BC), and full-sibs populations and [15] who used dou-
ble haploid (DH) reached the same conclusion about the
importance of using large crosses. Therefore, we can rea-
sonably consider that our conclusions generalize to other
type of populations.
In our simulations, we assumed that all genotypes in a

cross came from the same F1 plant. However, as empha-
sized by a reviewer, depending on the crop, it might not
be possible to generate F2 crosses containing 450 geno-
types from a single F1 cross. If both parents are inbred,
the F1 will be identical. However, if the parents are par-
tially heterozygous like three of our parents, then F1
genotypes might differ. If a cross is composed of sub-
crosses generated from different homozygous and het-
erozygous F1 plants, some markers will segregate in parts
of the cross (sub-crosses generated from heterozygous F1)
and be monomorphic in the rest (sub-crosses generated
from homozygous F1). Such a situation is problematic
for parental origin determination. In those cases, the best
solution is to take into consideration the sub-cross struc-
ture for parent origin assignment, which can be done in
mppR.
The generalization of our results to other crops would

need further confirmations. The use of simulated data
starting from real genotypes is a strategy that has been
used in several articles [14, 25, 27]. Few of those stud-
ies have tested hypotheses about the trade-off between
the number of crosses and the number of individuals
per cross. Among them, [27] did not find a significant
influence of the cross size in simulated MPPs from rape-
seed genotypes. The total population size (2000) and the
number of simulated QTLs (50) were however different
compared to our simulation settings. In [3], the authors
simulated 25-100 QTLs on a real maize NAM popula-
tion with 5000 individuals. They found that increasing the
number of parents (crosses) increased the QTL detection
power. Assuming that many of the simulated QTLs had a
low MAF, this result would be consistent with our second
conclusion: increasing the number of parents is beneficial
to detect QTLs with low MAF if the total population size
is large enough to guarantee a minimum cross size. Since
those results represent too few comparison points, we

would need other studies to reach firm conclusions about
the generalization of our results to other crop species.

Conclusions
We tried to determine the most powerful design to detect
QTLs inMPPs given various levels of QTL allelic diversity.
We showed that the trade-off between using a large set
of parents to cover a larger genetic diversity with smaller
crosses and reducing the number of parents to increase
the cross size depends on the type of QTL allelic effects.
In most of the cases, sampling a reduced number of par-
ents is enough to cover a sufficient amount of the genetic
diversity. Therefore, resources should be used to increase
cross sizes rather than increasing the covered allelic diver-
sity. However, when the main goal is the detection of
QTLs with rare alleles and large phenotypic effects, using
a larger set of parents can be beneficial given that the total
population size is also increased. Concerning the QTL
detection resolution in MPPs composed of F2 crosses,
we noticed that those populations have a low resolution.
We advise to use a confidence interval of at least 50 cM
around the detected QTL positions to have a reasonable
probability that it includes the true QTL position.
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