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Abstract

Background: Gene expression is potentially an important heritable quantitative trait that mediates between
genetic variation and higher-level complex phenotypes through time and condition-dependent regulatory
interactions. Therefore, we sought to explore both the genomic and condition-specific characteristics of gene
expression heritability within the context of chromosomal structure.

Results: Heritability was estimated for biological gene expression using a diverse, 84-line, Oryza sativa (rice)
population under optimal and salt-stressed conditions. Overall, 5936 genes were found to have heritable expression
regardless of condition and 1377 genes were found to have heritable expression only during salt stress. These
genes with salt-specific heritable expression are enriched for functional terms associated with response to stimulus
and transcription factor activity. Additionally, we discovered that highly and lowly expressed genes, and genes with
heritable expression are distributed differently along the chromosomes in patterns that follow previously identified
high-throughput chromosomal conformation capture (Hi-C) A/B chromatin compartments. Furthermore, multiple
genomic hot-spots enriched for genes with salt-specific heritability were identified on chromosomes 1, 4, 6, and 8.
These hotspots were found to contain genes functionally enriched for transcriptional regulation and overlaps with a
previously identified major QTL for salt-tolerance in rice.

Conclusions: Investigating the heritability of traits, and in-particular gene expression traits, is important towards
developing a basic understanding of how regulatory networks behave across a population. This work provides
insights into spatial patterns of heritable gene expression at the chromosomal level.
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Background
Understanding the molecular mechanisms by which gen-
etic variation influences complex quantitative traits re-
mains a major goal of genetic research today. Current
polygenic and omnigenic models posit that for complex
traits, only a small proportion of heritable phenotypic
variation can be explained by relatively few easily identi-
fied mutations with large effects. The remaining majority

of heritable variation is due to a much larger quantity of
low to moderate effect mutations. After more than a
decade of research utilizing Genome-Wide Association
Studies (GWAS) it is clear that many of these low to
moderate effect genetic variants underlying complex
traits tend to lie in regulatory regions of the genome ra-
ther than in protein coding regions. Furthermore, af-
fected regions have been found to be enriched for genes
that interact in highly interconnected regulatory net-
works [1]. Therefore, expression quantitative trait locus
(eQTL) studies seek to identify relationships between
genetic variants and the genes on which they may have a
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regulatory effect by treating gene expression as the
phenotypic trait for GWAS analysis.
The increasing number of studies investigating eQTLs

in multiple plant species have revealed similar patterns
of eQTL architectures. The location of eQTLs in relation
to their affected gene are often referred to as cis and
trans depending on whether they map respectively to
the same relative location as the gene or elsewhere in
the genome. While cis eQTLs tend to have larger effects
on average compared to trans eQTLs, only a small pro-
portion of genes appear to have cis eQTLs that explain a
majority of their expression variance. Instead, many
genes appear to have both cis and trans acting eQTLs
with the most eQTLs being trans [2, 3]. Cross-gene
eQTL analysis has revealed that many of these trans
eQTLs are significantly enriched in genomic hotspots
with wide reaching effects on gene expression [4, 5].
In any association study (GWAS or eQTL)

characterization of heritability for the selected trait (e.g.
phenotype or expression-level) is necessary to estimate
genetic causality for the trait. Heritability is a fundamen-
tal genetics concept that describes how much of the
variation in a given trait can be attributed to genetic
variation [6]. It has demonstrated lasting usefulness in
quantifying response to selection in plant breeding [7]
and estimating disease risk in medicine [8]. Tradition-
ally, heritability is estimated using known information
about the genetic relationships between individuals. In
human research, these known genetic relationships are
usually in the form of monozygotic (identical) and dizyg-
otic (fraternal) twins. In plant and animal research, pedi-
grees from controlled breeding populations are used to
represent these genetic relationships. Another approach
for estimating heritability uses high-density genotyping
technologies such as single nucleotide polymorphism
(SNP) arrays to infer genetic relationships. Genotype dif-
ferences between individuals are used to calculate a gen-
etic relationship matrix (GRM), also called a kinship
matrix. This GRM is then used to estimate the propor-
tion of phenotypic variance explained using linear mixed
models. This approach is referred to as Genomic Re-
latedness Restricted Maximum Likelihood (GREML) and
has multiple software implementations such as GCTA
[9], EMMA [10], and rrBLUP [11]. Despite the large
number of eQTL studies investigating gene expression,
relatively few studies have explored genomic patterns of
gene expression heritability using GREML-based esti-
mates. Two studies in humans explored gene expression
heritability of whole blood samples [12, 13], but similar
research in plants is currently lacking.
Another area of gene expression research that is rela-

tively unexplored is the influence of environmental fac-
tors. Even though differential gene expression analysis is
a highly active area of research, studies investigating

variation in gene expression in response to environmen-
tal changes have primarily focused on condition, time,
and tissue-specific expression variation. Yet these studies
are limited to a few different genotypes, far below the
necessary sample sizes required for performing eQTL
analysis [14]. However, given that complex agronomic
phenotypes are known to have significant genotype-by-
environment interaction effects, exploring how these in-
teractions affect gene expression variation may provide
novel insights into the underlying architecture of these
phenotypes.
An important consideration prior to exploration of

heritability is understanding any potential bias from vari-
ation that underlies the bimodal distribution of gene ex-
pression. It has been shown that gene expression when
quantified with RNA-seq data has a bimodal structure
such that lowly expressed (LE) genes and highly
expressed (HE) genes appear as two overlapping distri-
butions with LE genes centered in the negative log2
range and the other in the positive log2 range [15]. The
source of this bimodality is a currently a topic of debate.
One theory suggests the lower distribution is due to an
unknown combination of transcriptional noise, ambigu-
ous read mapping, contamination, cell type heterogen-
eity, and sequencing errors. Thus, many only use the HE
genes for downstream research [16]. However, there is
evidence that transcripts from the low abundance distri-
bution are transcribed mRNA and not artifacts or small
RNA molecules [17].
Another consideration for exploration of gene expres-

sion heritability, related to non-normal gene expression
distributions, is that transcriptional repression has been
shown to be correlated with the 3D conformational
structure of chromosomes in the nucleus including
chromatin and centromeric structures [18]. Chromatin
alteration in plants has been shown to play important
roles in tissue-specific specialization [19, 20], stress re-
sponse [21–23], and suppression of transposable ele-
ments [24, 25]. Plant genomes have been found to
possess active and repressive genome territories referred
to as the A and B compartments which correspond to
euchromatic and heterochromatic regions, respectively
[26, 27]. While these compartments have been found to
be largely stable across tissues, it remains unclear how
stable these compartments are across changing environ-
mental conditions known to alter chromatin states such
as abiotic stress.
In this study, we sought to address the limitations and

considerations just described for gene expression herit-
ability by exploring the 2D and 3D chromosomal charac-
teristics of heritable gene expression using an RNA-seq
dataset of 84 individuals of the Oryza sativa Rice Diver-
sity Panel 1 (RDP1) previously reported [28]. We ex-
plored patterns of missing values in the RNA-seq data
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(i.e., missingness) and the distribution of highly
expressed (HE) and lowly expressed (LE) genes across
the 2D chromosomal structure. Heritability was calcu-
lated independently for salt stress and control conditions
and their distribution was also explored across the 2D
genomic structure. We then explored the relationship of
HE and LE genes to the Hi-C analysis of rice chromatin
structures.

Results
Gene expression
For the 55,986 annotated gene transcripts in the Mich-
igan State University (MSU) v7.0 Oryza sativa Nippon-
bare (rice) assembly [29], the distribution of missing
values (genes with no measured expression) followed a
U-shaped distribution with most genes having either a
high or low missing rate and relatively few genes having
moderate levels of missingness. We classified genes as
having constitutive, mixed, or repressed expression pat-
terns if non-zero expression was observed in > 95%, 5–
95%, or < 5% of samples, respectively (Fig. 1a). Overall,
non-zero gene expression followed a clear bi-modal dis-
tribution consisting of a mode of HE genes with positive
log2 TPMs and a second mode of LE genes with negative
log2 TPMs (Fig. 1b). Genes with constitutive expression
occupied the HE mode, while genes with a mixed or re-
pressed expression pattern matched the LE mode. Thus,
HE genes are both highly expressed and highly present

(few missing values) while LE genes are lowly expressed
and lowly present. Furthermore, cross-tabulation across
conditions indicates that genes had largely conserved ex-
pression patterns for all three expression patterns
(Table 1). While there were a small number of genes
that switched categories between conditions, there were
no genes that changed from constitutive to repressed.

Heritability
Comparison of heritability results
Correlation of gene expression biological replicates on a
per-gene basis was calculated as a potential estimate for
heritability, similar to twin-based measures of heritability
in humans. Replicate heritability values were then com-
pared to both GREML estimates of heritability using a
genotypic mean (two-step) and GREML estimates that
included replication as a random effect in the model.
Due to the relatively small sample size, there were

many genes where the GREML heritability (single-step
or two-step) could not be reliably predicted with a
mixed linear model resulting in an inflated number of
genes with low heritability estimates (0–0.2) and a wide
95% confidence interval (Additional File 1, Fig. S1).
There was strong correlation between replicate heritabil-
ity versus single-step GREML (ρ = 0.89), indicating that
gene expression heritability can be estimated using the
biological replicates expression data. However, the cor-
relation of the two-step method was moderate when

Fig. 1 Bimodal Gene Expression Patterns: Plot A shows the proportion of samples with missing values calculated for each gene. The overall
distribution of the missing rate is bimodal with the majority of genes either having few (< 5%) or many (> 95%) missing values. Genes were
classified as ‘constitutive’ (< 5% missing), mixed (5–95% missing), or repressed (> 95% missing). Constitutive genes are those to the left of the red
dashed line. The mean value of non-zero TPMs for expressed genes also had a bimodal distribution based on the missing rate. Plot B shows the
density plots of constitutive and non-constitutive genes
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compared to the one-step approach (ρ = 0.41) and with
replicate heritability approach (ρ = 0.45) (Fig. 2). Results in
Fig. 2 are for the control condition, but patterns were
similar for the salt condition (Additional File 1, Fig. S2).

Condition-specific heritability classification
To identify a significance threshold for expression herit-
ability, randomized permutation tests of shuffled gene
expression values were used to calculate a null heritabil-
ity distribution. Using this null-distribution, a signifi-
cance threshold was calculated using a fixed type-I error

rate (□ <= 0.01) (Fig. 3a). Genes were classified whether
they were significantly heritable for control and salt-
stress conditions (Fig. 3b). While most genes with herit-
able expression appeared to have conserved heritability
for both control and salt-stress conditions (n = 6851),
there were a considerable number of genes significantly
heritable only during control (n = 3599) or salt-stress
(n = 1377). These genes with condition-specific heritabil-
ity were less heritable than genes that were heritable
across both conditions (Additional File 1, Fig. S3). Genes
heritable in both salt stress and control were correlated
symmetrically along the diagonal (Fig. 3b), indicating no
condition-specific bias.

Chromosomal structure and conformation
HE and LE genes follow distinct 2D spatial patterns
The spatial distribution of constitutive, mixed, and re-
pressed genes was visualized along the chromosomes
using a sliding window of 3Mb at 100Kb intervals. Em-
pirically, constitutive genes appear enriched on the ends

Table 1 Contingency Table of Expression-Level Categories

Salt-stress

Constitutive Mixed Repressed Totals

Control Constitutive 16,372 363 0 16,735

Mixed 91 25,116 932 26,139

Repressed 0 1007 12,105 13,112

Totals 16,463 26,486 13,037

Fig. 2 Comparison of Heritability Calculation Methods for the Control condition: Pairwise correlation between repeatability (Pearson’s), single-step
GREML (with replicates), and two-step GREML (using the genotypic mean) for the control condition. The lower triangle shows correlation
scatterplots of the pairwise comparisons, the diagonal provides the density distribution plots for each individual method and the upper right
triangle provides the corresponding pairwise correlation values
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of chromosomes and depleted near pericentromeric re-
gions (Fig. 4). For metacentric chromosomes, this pat-
tern formed a U-shape centered on the centromere.
Densities for genes with repressed and mixed expression
were often inverse of constitutive genes and appear
enriched near the centromere and depleted at the
chromosome ends. Reductions in density of constitutive
genes were not always centered on the centromeric re-
gions. For example, subtelocentric chromosomes 4, 9,
and 10 (and chromosome 11 to a lesser extent) show
this asymmetry as the short chromosomal arms ap-
peared relatively devoid of genes with constitutive ex-
pression (Fig. 4).

Comparison of gene expression and HI-C a/B chromatin
compartments
Regarding 3D characteristics of expressed genes, dens-
ities of genes (when calculated using a fixed 100 kb win-
dow size) were highly correlated (ρ = 0.7–0.9) with A/B
chromatin compartments identified with the first princi-
pal component of PCA analysis of a Hi-C contact map
[27] (Additional File 1, Figs. S4-S6). Euchromatic A
compartments corresponded to genes that were consti-
tutively expressed across all genotypes. Conversely, het-
erochromatic B corresponded to genes with either
mixed or repressed expression across genotypes.

Salt-specific spatial enrichment analysis
When the spatial distribution of genes with salt-specific
heritability was compared to the distribution of genes
with non-specific heritability, 22 windows were identi-
fied on chromosomes 1, 4, 6, and 8 that passed a
permutation-based p-value threshold (□=0.001) (Fig. 5,
Table 2). This test indicates where the genome is
enriched for salt-stress specific expression. Other chro-
mosomes did not have significantly enriched windows
(Additional File 1, Figs. S7-S9). Adjacent and overlap-
ping windows were combined into five contiguous re-
gions (Additional File 2, Table S1). Gene ontology
enrichment analysis of heritable genes in these regions
identified terms of transcription factor activity (GO:
0003700), response to endogenous stimulus (GO:
0009719), nucleic acid binding (GO:0003676), and DNA
binding (GO:0003677) (Additional File 2, Tables 2-3).
When compared to previous GWAS studies, there were
overlaps between these regions and QTLs identified for
salt-tolerance related traits. In particular, a 3Mb window
on chromosome 4 directly overlaps with a highly signifi-
cant 575 Kb QTL identified from a previous GWAS that
used the same RDP1 panel that was significant for so-
dium and potassium accumulation in root tissue [28].
Fine mapping of this QTL identified HKT1;1, a sodium-
transporter gene (LOC_Os04g51820) that is the likely

Fig. 3 Classification of gene expression heritability. Plot A shows the heritability distribution of randomly shuffled gene expression values. This
distribution serves as the null-distribution used for determining non-significant heritability estimates for genes. The dashed red line indicates the
quantile for a fixed type-1 error (□=0.01). Plot B shows the comparison of salt and control heritability estimates. A quantile threshold was used to
classify each gene as having significant heritability in salt treatment, control or general (i.e. both)
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causal gene. It was also determined that altering the ex-
pression of this gene using RNA-interference lines sig-
nificantly affected both shoot and root growth under
saline conditions [28].
In summary, results show missingness is the cause of

bimodality in the salt-stress gene expression data. Re-
garding 2D characteristics, HE and LE genes have dis-
tinct distribution patterns in relation to the centromeric
location of the chromosomes. Additionally, salt-specific
heritable genes follow similar 2D distribution patterns
but are also highly correlated with 3D conformation fol-
lowing Hi-C identified A/B compartments. We also
identified several significant genomic hot-spots enriched
for genes with salt-specific heritability on chromosomes
4 which is concordant with previous GWAS studies in-
vestigating salt tolerance phenotypes in a similar

population as well as 3 additional windows on chromo-
somes 1, 6, and 8.

Discussion
Gene expression
It has been suggested that low abundance mRNA identi-
fied in the LE distribution of TPM values may not be
transcribed into proteins. Comparisons between lowly
abundant genes in human metazoan cells and proteome
quantification in human embryonic cells did not indicate
that LE genes are translated [17]. While the results pre-
sented here do not definitively answer the question of
whether LE genes are translated, the patterns observed
both in the bimodal distribution (Fig. 1) and the cross-
conditional table (Table 1) provide insight regarding
variation of transcriptional repression. Genes with few

Fig. 4 Gene density distributions across chromosomes. Plots A-D represent chromosomes 1, 4, 6, and 8 respectively. The black lines at the
bottom of each plot represent the relative chromosome length, with the position and relative size of pericentromeric regions indicated by
overlapping red boxes. Overall gene frequency represented by the red line appears roughly uniform across each chromosome. Genes with
constitutive expression (expressed in > 95% of samples), represented by the lime-colored line, are enriched on the distal ends of chromosome
arms and depleted near pericentromeric regions. Genes with repressed expression (< 5% of samples), represented by the cyan colored line, are
enriched near pericentromeric regions. Genes with mixed expression (5–95% of samples), represented by the pink line, largely follow the same
distribution as repressed genes
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missing values tend to have high TPM expression values.
However, when a gene had a zero value, in any sample,
then most non-zero values were in the LE distribution.
Furthermore, when these patterns were compared be-
tween salt and control conditions, there were no genes
that switched from repressed expression to constitutive
expression in the population. Considering that four
times as many genes shifted between mixed and re-
pressed states (1939 genes) compared to genes that
shifted between mixed and constitutive states (454
genes), one explanation is that many of these genes are

located within chromosomal regions that are still largely
repressed, but that this repression is incomplete and a
low level of transcription still occurs. However, it is also
possible that some of these conditional lowly expressed
genes are being translated into proteins. Given that
RNA-seq samples in this experiment consisted of ho-
mogenized shoot samples containing multiple cell types,
cell-type specific expression could also explain genes
that are lowly expressed. While the sample size (n = 336
samples; 84 genotypes × 2 conditions × 2 biological repli-
cates) was too small to reliably calculate the heritability

Fig. 5 Salt-specific Heritable Gene Enrichment. Plots A-D represent chromosomes 1, 4, 6, and 8 respectively. The black lines at the bottom of each
plot represent the relative chromosome length, with the position and relative size of pericentromeric regions indicated by overlapping red boxes.
Using a sliding window size of 1.5 Mb at 100 Kb intervals, chromosomes were tested for enrichment of genes with salt-specific heritability using
all genes with heritable expression (salt-specific, optimal-specific, and general) as the null distribution. P-values were adjusted for multiple-testing
using a permutation based approach. Using a critical value of 0.001, indicated by the dashed red line, significant windows enriched for salt-
specific heritability were identified on chromosomes 1, 4, 6, and 8

Table 2 Genome windows enriched for salt-specific heritable expression

Chromosome Start Position End Position Heritable genes Fisher’s test adjusted p-value

1 36,450,000 38,550,000 19 2.5E-04

4 24,550,000 26,050,000 17 7.5E-04

4 28,250,000 30,950,000 19 2.0E-05

6 10,650,000 12,150,000 13 5.0E-04

8 23,350,000 25,650,000 17 4.0E-05
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of mixed and repressed gene expression using logistic
models, PCA of the gene expression matrix encoded as
ordinal zero, low, or high expression suggests that there
is a large amount of additional transcriptional variance
that closely matches the genotypic population structure
(Additional File 1, Fig. S10). This variation may not be
captured in current RNA-seq approaches that only con-
sider TPMs from the HE distribution such as differential
expression models using the negative-binomial
distribution.
Regarding the notion that LE genes are not translated

into proteins, this assumption is based on limited evi-
dence that compared different cell types in different con-
ditions. However, it may be too early to rule out
potential translation of LE genes. Plant genomes have
been shown to undergo drastic heterochromatic
reorganization in response to abiotic stimuli including
salt-stress [30]. The high correlation between LE genes
and heterochromatic regions of the genome may suggest
that rather than being untranslated, the low expression
of these genes could be related to cell type or condition-
specific responses, which would lead to their proteins
not being observed in previous proteomics studies that
used different conditions and genotypes.

Heritability
The importance of using biological replicates for differ-
ential gene expression analysis has already been explored
[31, 32] but this research also indicates that biological
replicates provide important information for models es-
timating gene expression heritability. Considering the in-
herent noise that can be introduced by natural variation
in gene expression such as circadian rhythm, the inclu-
sion of biological replicates should be considered an in-
dispensable aspect of RNA-seq experimental design.
Previous research investigating the statistical power of
RNA-seq based differential expression analysis indicated
that at least six biological replicates were required to
identify the majority of differentially expressed [32].
However, no studies have explored how increasing the
number of biological replicates can improve the power
of models that estimate gene expression heritability.
Considering that these models can also benefit from in-
creasing the number of genotypes, there is need for
quantifying the power trade-off between the number of
genotypes and the number of biological replicates for ac-
curately estimating gene expression heritability.
Another result of interest is that the two-step GREML

showed only moderate correlation with both the
replicate-based and one-step GREML estimates. Differ-
ences in how genetic effects are distributed may explain
this. Previous reports on eQTLs underlying gene expres-
sion heritability in humans suggest that highly heritable
gene expression tends to be controlled by relatively few

cis eQTLs with strong, non-additive, effects [33, 34].
Conversely, heritable complex traits and moderately her-
itable gene expression tend to be controlled by many
small additive effect mutations [35, 36]. This difference
in how genetic effects are distributed may explain why
GREML heritability estimates using mean expression
was only lowly correlated with repeatability. Previous
studies investigating heritability in human populations
(with a much larger sample size than this study) split
markers into separate cis and trans components in the
GREML model where the cis random effects only in-
cluded markers surrounding the gene being tested with
the remaining markers included in the model as a separ-
ate trans random effect [13]. The approach for splitting
cis and trans components in these studies used only
markers within a 1Mb fixed window around a gene as
the cis component (that was likely to capture any pro-
moter regions) and treated all other markers as a separ-
ate trans component. The purpose for this is that
mutations near the coding sequence and surrounding
promoters seem more likely to have large effects on gene
expression and thus would follow a different underlying
distribution of effect sizes compared to mutations occur-
ring elsewhere in the genome. In these human studies,
the average overall mean heritabilities were reported to
be between 0.15 and 0.26 with the proportion of herit-
ability explained by cis markers ranging from 20 to 40%
depending on the tissue and population studied. A
smaller microarray-based eQTL study in an A. thaliana
RIL population reported a similar heritability distribu-
tion [2]. Notably, they also observed many genes that ex-
hibited transgressive segregation and suggested that
nonadditive genetic variation may be significantly con-
tributing to overall expression heritability in plants.
The sample size of the data used in this study was too

low to reasonably split markers into separate cis and
trans random effects in the additive GREML model to
allow for direct comparison to previous studies. How-
ever, the low correlation between the two-step GREML
additive-only model and the one-step GREML model
that included replicates as a random effect supports the
idea that gene expression traits have a genomic architec-
ture that cannot be captured well by treating all
genome-wide markers as a single additive random effect
distribution. One possible alternative for modeling gene
expression traits that could avoid an arbitrary fixed win-
dow for splitting markers into cis and trans components
is to use variable selection methods that can accommo-
date mixed distributions of marker effects. There is con-
siderable similarity between the previously used strategy
of modeling separate cis and trans components and
Bayesian models used for genomic selection which can
accommodate many different prior distribution assump-
tions [37]. However, challenges remain for testing
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whether these Bayesian methods can more effectively es-
timate marker effects underlying transcriptome-wide
gene expression. First, there are many different prior dis-
tributions proposed for performing Bayesian genomic se-
lection and selecting a suitable prior distribution is non-
trivial considering that the underlying architectures of
heritable gene expression are heterogeneous [38, 39].
Secondly, even with parallelization, the Markov chain
Monte Carlo algorithms involved have considerably
higher computational costs compared to GREML mak-
ing intensive testing difficult.

Chromosomal structure and conformation
The strong correlation between gene expression
chromosome densities and HiC compartment predic-
tions supports the paradigm that pericentromeric re-
gions play an important transcriptional regulatory role
in the 3D conformation of chromosomes in the nucleus
and primarily correspond to heterochromatic B com-
partments in rice. For example, HE genes with constitu-
tive expression patterns are more likely to be located in
euchromatic A compartments, while LE genes with low
and repressed expression are more likely to be located in
heterochromatic B compartments. Therefore, the strong
relationship identified between a gene’s expression pat-
tern and its position in the chromosome may have im-
portant implications for predicting the effects of
structural variations such as translocation or gene dupli-
cation events. Such an understanding may improve stud-
ies exploring the role of duplicated genes, as it may be
essential to consider where in the chromosome duplicate
genes are located and how the surrounding regulatory
landscape is different (such as a shift in chromatin
compartment).

Overlap between salt stress QTLs and expression
heritability
An interesting observation regarding the overlap be-
tween salt-tolerance associated QTLs identified in the
RDP1 population using GWAS and the windows
enriched for salt-stress specific heritable expression is
that the current putative causal gene underlying the lar-
gest salt-tolerance QTL in this population, OsHKT1;1
(LOC_Os04g51820), did not exhibit heritable gene ex-
pression after accounting for population structure. How-
ever, many genes within close proximity to this gene did
have heritable expression and this region was particu-
larly enriched for salt-specific expression heritability.
This indicates that causal genes underlying complex
phenotypes may have indirect effects on gene networks.
One possible explanation for this is that genes that co-
participate in shared biological pathways have been
shown to cluster in the same chromosomal region [40].
However, this clustering does not occur in all plant

pathways and there are currently many theories for why
some pathways are genomically clustered and others are
not [41]. One of these theories is the ‘coinheritance ar-
gument’ where genetic linkage of genes with shared roles
in a complex trait can promote the accumulation of fa-
vorable genes and reduce risk of disruption via recom-
bination. Given that salt-tolerance is a trait in rice with a
history of both evolutionary and artificial selection, this
theory may explain the clustering observed.

Implications
Results show that the relatively small sample sizes in this
study (compared to typical GWAS studies) were able to
identify regions of the genome enriched for condition-
specific heritable gene expression. This approach could
be used to identify genes involved with conditional tran-
scriptomic plasticity. Identifying heritable genes with
genotype-by-environment specific behaviors may be use-
ful to breeders in MAS approaches to select for muta-
tions with more isolated trait-specific effects, across
genotypes, and avoid the selection of mutations with
strong epistatic effects.
While it is generally accepted that the genome-wide

distribution of marker effects for complex traits is non-
uniform, there are few approaches for determining how
non-uniformity relates to the physical genome. However,
the chromosome-level patterns of gene expression herit-
ability observed in this study could potentially be used
as prior estimates of possible marker effect distributions
for Bayesian genomic selection models. Even if the
underlying true distribution may have cryptic condition-
specific components outside the scope of available RNA-
seq data, a large proportion of heritable expression was
observed for both conditions. For example, there were
multiple regions of the genome with relatively few genes
with heritable gene expression for either condition.
Markers within these regions could be assigned low
prior probabilities of having strong effects. In contrast,
we also identified regions of the genome with high gen-
eral and condition-specific heritable expression. Markers
within this region could be assigned higher prior
weights, especially when they are located in trait related
conditional hotspots.

Future considerations
The increasing number of studies in plants utilizing
standardized genetic diversity panels for producing
multi-omics based data is allowing for rich multi-
dimensional research into biological systems. The results
observed in this study provide a valuable initial point of
comparison. While further experiments investigating
these hotspots enriched for salt-specific heritable expres-
sion are required for validation, results regarding missing
values and their relation to bimodal expression patterns
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highlight the need for more overlapping -omics data.
First, use of larger genotype panels for transcriptomic se-
quencing with more biological replications would im-
prove the precision of heritability estimates, allow for
finer cross-conditional comparisons, and allow for more
powerful transcriptome-wide exploration of trans gen-
etic effects on gene expression. Second, access to high-
resolution chromatin contact maps would allow for fur-
ther investigation into the roles that lower-level chroma-
tin structures (such as topologically association
domains) play in regulatory variation for how plants re-
spond to stress. While many RNA-seq experiments pri-
marily focus on analyzing highly expressed genes, this
research indicates that genes with low non-zero expres-
sion also have distinct spatial patterns that may provide
evolutionary value and should be further explored. Fur-
thermore, the addition of conditionally matched proteo-
mics data would help resolve the open question if any of
these lowly-expressed genes are ever translated into
proteins.

Conclusions
Transcriptional regulation is considered to be a major
mechanism for how plants respond to environmental
changes. and developing a better understanding of gen-
etic variation in stress-induced gene expression may lead
to improved methods for crop breeding. This research
sought to explore patterns of condition-specific heritable
gene expression across a genetically diverse population
and discovered a bimodal pattern of highly and lowly
expressed genes that was highly correlated with
chromosome-wide A/B chromatin compartments and
was mostly stable across both genotypes and conditions.
However, we also discovered a contrasting pattern of
region-specific hotspots that were significantly enriched
with genes that have heritable expression only during
stress conditions. Together, these findings suggest that
genetic variation in rice does not likely have large effects
on high-level chromatin structures such as A/B com-
partments, but there may be smaller regional effects on
lower-level chromatin structures that can lead to neigh-
borhoods of genes with shared heritable variations in
gene expression.

Methods
Genotype data
All rice accessions used in this research are from the
Rice Diversity Panel 1. This panel consists of 421 puri-
fied, homozygous rice accessions that include both land-
races and elite rice cultivars worldwide. Genotypes for
the entire panel were obtained from the online project
repository for the Rice Diversity Project [42]. In particu-
lar, this research used a set of 44 k SNPs obtained from
a combination of array and sequencing-based

approaches. Missing genotypes were imputed using LD-
kNNi [43]. The cross-validated accuracy using known
genotypes was found to be highly accurate (R2 = 0.98).
Markers with an imputed minor allele frequency of less
than 5% were removed leaving a total of 31,374 markers
for further analysis.

Gene expression data
RNA-seq sequence files for a subset of rice accessions
(n = 92) from the RDP1 panel were identified and
sourced from the National Center for Biotechnology In-
formation sequence read archive (SRA) listed under
Gene Expression Omnibus (GEO) project GSE98455.
This previously published data originates from a project
investigating salt-stress related gene co-expression net-
work modules [28]. Briefly, seedlings of each accession
were subjected to either optimal or salt-stress conditions
for 24 h and afterwards, shoot-tissue RNA was extracted
and sequenced. Each treatment has two biological repli-
cates originating from separate but genetically identical
inbred accessions for a total of 368 RNA-seq samples.
Only accessions that had replicates for both conditions
were used (n = 84) (Additional File 2, Table S4) for a fil-
tered total of 336 samples.
RNA-seq files were downloaded and processed using

the GEMmaker v1.1 pipeline for gene expression ana-
lysis [44]. This pipeline streamlines the process of calcu-
lating a gene expression matrix (GEM) from large
numbers of raw FASTQ [45] sequencing files. GEM-
maker was configured to download the GEO project
GSE98455 sequence files using the SRA toolkit [46], per-
form quality control with FastQC [47] and quantify
Transcripts-per-million (TPM) [48] expression values
using Kallisto [49], a pseudo-alignment based tool. Gene
annotations from the Michigan State University Rice
Genome Annotation Project (MSU release 7) were used
for pseudo-alignment, which are based on the Inter-
national Rice Genome Sequencing Project reference gen-
ome (Os-Nipponbare-Reference-IRGSP-1.0) [50]. TPM
values were calculated at the gene level rather than the
isoform level due to limited annotation of alternative
splicing in rice. TPM values were log2 transformed. The
sample and gene-wise distributions of mean log2 TPM
and proportion of missing values were assessed.

Structural analysis
Prior research on this population’s structure indicated
that the panel has five major sub-groups [42]. We repli-
cated the structural analysis with the subset of RDP1 in-
dividuals used in this study and found the same
conclusion. Based on principal-component analysis
(PCA), the top three components were found to capture
a majority of genetic variance across subgroups (61%)
(Additional File 1, Fig. S11). Initial inspection of pairwise
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TPMs indicated the presence of population structure
matching the major classes of rice identified from
marker-based principal component analysis. Because of
the high collinearity between markers separating these
groups and clusters of gene expression, not accounting
for this population structure could lead to inflated herit-
ability estimates [51]. For linear mixed models, this can
be addressed by including subpopulation identifiers or
principal components as fixed effects within the model.
However, for simpler repeatability metrics, such as
Spearman correlation, this is not possible. Therefore, ex-
pression values were adjusted to remove the major sub-
population effects prior to calculating any heritability
estimates. This was done by fitting the expression values
for each gene with a linear model including the top three
principal components calculated from the genotype
matrix as independent fixed effects. The remaining re-
siduals were then used as adjusted gene expression
values for calculating heritabilities for each gene. This
adjustment was done separately for each condition and
replicate. The distribution of the impact of structural ad-
justment indicates that while the repeatability of most
genes slightly decreased when structure was removed,
this decrease was larger for genes with clear clustering
related to the population structure (Additional File 1,
Fig. S12).

Heritability calculations
All statistics were performed using R 3.6.0 [52].
Condition-specific heritabilities were calculated for the
expression of each gene and condition using multiple
methods (Additional File 2, Tables S5 and S6). Genes
with < 5% missing values across all samples were used in
heritability analysis. Heritability was first estimated using
the similarity of expression between biological replicates.
Because all accessions were inbred lines, and conditions
were tightly controlled between lines, the Pearson or
Spearman correlations between replicates within a
shared condition were calculated as an upper-bound of
the heritability of gene expression for that condition.
Heritability was also calculated using single-step and
two-step GREML algorithms implemented in the R ‘her-
itability’ package version 1.3 [53]. These GREML
methods use a GRM calculated from genotypes to solve
a linear mixed model for a quantitative phenotype with
the efficient mixed-model association algorithm com-
monly used for estimating heritability and genomic se-
lection of agronomic phenotypes in crops [54]. The
GRM was estimated with the genetic ridge-regression R
package ‘rrBLUP’ using version 4.6.1 [55]. Because ex-
pression values were already adjusted for subpopulation
structure, principal components were not included in
the GREML models. Default values were used for the
convergence criterion (eps) and maximum iterations

(max.iter). Two-step GREML calculation was performed
by first calculating the genotypic expression mean across
replicates and then regressing these mean values with a
linear model treating kinship as a random effect using
the marker_h2_means function. Single-step GREML was
estimated using the marker_h2 function but instead of
regressing the genotypic mean, it includes replicate vari-
ance in the model as an added random effect [53]. The
significance of heritability estimates compared to ran-
domized gene expression were measured based on a
one-tailed shuffled permutation test where the expres-
sion values for each gene were randomly shuffled for 40,
000 iterations. This number of iterations was chosen
based on hardware capabilities within a 48-h window.
Assuming that randomly shuffled gene expression vec-
tors should not be heritable, the resulting heritability
distribution of randomized expression was used to calcu-
late a significance threshold based on a fixed type-1
error rate (□=0.01). This threshold was then used to test
whether each gene was significantly heritable (Fig. 3a).
Genes were then classified if they were significantly her-
itable under control, salt-stress, or both conditions
(Fig. 3b).

Spatial enrichment analysis
The spatial distribution of expressed genes and their cal-
culated heritabilities across each chromosome were
compared between the control and stress conditions.
This was done using a sliding window (1.5Mb) and sam-
pling interval to calculate the frequency or density of
genes across each chromosome. Enrichment of salt-
specific heritable genes for each window was determined
using a one-tailed Fisher’s exact test. Test p-values were
adjusted for multiple testing bias by calculating a null-
distribution for each window. First, random gene subsets
of equivalent size to the number of salt-specific heritable
genes were randomly drawn from all heritable genes. For
each random subset, a Fisher’s test was performed for
each window resulting in a window-specific p-value.
This process was bootstrapped for 4000 iterations (n =
4000 and the resulting p-value distributions were used
to calculate adjusted p-value quantiles. For windows
where 4000 iterations were not enough to assign a p-
value quantile, these windows were further tested for up
to 50,000 iterations until a stable quantile estimate was
obtained. Genes significantly enriched for salt-specific
heritable expression within windows were tested for
functional term enrichment using the Comprehensive
Annotation of Rice Multi-Omicstool [56].

Multi-omics integration
The spatial distribution of gene expression heritability
was then overlaid with other types of -omics data. The
densities of genes with different expression patterns
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(constitutive, mixed and repressed) were tested for cor-
relation with chromatin A/B compartment eigenvectors
from previously published Hi-C analysis [27]. The Hi-C
analysis used a fixed bin width of 500 kb. This fixed win-
dow size was then used to calculate the gene densities of
different expression patterns and correlated to the A/B
eigenvectors.
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