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Abstract

Background: Use of genomic information has resulted in an undeniable improvement in prediction accuracies and
an increase in genetic gain in animal and plant genetic selection programs in spite of oversimplified assumptions
about the true biological processes. Even for complex traits, a large portion of markers do not segregate with or
effectively track genomic regions contributing to trait variation; yet it is not clear how genomic prediction
accuracies are impacted by such potentially nonrelevant markers. In this study, a simulation was carried out to
evaluate genomic predictions in the presence of markers unlinked with trait-relevant QTL. Further, we compared
the ability of the population statistic FST and absolute estimated marker effect as preselection statistics to
discriminate between linked and unlinked markers and the corresponding impact on accuracy.

Results: We found that the accuracy of genomic predictions decreased as the proportion of unlinked markers used
to calculate the genomic relationships increased. Using all, only linked, and only unlinked marker sets yielded
prediction accuracies of 0.62, 0.89, and 0.22, respectively. Furthermore, it was found that prediction accuracies are
severely impacted by unlinked markers with large spurious associations. FST-preselected marker sets of 10 k and
larger yielded accuracies 8.97 to 17.91% higher than those achieved using preselection by absolute estimated
marker effects, despite selecting 5.1 to 37.7% more unlinked markers and explaining 2.4 to 5.0% less of the genetic
variance. This was attributed to false positives selected by absolute estimated marker effects having a larger
spurious association with the trait of interest and more negative impact on predictions. The Pearson correlation
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between FST scores and absolute estimated marker effects was 0.77 and 0.27 among only linked and only unlinked
markers, respectively. The sensitivity of FST scores to detect truly linked markers is comparable to absolute estimated
marker effects but the consistency between the two statistics regarding false positives is weak.

Conclusion: Identification and exclusion of markers that have little to no relevance to the trait of interest may
significantly increase genomic prediction accuracies. The population statistic FST presents an efficient and effective
tool for preselection of trait-relevant markers.

Keywords: FST scores, Marker preselection, Genomic prediction, Accuracy

Background
Whole-genome marker information has been success-
fully utilized through genomic selection (GS) in many
livestock and plant genetic improvement programs for
the prediction of genomic merit and has led to a signifi-
cant increase in the rate of genetic gain in these species
[1]. This has been partly a result of increased prediction
accuracy for selection candidates, particularly for indi-
viduals with no phenotypes or progeny of their own [2].
Such improvement in accuracy is due to a better model-
ing of the Mendelian sampling (MS) using genomic in-
formation compared to using only pedigree information.
Though millions of single nucleotide polymorphisms

(SNPs) have been discovered in human [3], livestock [4],
and plant [5] genomes, relatively high accuracies have
been achieved using marker panels that utilize just a frac-
tion of these markers [6, 7]. The falling costs of full gen-
ome sequencing and genotyping combined with more
reference genomes and the availability of imputation algo-
rithms have now allowed the regular use of high-density
and sequence genotypes in genomic analyses.
It has been suggested that sequence data has the po-

tential to significantly improve the accuracy of genomic
predictions by increasing the linkage disequilibrium (LD)
between quantitative trait loci (QTL) and SNPs or even
making available the genotypes of causal loci [8–10].
Early simulation studies found optimistic potential for
the use of sequence data in GS. Meuwissen and Goddard
[9] estimated that accuracies could be improved by more
than 40% when using sequence data compared to low-
density SNP panels, but concluded that this was likely
due to the weak relationship structure of the training
population and did not expect the same results in real
livestock populations due to the long-ranging LD and
strong family structures. Druet et al. [10] found that ac-
curacies could be increased by up to 28% using sequence
data compared to the equivalent of a bovine 50 k SNP
chip when the trait was controlled by rare QTL; how-
ever, these gains were largely lost when the sequence ge-
notypes were imputed, likely as a result of lower
imputation accuracy of rare markers that would be most
effective in tracking causal loci with low minor allele
frequencies.

Most results from real data have found little to no im-
provement in accuracy using high-density and sequence
data for genomic prediction [11–14]. This lack of im-
provement has in some cases been attributed to the fact
that low- and moderate-density panels are sufficient to
capture realized additive relationships across the whole
genome. Furthermore, a marginal decline in accuracy
with the increase in SNP density was observed in some
cases [12, 14], which results in part from overparameter-
ization of the model [15]. This is not a surprising occur-
rence, as a disproportional increase in the number of
unknown parameters in the association model relative to
the number of observations available in the training set
will lead to the well-known small n large p problem.
Models that intrinsically perform variable selection

(e.g., BayesB, LASSO, and elastic-net) have been pro-
posed as a way to reduce the dimensionality of genomic
data and alleviate the issues associated with the small n
large p problem. Daetwyler et al. [16] showed using a
simulation scheme that BayesB [17] tends to have an ad-
vantage compared to GBLUP when the number of causal
loci is less than the estimated number of independent
chromosome segments.
In comparisons between GBLUP and BayesB using real

data, the latter tends to yield superior results when the
trait of interest is under the influence of at least one
major gene, such as DGAT1 for fat and protein content
in dairy cattle [18]. While BayesB tends to yield predic-
tions that are at least as accurate as GBLUP in most
practical analyses, it is computationally demanding, par-
ticularly as the number of predictors included in the
model increases. Principal component analyses can dra-
matically reduce the dimensionality of the association
model without a substantial loss in the portion of ex-
plained genetic variance; however, the estimated effects
are linear combinations of the original predictors, thus
complicating their interpretation. In general, the gains
from using variable selection methods have been modest
to nonexistent.
While the presence of causal variant genotypes in se-

quence information might be expected to give variable
selection methods an advantage, this has not been sup-
ported by results from real data [12–14, 19], likely due
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to the high dimensionality of the models and high LD of
the causal variants with large numbers of neighboring
markers.
Preselection of variants prior to training of the model

has been suggested both as an alternative and comple-
ment to variable selection methods. Heidaritabar et al.
[13] preselected SNPs based on mutation type (e.g., syn-
onymous, nonsynonymous, and non-coding) from a full
set of approximately 4.6 million markers but found no
appreciable gain in accuracy. Other studies have
attempted to identify the most relevant variants through
association statistics such as p-values, absolute estimated
effects, or the relative contribution to the genetic vari-
ance. Investigating inbred lines of D. melanogaster, Ober
et al. [11] selected the top 5% of SNPs ranked either by
absolute estimated effect or the proportion of the genetic
variance explained and found no significant improve-
ment of accuracy using either preselection criteria. Veer-
kamp et al. [20] preselected variants based on p-values
in Holstein data and found no improvement in accuracy,
with the additional disadvantage of bias in the GEBVs
and inflation of the variance component estimates.
Frischknecht et al. [21] used p-values, annotation mis-
sense status, or LD-pruning to preselect variants; LD-
pruning was the only strategy that did not reduce accur-
acies. Some studies have combined preselected SNPs
with standard medium-density SNP chips to comprom-
ise between the potential benefits of each marker set,
but few have found any benefit from this approach [22–
25]. However, many of these studies performed SNP dis-
covery and training of the prediction model using the
same reference data set.
These results are not surprising and are in fact a con-

sequence of the Beavis effect [26], a variation of the so-
called “winner’s curse” phenomenon, where many of the
selected SNP effects are overestimated, which will result
in biased predictions and reduced accuracies in the val-
idation set. Many studies that have investigated marker
preselection based on association statistics criteria (e.g.,
p-values, absolute estimated effects) have used the data
twice (in preselection and training), and this could be
the primary explanation for their failure to improve ac-
curacies. Splitting the data into three non-overlapping
sets for discovery, training, and validation may alleviate
this bias; however, this is a suboptimal use of an expen-
sive resource and could result in an increase in the
standard error of estimates and corresponding decrease
in power to detect relevant markers. Additionally, split-
ting the data may not eliminate the population structure
that arises from families or breeds, which can contribute
to an erroneously inflated association of markers with
the trait [27].
Toghiani et al. [28] introduced the population statistic

FST, a measure of deviation in allele frequencies between

populations, as a criterion for marker preselection in
genomic evaluations of livestock. They showed that by
using high- and low-phenotype individuals within a
population to calculate FST scores, historical selection
signals could be detected at markers that tag causal loci.
Chang et al. [6] demonstrated that preselection of
markers by FST scores could significantly improve gen-
omic prediction accuracies, and even outperformed
BayesB and BayesC as the dimensionality of the model
increased. A subsequent study by Chang et al. [7]
showed that genomic similarity between individuals will
be maximized using a highly stringent subset of the top
markers as ranked by FST scores, though accuracies will
not be maximized using this subset. They proposed that
the highest potential accuracy will be achieved when a
balance between high genomic similarity and the pro-
portion of genetic variance explained is achieved.
In this study, we expanded upon these results by in-

vestigating how the inclusion of markers in linkage equi-
librium with causal loci impact the estimation of
genomic relationships and affect prediction accuracies.
Additionally, we compared the sensitivity of FST scores
and estimated SNP effects as preselection criteria to dis-
criminate between markers that are linked and unlinked
with causal loci and the potential of each to increase
accuracies.

Results
Accuracy of prediction was 0.37, 0.62, 0.89 and 0.22
using pedigree, all, HQ2, and LQ28 markers, respect-
ively, to model the relationship matrix. As expected, the
highest (0.89) and lowest (0.22) accuracies were obtained
when the genomic relationship matrix was constructed
using only linked (HQ2) or unlinked (LQ28) markers
(Fig. 1a), respectively. Using the latter, accuracy was
39.6% lower than that achieved using expected relation-
ships despite being based on genomic information.
While use of all 777 k markers outperformed expected
relationships by 70.3%, the accuracy was still approxi-
mately 30% lower than that obtained using only HQ2
SNPs.
Accuracies based on marker subsets preselected either

randomly, by FST scores, or by estimated effects are
shown in Table 1. When markers were preselected ran-
domly, accuracy increased rapidly and plateaued when
approximately 20 k markers were used. This is similar to
the trend observed using commercial genotyping panels,
where a subset of reasonably well-distributed markers
yielded prediction accuracies similar to much higher
density platforms. Although 50 to 60 k markers are typ-
ically necessary for many livestock species before reach-
ing a plateau in accuracy, the smaller number of SNPs
required in this study is likely due to the unconventional
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simulated genome structure and high LD between
markers and QTL.
Use of markers preselected based on FST scores re-

sulted in a higher accuracy compared to the use of all
markers. In fact, accuracy increased between 26.7 and
36.4% across all subsets. Accuracy peaked with the use
of the top 10 k markers and remained fairly persistent;
the decrease in accuracy was only 7.1% as the number of
preselected markers increased to 50 k.
For preselection based on SNP effects, accuracy for 1 k

markers was initially comparable to that achieved using
10 k FST-preselected markers (0.84 and 0.85, respect-
ively); however, accuracies rapidly declined (by 20.2%)
with larger subsets and the top 50 k markers yielded ac-
curacies that exceeded use of all markers by only 8%.
Table 2 shows the percentage of preselected markers

that are located on either of the two chromosomes har-
boring QTL. These percentages are measures of the sen-
sitivity of the preselection criteria to detect markers that
are truly linked with causal loci. The top 1 k FST-prese-
lected markers were almost all (99.99%) SNPs in true
linkage with QTL. The sensitivity steadily declined as

the number of preselected markers increased and
reached a minimum of only 28% linked when 50 k
markers were preselected. Preselection by SNP effects
followed a similar trend but had greater sensitivity to de-
tect markers potentially linked with QTL for all subsets
compared to FST.
The proportion of genetic variance explained by prese-

lected marker subsets is shown in Table 3. The genetic
variance contributed by a particular QTL was considered
explained by a marker subset if at least one marker had
an r2 greater than 0.9 with the QTL. As expected, pre-
selection using a random selection criterion explained
the least amount of the genetic variance. Preselection by
FST and absolute estimated effects resulted in signifi-
cantly more genetic variance explained, as much as 40
and 41%, respectively. Yet for neither criteria did
maximization of genetic variance explained coincide
with maximization of prediction accuracy, likely as a
consequence of an increasing proportion of unlinked
markers present in larger subsets (Table 2).
Genomic information increased accuracy compared to

pedigree by improving modeling of the MS. The effect-
iveness of a set of markers to capture QTL similarity

Fig. 1 A general description of the simulation and workflow: a) A 30-chromosome genome was simulated with 200 QTL randomly distributed
across 2 chromosomes and the remaining 28 chromosomes harboring no QTL. b A schematic representation of the pedigree simulation (7
generations of 3.5 k individual each). The first six generations (21 k phenotyped individuals and half of them genotyped) were used for training.
The last generation consisting of 3.5 k genotyped and non-phenotyped individuals was used as validation set. Preselection of SNPs was based
either on the absolute estimated marker effects or FST scores calculated using data from the training population

Table 1 Accuracy of genomic predictions under varying
number of random-, FST-, or estimated effect-based preselected
markers

Selection
methoda

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Random 0.27 0.51 0.57 0.59 0.59 0.60

FST 0.81 0.85 0.83 0.81 0.80 0.79

Effect 0.84 0.78 0.72 0.69 0.68 0.67
a SNPs were preselected either randomly, based on their FST scores, or based
on the absolute value of their estimated effect

Table 2 Overlap (%) between random-, FST-, or effect-
preselected marker subsets and G2 SNPs

Selection
methoda

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Random 6.75 6.65 6.63 6.64 6.63 6.69

FST 99.99 67.04 47.19 37.84 32.26 28.45

Effect 100.00 76.07 54.13 43.13 36.42 31.89
a SNPs were preselected either randomly, based on their FST scores, or based
on the absolute value of their estimated effect
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and MS between individuals could be evaluated by asses-
sing the correlation between marker- and QTL-based G
matrices. The non-centered G matrix reflects the total
QTL similarity while the centered G matrix (Eq. 1) will
reflect the MS component only.
Correlations between the marker- and QTL-based G

matrices for all, HQ2, or LQ28 markers are listed in
Table 4. As expected, the non-centered correlations
followed the same trend as that observed for the accur-
acies, with the maximum (0.63) and minimum (0.28)
correlation obtained using only HQ2 and LQ28 markers,
respectively. When G was centered by the expected rela-
tionships, the correlation for LQ28 markers was effect-
ively zero. In contrast, using only linked markers to
construct G, the correlation decreased by just 8.4% after
adjusting for expected relationships.
This independence between the variation of LQ28

markers and QTL is illustrated in Fig. 2a, which plots
the density of Eq. 2 for all, HQ2, and LQ28 markers. For
the LQ28 subset, the distribution of this directional MS
component falls evenly around zero; the number of
marker-estimated relationships that fail to capture the
correct direction of the QTL MS and the number that
capture it correctly are approximately equal (Fig. 2b).
The distribution for HQ2 is shifted towards more posi-
tive values, showing that this group of markers estimates
the correct direction of the QTL MS more often than
not. Interestingly, HQ2 markers still fail to capture the
correct direction of the MS of QTL approximately 30%
of the time (Fig. 2b); this likely occurs primarily when
the deviation of the QTL genomic relationship from the
expectation is quite small.

Tables 5 and 6 show the non-centered and centered
correlations of the QTL-based G with G based on FST-
and effect-preselected subsets, respectively. For FST, the
correlation followed a similar trend as that observed for
the accuracies (Table 1), with the largest correlation for
both non-centered and centered G matrices achieved
using the top 10 k FST-preselected markers. The correl-
ation for effect also peaked at the top 10 k markers,
however, this does not coincide with where the accuracy
is maximized. The relative decrease in the correlation
with centering was smaller for SNP effects than for FST-
score-based prioritization, indicating that marker effects
have a slightly better ability to capture the direction of
the MS of QTL (Fig. 3a). However, both preselection cri-
teria for all subsets considered were more likely than not
to identify the true direction of the MS, as presented in
Fig. 3b and c.
Figure 4 presents the distribution of the errors in esti-

mating the MS of the QTL (Eq. 3) using subsets of
markers preselected by FST and absolute estimated ef-
fects. For both preselection methods, the error was mini-
mized when only 10 k markers were preselected (highest
density near zero). This coincides with the subset that
maximizes accuracy for FST, but not for preselection by
estimated effects. Preselection based on the magnitude
of the estimated effect maximized the accuracy using 1 k
markers, which actually appears to yield the greatest
error in MS estimation among the subsets considered.
When only 1 k SNPs were prioritized, the estimated ef-

fects preselection method seems to outperform the FST-
score-based approach. However, beyond the top 1 k
panel, FST preselection consistently yields significantly
higher accuracies. This coincides with when the sensitiv-
ity of both preselection methods starts to decrease, and
unlinked markers begin to form part of the preselected
subsets. This suggests that the difference between the
two approaches is a consequence of the unlinked
markers selected. Figure 5a and b show the regression of
FST on estimated effect for HQ2 and LQ28 markers, re-
spectively. There is a more consistent trend between the
two statistics for HQ2 than for LQ28 markers. The Pear-
son correlation between FST and estimated effect is 0.77
and 0.27 for HQ2 and LQ28 markers, respectively. To-
gether these results suggest that the two statistics tend
to have high agreement when a prioritized marker is
linked with a QTL but less so when the marker is
unlinked.
In Fig. 5b, the threshold for inclusion in the top 10 k

marker subsets for FST and estimated effects are denoted
by a yellow and blue lines, respectively. It is clear that
more SNPs with a large spurious association are prese-
lected when using estimated SNP effects rather than FST
scores. Without an independent training dataset, these
large spurious associations will be re-estimated and

Table 3 Proportion of total GVa explained by random, effect,
and FST-preselected markers

Selection
methodb

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Random 0.0041 0.018 0.082 0.11 0.10 0.14

FST 0.31 0.38 0.39 0.39 0.39 0.40

Effect 0.33 0.40 0.41 0.41 0.41 0.41
a GV Genetic variance bSNPs were preselected either randomly, based on their
FST scores, or based on the absolute value of their estimated effect

Table 4 Correlations between centered and non-centered
genomic relationships with QTL relationships for different sets
of markersa

All HQ2 LQ28

Non-Centered 0.345399 0.631371 0.284554

Centered 0.159684 0.578165 0.0017988

Relative Decrease (%) 0.537721 0.084473 0.993687
a All = all markers; HQ2 = markers on the two chromosomes harboring the
QTL; LQ28 = markers on the 28 chromosomes lacking QTL
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exacerbated when training the prediction model and
negatively affect the prediction accuracy in the validation
set. The higher and more persistent accuracy for larger
subsets when using FST as a preselection tool could be
explained by its tendency to select markers that on aver-
age have less pronounced spurious associations.
To investigate this further, the top or bottom 50 k

LQ28 (unlinked) markers as ranked based on FST scores
or absolute estimated effects were excluded from the full
panel of 777 k SNP markers. The reduced panels of 725
k markers were then used for predictions and the result-
ing accuracies are presented in Table 7. Theoretically,
given their lack of linkage with any QTL, it is expected
that the excluded 50 k top or bottom markers should
not influence the accuracy. However, that was not the
case and exclusion of certain unlinked markers yielded
an increase in accuracy, indicating that the analysis ben-
efits from their absence.
Exclusion of the 50 k unlinked markers with the lar-

gest estimated effects resulted in the largest increase

in accuracy (approximately 8.6%) compared to use of
all markers without preselection. In contrast, exclu-
sion of the 50 k unlinked markers with the smallest
estimated effect led to no change in accuracy relative
to use of all markers, as expected given that their es-
timated effects were close to zero. However, exclusion
of the 50 k unlinked markers with the largest FST
scores resulted in a smaller increase in accuracy
(4.1%), showing the superiority of the FST method in
avoiding the preselection of unlinked markers with
pronounced spurious associations.
While the simulation design previously evaluated is

convenient for evaluating the behavior of markers that
are unlinked with QTL in a prediction model, it would
be unreasonable to expect a complex trait in reality to
be accurately modeled by such a design. To evaluate
whether a similar trend could persist under a more rea-
sonable distribution of QTL across the entire genome,
the simulation was repeated with the 200 QTL distrib-
uted across all 30 chromosomes. Table 8 shows accuracy

Fig. 2 Characterization of the modelling of QTL Mendelian Sampling (MS) using all, HQ2, and LQ28 markers: a) The distribution of marker-
estimated MS for relationships among training individuals with sign reflecting whether marker-estimated and QTL MS fall in the same (+) or
opposite (−) direction relative to the expected additive relationship. b The proportion of relationships among training individuals for which
marker-estimated and QTL MS fall in the same direction relative to expected additive relationships

Table 5 Correlations between non-centered and centered genomic and QTL relationships for varying numbers of FST-preselected
markers

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Non-Centered 0.339069 0.542457 0.54376 0.527988 0.511761 0.49678

Centered 0.315198 0.477285 0.469059 0.451059 0.433872 0.417522

Relative Decrease (%) 0.0728319 0.121576 0.138934 0.147398 0.153974 0.161264
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and percentage of genetic variance explained for FST-
and effect-preselected subsets.
With QTL distributed across all chromosomes, accuracy

using all markers was 0.60. Both preselection methods
achieve a maximum accuracy of 0.73, though FST re-
quires a larger number of preselected markers to

achieve this. As the panel size increases to 50 k, the
accuracy for effect- and FST-preselection decrease by
approximately 12.3 and 2.7%, respectively. Despite
yielding a lower accuracy for panels of 10 k markers
and larger, the effect-preselected subsets explain 9.1
to 17.2% more of the genetic variance than the

Table 6 Correlations between non-centered and centered genomic and QTL relationships for varying numbers of estimated effects-
preselected markers

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Non-Centered 0.378834 0.607054 0.602191 0.576295 0.550798 0.529322

Centered 0.351288 0.550309 0.548288 0.528462 0.506049 0.48496

Relative Decrease (%) 0.0739304 0.093814 0.0899005 0.08346 0.0818111 0.0844371

Fig. 3 Characterization of the modelling of QTL Mendelian Sampling (MS) based on FST- and estimated-effects-preselected markers: a) The
proportion of relationships among training individuals for which marker-estimated and QTL MS fall in the same direction relative to expected
additive relationships. b and c The distribution of marker-estimated MS for relationships among training individuals with sign reflecting whether
marker-estimated and QTL MS fall in the same (+) or opposite (−) direction relative to the expected additive relationship
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equivalently-sized FST-preselected subsets. This dem-
onstrates that the trend in prediction results for FST-
and effect-preselected subsets is consistent even when
all chromosomes harbor multiple causal loci.

Discussion
It was shown that the predictive ability of markers that
are unlinked with QTL is inferior to even pedigree infor-
mation, a result that agrees with previous studies [29–
31]. However, despite their inferior predictive power, ac-
curacies using only unlinked markers were always posi-
tive. Habier et al. [29] attributes this to unlinked

markers modeling additive genetic relationships and
shows that the accuracy will converge to that of pedigree
BLUP as the number of independently segregating
markers increases. Regardless of linkage, the distribution
of QTL and marker additive relationships for a particu-
lar order of kinship will share a mean, the expected rela-
tionship. The advantage of using genomic information
compared to pedigree is the better modeling of the MS
of QTL. However, when markers and QTL segregate in-
dependently the covariance of marker and QTL MS is
zero (Table 4) and the marker-based relationships are
noisy estimates of the average additive relationships.

Fig. 4 Errors in the estimation of QTL Mendelian Sampling: Distribution of error terms (%) in the estimation of genomic relationships (Eq. 3) for a)
FST - and b) estimated effect-preselected marker subsets

Fig. 5 Regression of FST scores on the absolute estimated effect for a) HQ2 and b) LQ28 markers: The blue and yellow dashed lines denote the
thresholds for selection of the top 10 k markers among all markers for FST and absolute estimated effects, respectively
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While these markers will independently yield positive ac-
curacies, they should not be expected to benefit the ana-
lysis when markers in LD with causal loci are available.
HQ2 markers also capture the additive relationship with
the additional benefit of accounting for some portion of
the MS of QTL, as evidenced by the limited decrease in
the correlation between the HQ2-marker- and QTL-
based G matrices after centering with expected relation-
ships (Table 4) and the shift of the HQ2 distribution in
Fig. 2a to more positive values.
Ideally, the effect of unlinked markers on the estima-

tion of the breeding values would be zero when more in-
formative markers are present in the model. However,
the inferior accuracy obtained using all markers com-
pared to only HQ2 markers demonstrates that the effect
of unlinked markers will not be null. The results of this
study demonstrate that in terms of a GBLUP model,
allowing unlinked markers to have a nonzero contri-
bution to G adds noise to the estimation of genomic
relationships that will not be reflective of true QTL
similarity, resulting in lower accuracy relative to that
achieved using only linked markers in the validation
population. In terms of a SNP-BLUP model, which
has been shown to be equivalent to GBLUP [29],
nonzero estimates will be obtained for unlinked
markers that have no association with QTL inherit-
ance in validation individuals. Table 4 shows that the
MS of QTL and unlinked markers vary around the
same average relationship, which creates an associ-
ation of the unlinked markers with the QTL. The
model cannot discriminate spurious marker associa-
tions that are a result of this shared expectation and
random sampling from associations due to true link-
age with a causal locus, particularly when the

unlinked markers are themselves used to inform the
variance-covariance structure.
These results highlight the motivation and potential

for preselection of markers to improve accuracies. Both
FST scores and absolute estimated effect preselection-
based methods were able to identify relevant markers
with high sensitivity when preselecting a small number
of markers and yielded high accuracies. However, the
trend in accuracy differed substantially between the two
approaches. As the number of preselected markers in-
creased, their sensitivity to detect linked markers
decayed, and unlinked markers were incorrectly selected.
Preselection by FST increased accuracy from 1 k to 10 k
markers while the accuracy for preselection by estimated
effects decreased by approximately 7.1% over the same
interval. This occurred despite FST preselection adding
903 more unlinked markers and explaining approxi-
mately 5% less of the genetic variance than estimated ef-
fects. The accuracy for FST preselection declined as the
number of preselected markers increased beyond 10 k,
but was more persistent than the accuracy for estimated
effects despite consistently selecting more unlinked
markers and explaining less of the genetic variance.
There are two important concepts that are illustrated

by the behavior of these statistics. First, when the pre-
selection criteria have imperfect sensitivity, accuracy will
be maximized by a balance between increasing the gen-
etic variance explained and minimizing deleterious con-
tributions from poorly informative markers. FST added a
large number of unlinked markers when the number of
preselected SNPs increased from 1 k to 10 k, but the
genetic variance explained was also significantly in-
creased, resulting in an overall improvement in accuracy.
As long as the beneficial contribution to the genetic vari-
ance explained by linked markers exceeds the negative
effects of the association noise added by unlinked
markers, the accuracy will increase. The decline in ac-
curacy for FST when the number of preselected markers
increased from 10 k to 20 k is explained by the fact that
the genetic variance explained increased by only 2.6%
while approximately 73% of added markers were un-
linked with QTL; this likely contributed significant noise
to estimation of genomic relationships. This is in con-
cordance with Chang et al. [7], who concluded that a

Table 8 Accuracy and percent of genetic variance explained by FST- and effect-preselected subsets under a simulation design with
200 QTL distributed across all 30 chromosomes

Number of preselected SNPs (in thousands)

1 10 20 30 40 50

Accuracy FST 0.66 0.73 0.73 0.72 0.71 0.71

Effect 0.73 0.70 0.67 0.66 0.65 0.64

GV Explained (%) FST 0.21 0.29 0.31 0.32 0.32 0.33

Effect 0.21 0.34 0.35 0.35 0.35 0.36

Table 7 Accuracy after exclusion of different subsets of LQ28
markers from construction of the genomic relationship matrix

Excluded markersb

Exclusion criteriaa None Top 50 k Bottom 50 k

Effects 0.62 0.68 0.62

FST Scores 0.62 0.65 0.63
a Markers were excluded from the LQ28 subset based either of their FST scores
or effects; b All markers were included (None), top 50 k markers excluded (Top
50 k), and bottom 50 k markers excluded (Bottom 50 k)
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balance is needed between genomic similarity and the
proportion of genetic variance explained by the prese-
lected markers in order to maximize accuracies. While
in the current study we make only a distinction between
linked and unlinked markers, markers that are linked to
but in low LD with a QTL will also contribute noise to
the model and the negative impact of this noise may
outweigh the benefit of any genetic variance they
explain.
Second, the noise contributed by unlinked markers is

not necessarily equal between both preselection
methods. Estimated-effects-based approach consistently
showed a greater sensitivity to detect linked markers
than FST, yet yielded significantly lower accuracies, ex-
cept in the case of the 1 k panel where it selected no un-
linked markers. For panel sizes of 10 k and larger, the
accuracy for the estimated-effects-based approach was
lower than for FST scores largely because the unlinked
markers selected by the approach have a greater detri-
mental effect.
When the 50 k most spuriously associated unlinked

markers were excluded from the analysis (Table 7), ac-
curacies improved significantly. These markers have a
large spurious association with the trait and the analysis
benefits from their exclusion. While the complications
that such markers present are often considered in the
context of marker preselection, this result shows that
such markers will have an appreciable negative impact
even in the absence of preselection. There is therefore
an incentive to identify and filter spuriously associated
markers if a reliable and efficient method for distin-
guishing them from true associations can be developed.
Excluding the 50 k LQ28 markers with the largest FST

scores from the full panel also resulted in the accuracy
increasing, but this increase was not as pronounced as
when the LQ28 markers with largest estimated effect
were excluded. This indicates that when the training
data is also used to calculate FST for preselection, there
will be some tendency to select irrelevant markers with a
spurious association, but that the spurious associations
will on average be less severe than when preselecting by
the absolute estimated effects. This could explain why
accuracies are more persistent for preselection by FST
scores than estimated marker effects even when the FST
preselection criteria selects more unlinked markers and
explains less of the genetic variance.
Both FST and marker effects were estimated using

some portion of the training data rather than an inde-
pendent dataset. While partitioning of the training data
into two subsets, one for estimation of preselection sta-
tistics and one for training of the prediction model, may
alleviate some bias, it will decrease the size of the data
available for training the model and therefore increase
the standard error in estimation of the statistics anyway.

Splitting of the training data will not be a feasible option
for most analyses, and the literature shows that several
analyses that consider preselection by association statis-
tics in genetic improvement programs have chosen to
reuse the SNP discovery data for training of the model.
In contrast to marker effect estimation, calculation of

FST used just 10% of the training data (Fig. 1). Spurious
associations present in the full training data may be less
extreme in subsets of that data, which could explain why
FST is less affected by the bias that results from using
the same data for both preselection and model training.
FST then has the potential to be a simple and efficient
preselection tool that can reduce the bias associated with
preselection by association statistics without requiring
an inefficient partitioning of the training data or expen-
sive collection of new independent data.
FST scores and association statistics could potentially

be combined into an index to harness the benefits of
both preselection statistics. The Pearson correlation be-
tween FST scores and estimated effects was 0.78 and 0.28
for HQ2 and LQ28 markers, respectively. This suggests
that there is high agreement among the two statistics
when markers are linked with QTL, but much less so
among unlinked markers. Spuriously associated markers
could possibly be identified and excluded when there is
large disagreement between the two statistics.
An additional benefit of FST-based prioritization is that

it is not affected by an increase in the number of
markers included in the model due to the independence
in calculating the score of each marker. As the number
of markers in the association model increases, estimation
variance for estimated effects of markers will increase
without a corresponding increase in the size of the train-
ing data set. Furthermore, the estimated effect of each
marker will be further regressed toward zero as QTL ef-
fects become distributed over correlated blocks of the
predictors [32]. This will further complicate disentan-
gling true from spurious associations as both take a
similar magnitude of estimated effect. In contrast, FST
scores will remain constant regardless of the number of
markers, correlated or uncorrelated, that enter jointly
into the analysis. This does carry the drawback that
highly correlated markers will have similar FST scores
and so selecting only by top FST score will select all cor-
related markers in a block, which could cause bias [21]
and inflation of variance estimates [20] due to multicolli-
nearity. While not evaluated in this study, these issues
could be avoided through LD-pruning of FST-selected
markers or similar filtering measures.
Variable selection models are a conceptually similar

but fundamentally different approach to marker pre-
selection for reduction of the parameter space. While we
do not explore a comparison of FST and variable selec-
tion models in this study, Chang et al. [6] compared FST
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preselection implemented in a BayesA-like regression
with BayesB and BayesC. They found that while FST pre-
selection did not outperform the Bayesian variable selec-
tion models in all scenarios, it did tend to have an
advantage as the density of the full panel increased. In
general, they found that BayesB and BayesC accuracies
decreased with increased density of available markers,
while accuracy using FST preselection tended to improve.
This seems to be a result of the decreased statistical
power to identify relevant markers flanking QTL of low
effect as the number of parameters in the model in-
creases. The benefits of both approaches might be har-
nessed by using FST to preselect markers with a
generous threshold followed by implementation in a
variable selection model that includes the prioritized
markers.

Conclusions
In this study, FST was shown to be an efficient criterion
for preselection of trait-relevant markers that can im-
prove modeling of QTL similarity between individuals,
increase prediction accuracies, and maintain more stable
prediction accuracies than comparative association sta-
tistics like absolute estimated marker effects. While asso-
ciation statistics are powerful tools for identifying loci
associated with a particular trait, disentangling spurious
associations from weak but true signals is often not pos-
sible within the constraints of the data available. We
showed that the more persistent prediction accuracy
using FST-score-prioritized markers was the result of the
ability of the FST-score-based method to select unlinked
markers with weaker spurious associations with the trait
compared to preselection based on absolute estimated
effects. While this study only explored FST scores as an
independent preselection statistic, we showed that FST
and absolute estimated effect approaches preselected
highly correlated sets of markers linked with QTL but
significantly less so among unlinked markers. This high-
lights the potential for the possibility of combining FST
scores (or similar population statistics) and association
statistics into a powerful preselection index to reduce in-
clusion of nonrelevant markers with a large spurious
association.

Methods
Data simulation
The simulated genome consisted of 30 chromosomes
(100 centiMorgans each in length) that harbored a total
of 777 k evenly-distributed SNP markers and was gener-
ated using QMSim [33]. As one of the primary goals of
this study was to investigate how markers that segregate
independently from QTL affect prediction accuracies,
200 QTL were randomly distributed across 2 of the 30
chromosomes, as illustrated in Fig. 1a. While it is an

extreme scenario for real distribution of QTL for a com-
plex trait, this design allowed unambiguous classification
of approximately 725 k markers as segregating independ-
ently from any QTL, with the approximately 52 k
remaining markers potentially linked with at least one
QTL. QTL were limited to 2 chromosomes to ensure a
high LD of the majority of markers on these chromo-
somes with at least one QTL and to evaluate the behav-
ior of markers that are unlinked with QTL in a
prediction model. QTL effects were sampled from a
Gamma distribution with a shape parameter of 0.4.
The LD structure was generated through 2070 genera-

tions of random mating in a historical population, with a
bottleneck occurring at generation 2000. The number of
individuals in the historical population varied between
600 and 4000. The resulting average LD (r2) was 0.32
and 0.084 between consecutive SNP and QTL,
respectively.
A trait with a heritability equal to 0.4 was simulated.

The genetic and residual variances were set equal to 0.4
and 0.6, respectively. The model used to simulate the
phenotypes included the true breeding value (the cross
product of true QTL effects and genotypes) and a nor-
mally distributed error term with mean zero and disper-
sion equal to the residual variance.
All individuals from the last generation of the histor-

ical population (500 males and 3500 females) were se-
lected to be founders of a population under selection
(SP). An additional seven generations (3500 progeny
each) were generated. Pedigree-based estimates of breed-
ing values (pEBVs) were used for selection. Sire and dam
replacement rates were set equal to 0.5 and 0.2, respect-
ively. The training population consisted of the first six
SP generations. It included 21 k phenotyped individuals;
a randomly selected half of these were also genotyped.
The seventh generation of SP consisted of 3.5 k geno-
typed individuals, none of which were phenotyped, and
was used as the validation population. Ten replicates of
the simulated genome and phenotypic data were
generated.

Methods
Predictions were made using a single-step GBLUP model
(ssGBLUP) [34–36] as implemented in the BLUPF90
software [37]. The genomic relationship matrix (G) was
constructed according to VanRaden [38],

G ¼ ZZ0

2
Pn

i¼1pi 1−pið Þ ;

Where Z is a matrix of SNP genotypes, pi is the minor
allele frequency of the ith SNP, and n is the number of
SNPs.
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In order to evaluate the consequences that SNPs un-
linked with QTL have on prediction accuracies, three
analyses that differed in the linkage status of the SNPs
used to build G were performed. The three SNP subsets
considered were 1) only the 51,800 SNP situated on ei-
ther of the two chromosomes harboring around 100
QTL each (HQ2), 2) only the 725,200 SNP on any of the
28 chromosomes that lack QTL (LQ28) and can be de-
finitively classified as being unlinked with QTL, and 3)
the union of the two previous subsets that includes all
777,000 SNP regardless of linkage status.
In the next stage of the study, FST was used as a criter-

ion for preselection of SNP subsets and was compared
to preselection according to absolute estimated marker
effect or random subsets. Subsets of 1, 10, 20, 30, 40,
and 50 k SNPs for each preselection criteria were used
for the construction of G and corresponding prediction
accuracies, defined as the Pearson correlation between
true and estimated breeding values of validation individ-
uals, compared.
Fst scores were calculated following Nei [39],

FST ¼ HT−HS

HT
;

where HT = 2 ∙ pT ∙ qT, HS ¼ HS1 ∙nS1þHS2 ∙nS2
nS1þnS2

and HSi = 2 ∙ pSi
∙ qSi,
where pT and qT are major and minor allele frequen-

cies, respectively, in the population; pSi and qSi are major
and minor allele frequencies, respectively, in the ith sub-
population; and nSi is the number of individuals in the
ith subpopulation. The genotyped and phenotyped indi-
viduals in the training population were ranked according
to their phenotype and the bottom and top 5% of indi-
viduals used to create two subpopulations (S1 and S2), as
illustrated in Fig. 1b. Using these subpopulations, an Fst
score for each SNP was computed as indicated in formu-
lae above. SNPs were then ranked based on their Fst
scores and subsets of the top 1, 10, 20, 30, 40, and 50 k
markers used to compute G.
The rationale for forming subpopulations from indi-

viduals of extreme phenotype in a single breeding popu-
lation rather than using separate breeding populations
with highly divergent phenotypes (e.g., milk production
in Holstein-Friesian and Jersey) is to minimize the likeli-
hood of preselection of adaptive SNP markers that are
specific to a population due to natural or artificial selec-
tion. By obtaining extreme phenotypes from within a
single breeding population, any potential divergence in
allele frequency related to traits uncorrelated with the
one of interest will be more effectively averaged over.
Estimated genomic breeding values that were obtained

using all 777 k markers to compute G were used to de-
rive SNP effects through the following relationship [40],

û ¼ DZ0 ZDZ0½ �−1â;

where û is the vector of SNP effects, â is the vector of
estimated genomic breeding values for individuals in the
training population with G modeled using all 777 k
SNPs, Z is a known incidence matrix of SNP genotypes,
and D is a diagonal matrix of weights. In this study, D
was set equal to the identity matrix to convey equal
weight to all SNPs. Estimation of genomic breeding
values and the back-calculation of SNP effects were ob-
tained using ssGBLUP [34–36] as implemented in
BLUPF90 [37] and PreGSF90 [41], respectively.
Random SNP subsets were generated by random sam-

pling from all available SNPs with no restrictions placed
on the number of markers sampled from a particular
chromosome or the proportion that were linked and un-
linked with QTL. A generalized outline of the approach
to the analysis for Fst and SNP effect preselection and
predictions is summarized in Fig. 1b.

Analysis of marker and QTL similarity
Genomic information improves prediction accuracies
compared to pedigree primarily through a better model-
ing of the MS of QTL. To dissect how the various
marker-estimated genomic relationships capture the true
QTL similarity between individuals and how they con-
tribute to the maximization of prediction accuracy, sev-
eral metrics were used to quantify the agreement
between marker- and QTL-based G matrices.
First, a correlation was calculated between all elements

of the full marker- and QTL-based G matrices, as sug-
gested by VanRaden [38]; this correlation reflects the ad-
equacy of the estimated genomic relationships to
capture both the expected relatedness and MS. To fur-
ther evaluate how well each set of markers models the
MS component specifically, expected relationships were
subtracted from each genomic relationship, and a correl-
ation between the resulting centered G matrices was
calculated,

cor GM−A22;GQTL−A22
� �

:

where GM and GQTL are the marker and QTL rela-
tionship matrices, respectively, and A22 is the matrix
of expected relationships based on pedigree informa-
tion for genotyped individuals. It is possible that cer-
tain markers will capture variation in MS that is not
consistent with the MS of QTL when LD between
markers and QTL is low. If the marker-estimated and
QTL relationships fall in opposite directions around
the expected relationship, then the expected relation-
ship will in fact be a better estimate than the marker-
estimated genomic relationship. The ability of marker
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subsets to capture the correct direction of the MS of
QTL was determined as,

Directional MS ¼
GM−A22

sd GMð Þ
����

���� if same direction as QTL MS

−
GM−A22

sd GMð Þ
����

���� if opposite direction from QTL MS

8>><
>>:

where sd (GM) is the standard deviation over all relation-
ships within GM, and the sign reflects whether the MS
component for marker-estimated relationships falls in
the same (positive) or opposite (negative) direction as
the QTL MS relative to the expected relationship.
At a minimum, marker-estimated relationships should

capture the correct direction of the MS of QTL in order
to improve the modeling of relationships relative to the
expectation. An ideal set of markers will additionally
minimize the distance between marker- and QTL-based
relationships. This distance can be approximated using
the following formulae,

MS Error %ð Þ ¼
GM−A22

sd GMð Þ −
GQTL−A22

sd GQTL
� �

GQTL−A22

sd GQTL
� �

��������

��������
x100%:

This puts the discrepancy between marker-estimated
and QTL relationships in terms of an error (%) relative
to the scale of the MS of QTL. The closer a value is to
zero, the less the discrepancy between the marker-
estimated and QTL relationship. A value less than one
implies that the marker-estimated relationship is a closer
approximation of the QTL relationship than the ex-
pected relationship, while a value greater than one im-
plies either that the marker-estimated relationship
captures the correct direction but overestimates the
QTL MS, or that the marker-estimated relationship has
opposite direction of MS than the QTL. Figures were
generated using the tidyverse package in R [42].
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