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Abstract

Background: Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular
components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell
types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such
as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of
milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the
goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from
multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit
regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective
of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum
and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was
used to identify and characterize 70,841 transcripts.

Results: The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel
transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the
Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were
identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several
gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting
the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum.

Conclusions: This is the first study to perform global transcriptome analysis from whole milk samples in sows from
different parities. Our results provide important information and insight into synthesis of milk proteins and innate
immunity and potential targets for future improvement of swine lactation and piglet development.
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Background
Colostrum and milk play a key role in survival and
growth of the neonate, providing essential nutrients and
antibodies [1]. Langer et al. [2] investigated differences
in composition of colostrum and mature milk in several
eutherian species and found that in some species colos-
trum contains higher concentrations of proteins than
mature milk, and in other species the fluids have similar
composition. These differences are likely due to species-
specific strategies for immunoglobulin transfer, i.e. pre-
natal transfer via placenta or yolk sac versus postnatal
transfer via colostrum [2]. The critical importance of
colostrum and milk for the newborn piglet has been
well-documented [1, 3].
Piglet growth and survival are critical to the swine in-

dustry. Progeny born to primiparous sows (gilts) are
born lighter, grow slower, and have higher mortality
rates than those born to multiparous sows [4, 5]. It has
been hypothesized that differences in lifetime perform-
ance between gilt progeny and sow progeny may be due
to differences in lactation performance, specifically lower
levels of immunoglobulin G (IgG) and other energetic
components in the colostrum and milk of gilts. How-
ever, data from Craig et al. [6] showed no parity differ-
ences in total IgG, fat, protein, lactose, and net energy
concentrations. These results suggest that the poorer
performance of gilt progeny is unlikely due to insuffi-
cient nutrient levels and is more likely due to differences
in colostrum and milk intake and their ability to digest
and absorb each component [5].
The presence of many different ribonucleic acid

(RNA) types, including messenger RNA (mRNA), micro
RNA (miRNA), long non-coding RNA (lncRNA), and
circular RNA (circRNA) has been documented in milk
from several mammalian species [7–12]. In fact, the total
RNA concentration in human breast milk was higher
than in other body fluids [8]. Whole milk contains many
different cell types, including mammary epithelial cells
(MEC), neutrophils, macrophages, and lymphocytes [7,
13], as well nanoparticles, such as milk exosomes [14].
Products from exosomes can withstand harsh environ-
ments such as the digestive system and allow for trans-
mission of regulatory molecules (e.g., miRNA) from
maternal to neonate [15–17]. Additionally, mRNA that
are resistant to acidic conditions and RNase treatments
have been identified in bovine milk [15, 18].
A limited number of livestock transcriptomic studies

have reported sequencing of milk, including two in
swine [19, 20], three in cattle [21–23], one in goat [24],
one in sheep [25], and one in buffalo [26]. The emphasis
of these studies was gene expression related to the lacta-
tion process, and as such, milk somatic cells were se-
quenced as a proxy for the mammary gland tissue.
Additionally, the RNA repertoire derived from milk

exosomes has been reported in cattle [11, 27] and swine
[12, 28]. To our knowledge, there have been no studies
that have reported direct sequencing of porcine whole
milk samples.
As the only nutritional source for newborn piglets,

porcine colostrum and milk contain critical nutritional
and immunological components, including carbohy-
drates, lipids, and immunoglobulins, as well as exo-
somes, oligosaccharides, and bacteria, which possibly
act as biological signals and modulate the intestinal en-
vironment and immune status later in life [29]. As part
of an effort to explore the transcriptomic profile of the
piglet’s neonatal diet, we performed total RNA-
sequencing (total RNA-Seq) on porcine whole milk
samples (colostrum and mature milk) from dams in
parities one through four to characterize and compare
the two transcriptomes. We identified novel mRNA
and lncRNA transcripts and quantified expression of
both known and novel porcine transcripts. Expression
profiles were compared to identify differentially
expressed genes (DEG) between colostrum and mature
milk between parities.

Results
High-throughput sequencing
RNA-Seq libraries were sequenced generating over 6 bil-
lion 75 base pair (bp) paired-end reads, with an average
of 46.2 million reads per library (Table S1). The number
of reads in the colostrum libraries ranged from 22.6 to
81.8 million reads with an average of 44.4 million reads,
while the number of reads in the mature milk libraries
ranged from 24.2 to 97.8 million reads with an average
of 48.0 million reads. After adapter removal and read
trimming, the resulting high-quality reads were mapped
to the Sscrofa 11.1 genome assembly with an average
99.6% read mapping rate per library. The number of
reads aligning to known mRNA, miscellaneous RNA
(miscRNA; short non-coding RNA), non-coding RNA
(ncRNA), and pseudogenes in the swine genome are pre-
sented in Table S2. It was observed that ~ 50% of reads
mapped to known mRNA, while 50.5% of colostrum
reads and 44.5% of milk reads were mapped outside of
annotated loci, potentially harboring novel transcripts
(Fig. 1).

Transcript identification and characterization
Transcripts, assembled individually for each library, were
merged into a single set of 460,853 putative transcripts.
This set was subjected to several filtering steps to re-
move transcriptional noise and classify transcripts
(Fig. 2). Transcripts identified in only one library and
lowly expressed transcripts were removed, as these were
considered transcriptional noise. The remaining set of
transcripts was filtered to include only those with class
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codes ‘=’, ‘u’, ‘x’, ‘j’, and ‘i’ (Figure S1). The transcripts
with class codes ‘u’, ‘x’, ‘j’, and ‘i’ were further filtered by
length, and number of exons. This set of 38,164 putative
novel transcripts were then subjected to classification by
open reading frame (ORF) length and protein coding po-
tential score to complete transcript characterization. In
total, 70,841 transcripts were identified in the porcine
milk transcriptome, including 42,733 previously anno-
tated transcripts as well as 28,108 novel transcripts.
Genomic coordinates of the identified novel tran-

scripts are given in Tables S3 and S4. Among the novel
lncRNA transcripts, 256 and 175 were intergenic long
non-coding RNA (lincRNA) and intronic long non-
coding RNA (ilncRNA), respectively, while 305 lncRNA
flanked a protein-coding gene in a divergent orientation
(long non-coding natural antisense transcripts; lncNAT)
and 566 were novel isoform long non-coding RNA (iso-
lncRNA) (Fig. 3A). Using the BLAST algorithm, a total
of 578 lncRNA exhibited homology with transcripts in
the porcine NONCODE database, 146 lncRNA exhibited
homology with non-coding transcripts in other species,
and 225 lncRNA were homologous to noncoding tran-
scripts in both swine and other species (Fig. 3B; Table
S5). A similar analysis identified that 26,582 of the novel
mRNA transcripts were homologous to known tran-
scripts in swine and other species (Fig. 4).
Basic sequence features of the novel transcripts, in-

cluding length, exon number, expression, and ORF
length, are shown in Fig. 5 and Table 1. Novel lncRNA
were significantly shorter and expressed at lower levels
than novel mRNA and known transcripts (Fig. 5A, B).
The exon number of the novel lncRNA and coding

transcripts were notably smaller than that of known
transcripts (Fig. 5C). The ORF length of novel lncRNA
was significantly shorter than ORF length in known and
novel coding transcripts, while the ORF length of novel
coding transcripts was significantly shorter than that of
known transcripts (Fig. 5D).
Transcripts corresponded to 17,910 unique gene loci,

of which 17,296 genes were previously annotated in the
S. scrofa reference genome. Previously annotated tran-
scripts corresponded to 16,992 known gene loci, while
unannotated protein-coding and non-coding transcripts
corresponded to 8384 (7933 known) and 1059 (843
known) loci, respectively. In general, gene expression
values were widely distributed (Fig. 6), with the distribu-
tions of gene expression values being approximately
equal for colostrum and mature milk. There was a large
overlap (19 out of 25) in the top twenty-five most abun-
dantly expressed genes in colostrum and mature milk
(Table 2; Fig. 7).

Expression of cell-specific markers
Whole milk is a complex fluid containing a heterogenous
mixture of cells [30, 31]. Analysis of gene expression of
cell-specific markers, the same markers utilized in [32],
was used to estimate the proportion of various cell types
present in colostrum and mature milk samples (Table 3;
Fig. 8). Epithelial cells were the most abundant cells in all
samples, with higher abundance in mature milk samples.
Stromal cells represented ~ 1% of the cell population in all
samples. Immune cells and stromal cells were both more
abundant in colostrum samples.

Fig. 1 Distribution of reads aligning to the S. scrofa 11.1 genome. RNA classifications are based on the S. scrofa reference genome annotation
(NCBI Release 106)
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PCA and differential expression analysis
The principal component analysis (PCA) plot (Fig. 9)
showed that colostrum and mature milk transcript ex-
pression profiles seem to fall into distinct clusters, while
there was no clear clustering of samples by parity. After
multiple testing correction, we identified 169 differen-
tially expressed transcripts (DET) for the milk type x
parity interaction, 4783 DET for the milk type main ef-
fect, and 9639 DET for the parity main effect (Tables S6,
S7 and S8). Table 4 shows the classifications of DET.
The DET set for the milk type main effect was com-
prised of 2479 known transcripts, 2132 novel coding
transcripts, and 172 novel lncRNA, while the interaction
DET set included 85 known transcripts and 80 and 4
novel coding transcripts and lncRNA, respectively. The
25 most significant DET for milk type and interaction
are given in Tables 5 and 6, respectively. P-values of

transcripts were aggregated for each gene loci to obtain
DEG. A total of 1667 DEG were identified for the milk
type main effect, and 33 DEG were identified for the
milk type x parity interaction (Tables S9 and S10).

Gene ontology and pathway analysis
Gene ontology (GO) analysis of the DEG indicated that
genes associated with the milk type main effect were
predominantly involved in binding (37.5%), catalytic ac-
tivity (30.5%), molecular function regulation (15.8%), and
transporter activity (8.2%). A total of 250 biological
process, 25 molecular function, and 54 cellular compo-
nent GO terms were significantly enriched in this gene
set (Table S11). Additionally, 3 KEGG pathways were
significantly enriched.
Like the milk type main effect genes, DEG for the milk

type x parity interaction were involved in binding (45.5%),

Fig. 2 Computational pipeline used to determine novel transcripts from RNA-Seq data
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catalytic activity (27.3%), molecular adapter activity (9.1%),
molecular function regulation (9.1%), and transporter ac-
tivity (9.1%). No GO terms or pathways were significantly
enriched in this DEG set.

Discussion
Milk production, milk composition, milk intake, and
milk digestibility are all major limiting factors in the
growth and survival of a sow’s litter. Knowledge of por-
cine milk composition, as well as understanding genetic
factors underlying its variation, is a matter of ongoing

interest. In this study, we performed the first exhaustive
characterization of the porcine milk transcriptome de-
rived from whole milk samples. The goal was to
characterize and compare transcriptomic profiles of
samples collected during early and mid-lactation from
dams across different parities. This study was the first in
a series of studies aimed at exploring the molecular pro-
file of the piglet’s neonatal diet.
Total RNA was isolated from 130 fresh whole milk

samples (65 colostrum and 65 mature milk) from dams
across four parities. In most milk transcriptome studies,

Fig. 3 Classification of novel lncRNA In (A) lincRNA denotes intergenic long-noncoding RNA, ilncRNA denotes intronic long-noncoding RNA,
lncNAT denotes long non-coding antisense transcripts, and isolncRNA denotes novel isoform long non-coding RNA
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milk is fractionated, and RNA is extracted from somatic
cells, milk fat, or whey. Total RNA concentrations tend
to be higher in the milk fat and somatic cells than in the
whey fraction, while RNA integrity of somatic cells is
higher than those of milk fat and whey [33, 34]. Low
RIN values in this study (average RIN = 4.0) are likely
due to the presence of small amounts of cytoplasmic

material in milk fat globules [35], bacteria and small
RNA (miRNA) in the fat fraction [36], and degraded
and/or free RNA. Each milk fraction has its own place in
research settings. The advantages and disadvantages of
each RNA source has previously been summarized [32].
In this study, we chose to utilize whole milk samples in
order to capture the broader transcriptomic signatures

Fig. 4 Overlap of novel protein-coding transcripts with RefSeq database

Fig. 5 Basic features of transcripts. A Expression level of transcripts. B Length distribution of transcripts. C Number of exons for transcripts. D ORF
length distribution of transcripts
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of porcine colostrum and milk. We were able to process
the samples much more quickly than had we fraction-
ated the milk, and our sample represents the entirety of
what is being ingested by the growing piglet.
Libraries were sequenced to an average depth of 46

million reads per library. A depth of 40 million reads is
considered sufficient for reliable detection of major
splice isoforms for abundant and moderately abundant
transcripts [37]. When generating our sequence data, we
targeted a depth of 50 million reads per library. How-
ever, there was considerable variation in sequence depth
across libraries. Some of this variation can be attributed
to technical aspects of next-generation sequencing
(NGS) technology, such as the stochasticity of sequen-
cing, RNA quality, and library preparation.
A total of 70,841 transcripts were identified in this

study, of which approximately 60% are annotated in the
current swine genome build. Transcripts corresponded
to 17,910 unique gene loci, including 17,296 known por-
cine genes. The number of expressed genes is compar-
able to those reported in similar studies in sheep [25]
and goat [24]. A smaller number of expressed genes (~
13,500) was reported in the buffalo milk transcriptome
[26]. This discrepancy is likely to due to the swine,

sheep, and goat reference genomes being more complete
and of higher quality.
As expected, cells in our whole milk samples appeared

to be a heterogeneous population of immune, epithelial,
stromal, and stem cells (Table 3; Fig. 8). Epithelial cells
represented the largest subset of the cell population in all
samples, on average 85% of the cell population per sample.
This is consistent with findings in bovine milk [31]. Im-
mune cells were the second most abundant cell type, com-
prising an average of 14 and 9% the colostrum and mature
milk cell populations, respectively. In general, stromal cells
were more highly expressed in colostrum. In particular,
adipocytes (characterized by the FABP4 marker)
accounted for nearly 2% of colostrum cell populations.
Adipocytes release the hormone leptin in the presence of
insulin, which is present in colostrum and mature milk.
Previous studies have shown a decrease in leptin concen-
tration in milk across lactation stages in swine [38], hu-
man [39], and cattle [40]. Hemopoietic stem cells
accounted for approximately 1% of the cell population in
both colostrum and mature milk, differing from findings
in human where hemopoietic stem cells were significantly
higher in mature milk compared to colostrum [41].
Previous milk transcriptome studies in livestock have

used sequencing of milk somatic cells as a proxy for the
mammary gland to study the lactation process. Recent
studies have indicated that RNA originating from mul-
tiple cell types present in milk can withstand harsh envi-
ronments, such as the digestive system, and transmit
regulatory molecules from maternal to neonate [15–17].
Hence, transcriptome profiling of whole milk samples,
which is reflective of the combined cell populations, is
needed to understand these mechanisms. Most of the
stable, bioactive RNA in milk reported in the literature
has been miRNA [17]. However, stable mRNA, alpha
S2-casein (CSN1S2), beta-casein (CSN2), and beta-

Fig. 6 Plot of gene expression distribution for colostrum and mature milk samples. Values are averaged across samples in each group

Table 1 Median characteristics of expressed transcripts

Novel lncRNA Novel Coding Known Transcripts

Expressiona 0.06d, f 0.09e 0.09

Lengthb 13.37e, f 34.51 29.25

Number Exons 2e, f 8e 10

ORF Lengthc 109e, f 332e 481
a Measured in log10(FPKM+ 1)
b Measured in kbp
c Measured in bp
e Left-tailed Wilcoxon rank-sum P-value < 0.05 compared to known transcripts
f Left-tailed Wilcoxon rank-sum P-value < 0.05 compared to novel coding
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lactoglobin (BLG), have been reported in cattle [16].
These three mRNA were also found to be expressed in
both colostrum and mature milk samples in this study.
Additional studies are needed to confirm whether these
mRNA can function in the piglet gastrointestinal tract.
Among the top expressed genes were CSN3, CSN2,

CSN1S1, LALBA, FASN, EEF1A1, PAEP, TPT1, FABP3,
XDH, PIGR, and SAA3 (Table 2; Fig. 7), which have been
previously identified among the top expressed genes in
milk samples from other species [10, 24–26, 42]. As ex-
pected, many of the top expressed genes were related to
biosynthesis of milk proteins. Expression levels of CSN2,
CSN3, CSN1S1, LALBA, and PAEP, which encode for

the synthesis of the main milk proteins casein and whey,
increased from early to mid-lactation stages. A similar
gene expression pattern has been identified in a previous
swine study [43], as well as in goat [24], cattle [42], and
sheep [25]. High expression of the EEF1A1 gene is also
related to high levels of milk protein synthesis, as
EEF1A1 is one of the most abundant protein synthesis
factors [24]. Consistent with results in buffalo [26], ribo-
somal protein RPLP0 was among the top expressed
genes in colostrum and exhibited a slight decrease in ex-
pression during mid-lactation.
In addition to milk protein synthesis genes, genes as-

sociated with milk fat were among the top expressed

Table 2 Top expressed genes in porcine colostrum and mature milk

Gene Symbol Description Colostruma Mature Milka

LOC110258600 Basic salivary proline-rich protein 2-like 28.49 (1) 8.33 (7)

MIR9816 Uncharacterized ncRNA 18.39 (2) 5.30 (8)

PAEP Progestagen associated endometrial protein 10.85 (3) 15.01 (3)

LOC102158335 Uncharacterized ncRNA 7.77 (4) 1.77 (15)

LOC110258215 Progesterone receptor-like 6.10 (5) 1.87 (12)

LOC110258214 Basic salivary proline-rich protein 4-like 5.83 (6) 0.712 (29)

CYTB Cytochrome b 5.46 (7) 1.05 (22)

MSTRG.27426 Novel mRNA 4.06 (8) 9.49 (6)

NEMF Nuclear export mediator factor 3.74 (9) 9.81 (5)

CSN3 Casein kappa 3.65 (10) 29.90 (2)

DIABLO Diablo IAP-binding mitochondrial protein 3.38 (11) 1.10 (21)

LOC100737553 Peptidyl-prolyl cis-trans isomerase A pseudogene 3.20 (12) 44.80 (1)

EEF1A1 Eukaryotic translation elongation factor 1 alpha 1 2.98 (13) 1.83 (14)

CSN1S1 Casein alpha s1 2.54 (14) 12.12 (4)

LOC102163473 Uncharacterized ncRNA 1.96 (15) 0.58 (??)

XDH Xanthine dehydrogenase 1.35 (16) 1.86 (13)

TPT1 Tumor protein, translationally-controlled 1 1.34 (17) 1.12 (20)

PDE4D Phosphodiesterase 4D 1.19 (18) 0.25 (49)

FASN Fatty acid synthase 1.05 (19) 1.27 (18)

FABP3 Fatty acid binding protein 3 0.94 (20) 1.35 (16)

ICK Ciliogenesis associated kinase 1 0.87 (21) 1.25 (19)

CSN2 Casein beta 0.82 (22) 2.13 (11)

RPLP0 Ribosomal protein lateral stalk subunit P0 0.82 (23) 0.36 (41)

EEF2 Eukaryotic translation elongation factor 2 0.78 (24) 0.42 (38)

RPL4 Ribosomal protein L4 0.63 (25) 0.30 (42)

LALBA Lactalbumin alpha 0.36 (49) 4.54 (9)

SAA3 Serum amyloid A-3 protein 0.25 (76) 2.30 (10)

POLE2 DNA polymerase epsilon 2, accessory subunit 0.57 (27) 1.35 (17)

PIGR Polymeric immunoglobulin receptor 0.11 (148) 1.00 (23)

PLIN2 Perilipin 2 0.06 (257) 0.89 (24)

ACSL3 Acyl-CoA synthetase long chain family member 3 0.13 (132) 0.87 (25)
aAverage normalized gene expression value (× 105) across samples. Number in parenthesis is ranking in expressed genes
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genes, and their expression increased from early to mid-
lactation. Milk fat composition is known to influence
piglet growth and development [44]. The FABP3 gene,
which is involved in the uptake and transport of fatty
acids, has been linked to milk fat synthesis in cattle [45].

FASN is directly involved in most of the short and
medium-chain fatty acids in milk [46], and PLIN2 is in-
volved in the formation of the lipid droplet in milk [47].
DET were determined for the milk type by parity

interaction, as well as both the milk type and parity main

Fig. 7 Relative gene abundances of highest expressed genes in A colostrum and B mature milk samples
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effects. DET for the parity main effect are presented for
completeness (Table S8), but the discussion will be re-
stricted to DET/DEG for the milk type main effect and
milk by parity interaction, as the objective of this study
was to investigate transcriptomic differences between
colostrum and milk.

Several of the most significant DET were associated
with genes involved in milk fat synthesis and immunity
(Tables 4 and 5). Transcripts rna42732 (THRSP gene)
and rna62377 (ANXA7 gene) are milk fat synthesis genes
among the most significant DET. THRSP, thyroid hor-
mone responsive, is a crucial protein for cellular de novo

Table 3 Average proportion of cell types in colostrum and mature milk samples

Cell Typea P1
Col.

P2
Col.

P3
Col.

P4
Col.

P1
Milk

P2
Milk

P3
Milk

P4
Milk

Pan- Immune (PTPRC) 0.100 0.136 0.088 0.112 0.087 0.134 0.037 0.056

Immune (CD8A) 0.001 0.007 0.002 0.011 0.001 0.000 0.001 0.000

Immune (NCAM1) 0.002 0.018 0.003 0.052 0.000 0.000 0.000 0.000

Immune (CD19) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Immune (CD4) 0.001 0.001 0.000 0.012 0.000 0.000 0.000 0.000

Immune (CD3E) 0.001 0.003 0.000 0.004 0.000 0.000 0.000 0.000

Immune (CD3D) 0.002 0.004 0.003 0.006 0.002 0.002 0.002 0.001

Immune (CD3G) 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000

Stromal (FABP4) 0.029 0.025 0.023 0.026 0.006 0.008 0.003 0.003

Stromal (SL100A4) 0.003 0.002 0.002 0.002 0.000 0.000 0.000 0.000

Stromal (DLK1) 0.000 0.001 0.000 0.003 0.000 0.000 0.000 0.000

Epithelial (LAMP1) 0.333 0.296 0.295 0.261 0.177 0.168 0.172 0.160

Epithelial (EPCAM) 0.020 0.236 0.291 0.294 0.516 0.449 0.534 0.558

Epithelial (KRT8) 0.311 0.259 0.284 0.202 0.198 0.223 0.234 0.203

Stem (CD34) 0.010 0.012 0.009 0.015 0.010 0.013 0.014 0.016
a Cell-specific marker shown in parentheses

Fig. 8 Expression of cell-specific markers in colostrum and mature milk transcriptomes. Each box in the heatmap represents the relative proportion of
cell-specific marker in the sample, i.e. the number of reads mapped to the cell-specific marker divided by the sum of the reads mapped to cell-specific
markers. Samples are organized by milk type (colostrum and milk) and parity (P1-P4) as shown on the x-axis. Cell-specific markers are shown along the
y-axis, with font color indicating the cell marker type: Green = stem cell, Blue = epithelial cell, Gray = stromal cell, and Orange = immune cell
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lipogenesis and has been shown to play an important
role in lipogenesis in the mammary epithelial cell [48,
49]. Expression of milk fat synthesis transcripts was up-
regulated in mature milk samples compared to colos-
trum, which agreed with expression patterns observed
across bovine lactation stages [50]. Our results are con-
sistent with the finding that the transition from swine
colostrum to mature milk is marked by a shift from high
protein contents to high fat and lactose contents [51].
Transcript rna70598, associated with the colostrum

trypsin inhibitor-like gene (LOC100513767), was found
to be significantly differentially expressed for the milk
type main effect. Moreover, its expression was over 7-
fold higher in colostrum than mature milk. Trypsin se-
creted by the small intestine can degrade colostral anti-
bodies, and swine immunoglobulins, such as IgG and
IgA are susceptible to trypsin degradation [52]. Colostral
trypsin inhibitor helps protect these immunoglobulins
without preventing the digestion of other milk proteins.
In addition, DET associated with granzymes GZMB
(transcript rna37492) and GZMH (transcript rna37493)
were among the most significant DET. Granzymes are

serine proteases and six of the twelve members of the
granzyme family (A, B, H, K, and M) have been identi-
fied in the swine genome [53]. Presence of these proteins
in milk leukocytes would indicate the existence of acti-
vated or memory t-cells which are likely actively fighting
pathogenic cells which may be of importance for either
the infant or the protection of the mammary gland [54].
In this study, DEG were identified by aggregating P-

values across transcripts associated with each gene via
the Lancaster method, rather than using gene read
counts directly. Using this approach not only maintains
both transcript and gene-level resolution, but also by-
passes issues of different variances and directions of
change across constituent transcripts. This method out-
performs other gene-level methods and provides a co-
herent analysis between transcripts and genes [55].
One of the major aims of this study was to evaluate

DEG between lactation stages across different parities.
Progeny born to multiparous sows generally exhibit su-
perior growth performance compared to those born to
primiparous sows. However, colostrum and milk com-
position profiles (immunoglobulin, protein, fat, lactose,
and net energy) are highly similar across parities [6]. Re-
sults from this study support this finding, as very few
gene expression differences were identified in the milk
type by parity interaction. Only 33 DEG were identified
for the milk type by parity interaction and only a clear
separation in milk type was exhibited in the PCA ana-
lysis (Fig. 9).
Glucose transport is a major precursor to lactose syn-

thesis, which is synthesized in the Golgi vesicle of

Fig. 9 PCA plot of colostrum (C) and mature milk (M) transcripts from dams in parities 1–4

Table 4 Classifications of DET for milk type main effect and milk
type x parity interaction

Milk Type Milk Type x Parity

Known Transcripts 2479 85

Novel Coding Transcripts 2132 80

Novel lncRNA 172 4

Total 4783 169
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mammary secretory alveolar epithelial cells during lac-
tation [56]. Glucose-6-phosphate transporter SLC37A2
and glucose transporter SLC2A5 were identified as
DEG for the milk type main effect. Glucose transport
across the plasma membrane of mammalian cells is car-
ried out by two distinct processes one of which involves
glucose transporters from the GLUT gene family
(encoded by SLC2A genes) and the other which in-
volves glucose transporters from the SGLT family
(encoded by SLC5A genes). Both the SLC2A5 and
SLC37A2 genes were up-regulated in colostrum. Crisá
et al. [24] identified significant up-regulation of mem-
bers of the SLC2A gene family and polysaccharide and
glycosamino-glycan binding molecular function to be
enriched in goat colostrum samples compared to ma-
ture milk.
Members of the SLC35 gene family encode nucleo-

tide sugar transporters localizing at the Golgi appar-
atus and/or the endoplasmic reticulum. These
transporters transport nucleotide sugars pooled in the

cytosol into the lumen of these organelles, where
most glycoconjugate synthesis occurs [57]. Currently,
the SLC35 gene family is comprised of 31 genes
which are divided into 7 subfamilies, SLC35A to
SLC35G [58]. GDP-fucose transporters SLC35C1 and
SLC35C2 were identified as DEG for the milk type
main effect, with SLC35C2 up-regulated in colostrum
and SLC35C1 down-regulated. Several other members
of the SLC35 family, SLC35B2, SLC35D1, SLC35E1,
SLC35E3, and SLC35G1, were statistically significant
but were filtered out based on our log-fold change
criteria. Crisà et al. [24] identified 3 DEG from the
SLC35 family that were up-regulated in goat colos-
trum compared to mature milk, as well as enrichment
of glycosaminoglycan binding molecular in colostrum.
Consistent with this result, we also identified the en-
richment of glycosaminoglycan binding molecular
function, with 22 of the 118 annotated genes associ-
ated with the GO term being present in our milk
type DEG set.

Table 5 Twenty-five most significant DET associated with milk type. Significance was ranked using FDR-adjusted P-value

Transcript Gene Gene Description

rna45537a CCDC71L Coiled-coil domain containing 71 like

rna5080a ALDH1A1 Aldehyde dehydrogenase 1 family member A1

rna54008b KCNH8 Potassium voltage-gated channel subfamily H member 8

rna19955a C4H8orf46 Vexin (VXN)

rna70598b LOC100513767 Colostrum trypsin inhibitor-like

rna37492a GZMB Granzyme B

rna42732a THRSP Thyroid hormone responsive

rna8225b LRP4 LDL receptor related protein 4

MSTRG.255032.1a LOC110256328 Uncharacterized ncRNA

rna57086a BCHE Butyrylcholinesterase

rna4906a SETDB2 SET domain bifurcated histone lysine methyltransferase 2

MSTRG.313167.1b MSTRG.313167 Novel gene loci

rna48308b CALML5 Calmodulin like 5

MSTRG.211924.1b KIF26B Kinesin family member 26B

rna56663a LOC100739719 Tetraspanin-6

rna16073b SOWAHC Sosondowah ankyrin repeat domain family member C

rna75068b COL4A5 Collagen type IV alpha 5 chain

rna8510b ABTB2 Ankyrin repeat and BTB domain containing 2

rna5531a STAB1 Stabilin 1

rna2697a VPS33B VPS33B late endosome and lysosome associated

rna29012b TRAPPC6A Trafficking protein particle complex subunit 6A

rna44370b FMO2 Flavin containing dimethylaniline monooxygenase 2

rna44593a PIGR Polymeric immunoglobulin receptor

rna8754a SAA3 Serum amyloid A-3 protein

rna37493a GZMH Granzyme H
a Indicates up-regulation in mature milk
b Indicates down-regulation in mature milk
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The JAK-STAT pathway regulates lactation [59]. The
main gene families in the pathway are Janus kinases (JAK)
and the signal transducers and activators of transcription
proteins (STAT). Members of the JAK family, JAK1, JAK2,
JAK3, and TYK2, have been linked to cytoplasmic do-
mains of diverse cytokine receptors [60], while members
of the STAT family, STAT1–4, STAT5A, STAT5B, and
STAT6, are involved in cell growth, differentiation, apop-
tosis, and mammary gland development. Members of both
families have been associated with bovine milk production
[61]. JAK3 was significantly differentially expressed for the
milk type main effect, with increased expression in colos-
trum, while JAK2 was statistically significant but was fil-
tered out of our DEG list due to thresholding on log-fold
change (log2 fold change = 1.3). A single nucleotide poly-
morphism (SNP) in the JAK2 gene has previously been as-
sociated with milk, protein, and fat yields in bovine milk
production [62].
Twenty-six genes from the PI3K-Akt pathway, which

lies within the JAK-STAT pathway, were found to be

differentially expressed. The PI3K-Akt pathway is import-
ant for the synthesis of lactose and lipids, as well as glu-
cose transport [63]. Although not statistically significant
after FDR-correction, this pathway had a nominal P-value
of 0.029 in the enrichment analysis. The PI3K-Akt path-
way is a key signaling node for lactogenic expansion and
differentiation of the luminal mammary epithelium, as nu-
merous signaling pathways that regulate lactogenic devel-
opment converge on PI3K-Akt, including the insulin-like
growth factor 1 receptor (IGF1R), RANKL and RANK,
integrins, and PRLR-to-JAK2-to-STAT5A pathways [64].
In general, expression of DEG in the PI3K-Akt pathway
was up-regulated in colostrum (Fig. 10). The PI3K-Akt
pathway was also identified as major pathway enriched in
human and bovine colostrum [65].
Several GO terms related to immune response, par-

ticularly leukocyte differentiation, leukocyte migration,
regulation of immune system process, and humoral im-
mune system process, were significantly enriched in the
DEG for the milk type main effect (Tables S11 and S12).

Table 6 Twenty-five most significant DET associated with milk type x parity interaction. Significance was ranked using FDR-adjusted
P-value

Transcript Gene Gene Description

rna22238 AHCYL1 Adenosylhomocysteinase like 1

rna27866 LOC100621677 Dipeptidase 3 (DPEP3)

MSTRG.208683.14 GRB10 Growth factor receptor bound protein 10

rna14076 POR P450 (cytochrome) oxidoreductase

rna62377 ANXA7 Annexin A7

rna69234 PCM1 Pericentriolar material 1

MSTRG.337836.10 EXOC4 Exocyst complex component 4

rna62750 ADIRF Adipogenesis regulatory factor

rna69254 PCM1 Pericentriolar material 1

rna16978 EHBP1 EH domain binding protein 1

MSTRG.114444.62 LMNTD1 Lamin tail domain containing 1

rna31913 PTP4A2 Protein tyrosine phosphatase 4A2

MSTRG.329474.6 RRBP1 Ribosomal binding protein 1

MSTRG.86648.4 PUF60 Poly(U) binding splicing factor 60

rna56801 WWTR1 WW domain containing transcription regulator 1

MSTRG.253426.1 SELENOT Selenoprotein T

MSTRG.40523.3 PDCL Phosducin like

rna50113 GPS1 G protein pathway suppressor 1

MSTRG.341587.6 SCRN1 Secernin 1

rna77208 EIF5 Eukaryotic translation initiation factor 5

MSTRG.290003.24 GPAM Glycerol-3-phosphate acyltransferase, mitochondrial

MSTRG.266678.8 NRIP1 Nuclear receptor interacting protein 1

MSTRG.118470.4 TXNRD1 Thioredoxin reductase 1

MSTRG.373117.37 LOC102158401 Collagen alpha-1(l) chain-like

MSTRG.221153.6 STARD13 StAR related lipid transfer domain containing 13
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Nearly all of the DEG associated with these GO terms
were up-regulated in colostrum. This finding is consist-
ent with the immunoglobulins and immune cells being
transferred to the neonate via colostrum [66]. In pigs,
the epitheliochorial nature of the placenta prohibits
transfer of maternal immune cells and immunoglobulins
to the fetus, and thus, the piglet relies on the successful
absorption of colostral components to acquire maternal
immunity [67]. Proinflammatory cytokines play an im-
portant role in the development of the neonatal immune
system by mediating the early local and systemic re-
sponses to microbial challenges [68]. A total of 16 DEG
were associated with cytokine secretion, including inter-
leukin 21 receptor (IL21R), interleukin 27 receptor A
(IL27RA), and tumor necrosis receptor superfamily
members 1B (TNFRSF1B). Several other genes in these
gene families were shown to be up-regulated in early
porcine lactation by Palombo et al. [20]. This was con-
sistent was our findings as all cytokine secretion genes

except CD36, CIDEA, F2RL1, TLR6, and BTN1A1 were
up-regulated in colostrum (Table S12).
Antimicrobial proteins naturally present in colostrum

and milk can kill and inhibit a broad spectrum of bac-
teria [69]. Milk is also known to exert chemotactic activ-
ity on neutrophils [70], an important innate host defense
against microorganisms. The chemokine superfamily en-
codes secreted proteins involved in immunoregulatory
and inflammatory processes. The CXC chemokine ligand
14 (CXCL14), which encodes a chemokine antimicrobial
protein [71], was up-regulated in colostrum samples
(Fig. 11). Many of the other main chemokines (CXCL2,
CXCL8, CXCL9, CXCL10, CXCL11, CXCL13, CXC14,
and CXCL16) were expressed in our samples. Interleukin
8/CXC ligand (CXCL8) was the most highly expressed
chemokine across our samples. It has also been reported
to be highly expressed in human milk [72–74]. In hu-
man milk, the expression of CXCL8 was highest in the
immediate postpartum period and decreased over the

Fig. 10 Log2 fold change (mature milk vs. colostrum) of milk type main effect DEG in the PI3K-AKT signaling pathway. Image was produced by
the iPathwayGuide software (Advaita Bio, http://advaitabio.com/ipathwayguide)

Fig. 11 Average gene expression values of genes in chemokine superfamily (CXC)
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first week of lactation [74]. A similar pattern was ob-
served in our samples, with markedly higher expression
of CXCL8 in colostrum compared to mature milk across
all parities. The second highest expressed chemokine in
our samples was growth-related oncoprotein beta
(CXCL2). In parity 1 and parity 3 samples, expression of
CXCL2 was higher in mature milk samples (P = 0.0023
for P1 and P = 0.0160 for P3; paired T-test). Though not
statistically significant, the average expression values for
CXCL2 were also higher in mature milk in parities 2
and 4. Although expression of CXCL2 was found to be
high in human milk samples, it did not change with time
postpartum [74]. In bovine milk samples, it was reported
that compared to other chemokines, concentrations of
CXCL2 are generally low and decrease sharply after the
onset of lactation [70]. Palombo et al. [20] identified sig-
nificant up-regulation of CXCL2 and CXCL10 in day 1
postpartum swine mammary gland samples compared to
mammary samples taken before parturition. We found
that both CXCL2 and CXCL10 increased in expression
with time postpartum. Our results differed from the re-
sults in [20] in that CXCL8 was the most abundantly
expressed chemokine in our colostrum and mature milk
samples, and CXCL3 was not expressed. One factor con-
tributing to this discrepancy was the use of the improved
reference genome (Sscrofa 11.1), where many of the gaps
and misassemblies present in the Sscrofa 10.2 genome
build were resolved and the annotation was significantly
improved. These results suggest that chemokine ligands
may play an important role in the transition from colos-
trum to mature milk in swine, likely helping prompt re-
cruitment of neutrophils.

Conclusions
Porcine milk and colostrum are complex biofluids that
nourish the neonate and protect it from pathogens and
disease. Recent research has shown that in addition to
the major nutrient components, such as carbohydrates,
lipids, and proteins, other bioactive components, includ-
ing but not limited to exosomes, oligosaccharides, and
bacteria, are present in porcine milk. Understanding
both the nutritional and non-nutritional components of
porcine milk is essential for improved pig production.
Some vital questions that need to be addressed are: 1)
What is the sow’s genetic contribution to milk compos-
ition? 2) What bacteria are present in the mammary
gland, milk, and piglet gut, and what is the source of
these bacteria? 3) Do different milk oligosaccharide pro-
files contribute to the microbiome and immunity in the
piglet GI tract? This study is a subset of a larger study
aimed at addressing these questions. Our findings have
produced several highly specialized and functional candi-
date genes that may contribute to postnatal development
and growth of piglets, as well as lactation in the sow. A

deeper understanding of these genes could provide a co-
herent approach to genetically regulate milk composition
in the future.

Methods
Population and sampling
A four-breed composite line (Maternal Landrace ×
High-lean Landrace × Duroc × Yorkshire) maintained at
the U.S. Meat Animal Research Center (USMARC) for
at least 18 generations was used for the collection of
data in this project and has been previously described
[75, 76]. Litter sizes were adjusted within 48 h of farrow-
ing to ensure litters were approximately equal in size but
did not exceed the number of functional teats. Mam-
mary excretion samples were collected on day of farrow-
ing (d 0; colostrum) and again on day 10 post-farrowing
(d 10; mature milk) from a total of 65 dams, 16 first par-
ity (P1), 25 s parity (P2), 15 third parity (P3), and 9
fourth parity (P4). The power calculation for this experi-
ment was conducted using the online RNASeqSample-
Size tool ([77]; http://cqs.mc.vanderbilt.edu/shiny/
RnaSeqSampleSize/). The power of using 65 animals to
detect ~ 1000 DEG, with maximum dispersion 0.5 and
minimum fold change of 2.82, at FDR level 0.05 from
17,740 expressed genes was found to be 0.99. After sam-
ple collection, animals remained at USMARC and pro-
gressed through the breeding system according to
standard operating procedures.
In most cases, no external stimulant (i.e., oxytocin)

was needed to collect colostrum at time of farrowing, as
farrowing stimulates endogenous oxytocin production
and milk letdown activity. However, if enough colostrum
could not be collected within 10–30min, an intramuscu-
lar injection of oxytocin (20 IU) was administered to
stimulate colostrum letdown. Teats were sprayed with
iodine (5%) and ethanol (70%) and wiped clean with a
chem-wipe, and then 10mL of colostrum was collected
manually from the third and fourth teat on one side of
the sow. On d 10, piglets were separated from the sow
for approximately 1 h, and sows were given an intramus-
cular injection of 20 IU oxytocin to stimulate milk let-
down. Teats were cleaned, and 10 mL of milk was
collected manually from the third and fourth teat on one
side of the sow. Fresh samples were transported to the
laboratory on ice. Samples (250 μL) were aliquoted into
individual lysis D matrix tubes (MP Biomedicals, LLC,
Solon, OH) with 1 mL TRIzol reagent (Invitrogen,
Thermo Fisher Scientific, Waltham, MA) and stored at
− 80 °C until RNA isolation.

RNA isolation and sequencing
RNA was isolated using the FastPrep-24 5G Instrument
(MP Biomedicals, LLC) with cryogenic lysis. Briefly,
RNA was isolated by high-speed cellular disruption
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using multi-directional, simultaneous bead beating of
sample material (i.e., colostrum or milk) with a cool
adapter for cryogenic lysis at 6.0 m/sec for 40 s. Lysed
samples were transferred into a clean tube, and comple-
tion of isolation occurred following manufacturer’s rec-
ommended protocol for TRIzol. The final RNA pellet
was dried at RT for 10 min and resuspended in 30 μL
water (Invitrogen UltraPure DNase/RNase-free, Thermo
Fisher Scientific). RNA was quantified using a NanoDrop
UV-Vis spectrophotometer (Thermo Fisher Scientific)
and RNA integrity was assessed using an Agilent Bioana-
lyzer System (Agilent, Santa Clara, CA).
Total RNA samples extracted from colostrum or milk

were prepared for RNA sequencing with the TruSeq
Stranded Total RNA with Ribo-Zero Gold sample prep-
aration kit (Illumina, San Diego, CA) following the
guidelines of the manufacturer. Libraries were quantified
with RT-qPCR using the NEBNext Library Quant Kit
(New England Biolabs, Inc., Beverly, MA, USA) on a
CFX384 thermal cycler (Bio-Rad, Hercules, CA, USA),
and the size and quality of the library was evaluated with
an Agilent Bioanalyzer DNA 1000 kit (Santa Clara, CA,
USA). The libraries were diluted to 4 nM with Illumina
RSB. Libraries were paired-end sequenced with 150 cycle
high output sequencing kits on an Illumina NextSeq 500
instrument.

Processing RNA-Seq data
Alignment of RNA-Seq reads was carried out as follows.
First, quality of the raw paired-end sequence reads in in-
dividual fastq files was assessed using FastQC (Version
0.11.5; www.bioinformatics.babraham.ac.uk/projects/
fastqc), and reads were trimmed to remove adapter se-
quences and low-quality bases using the Trimmomatic
software (Version 0.35) [78]. The remaining reads were
mapped to the Sscrofa 11.1 genome assembly (NCBI ac-
cession AEMK00000000.2) using Hisat2 (Version 2.1.0)
[79] with default parameters.
Mapped transcripts were assembled for each library

using Stringtie (Version 1.3.3) [80]. The NCBI Sscrofa
11.1 reference annotation (Release 106) was used to
guide the assembly process. Transcripts from all samples
were merged using Stringtie merge mode to build a con-
sensus set of transcripts.

Identification and characterization of novel transcripts
Transcript expression levels were quantified for each
library using fragments per kilobase of exon per
million mapped reads (FPKM) [81]. Transcripts
expressed in a single sample, and transcripts with
FPKM < 0.3 in all samples were removed. Gffcompare
(Version 0.11.2) [82] was used to compare the list of
assembled transcripts with the S. scrofa reference an-
notation (NCBI Release 106). Transcripts overlapping

known transcript classes in the reference annotation
(gffcompare class code ‘=’) were assigned to the ap-
propriate annotation class, while transcripts with
gffcompare class codes ‘x’ (exonic overlap on the op-
posite strand), ‘i’ (fully contained in reference intron),
‘j’ (multi-exon with at least one junction match), and
‘u’ (unknown, intergenic) were considered to be po-
tential novel transcripts.
A modified version of the discovery pipeline described

in Cai et al. [83] was used to further filter transcripts
and classify novel transcripts (Fig. 2): (i) Filter out tran-
scripts with short lengths (< 200 bp) and single exons;
(ii) ORF obtained using TransDecoder (Version 5.5.0;
https://github.com/TransDecoder/TransDecoder/wiki).
Transcripts with no predicted ORF were filtered out,
and transcripts ORF length ≥ 120 amino acids were con-
sidered protein-coding. (iii) Protein coding potential
assessed using CPC2 (Version 2.0) [84], PLEK (Version
1.2) [85], and CNIT [86]; (iv) Transcripts were translated
to amino acid sequences using the Transeq utility from
EMBOSS (https://www.ebi.ac.uk/Tools/st/emboss_
transeq/), and HMMER [87] was used to search for
known protein domains against the Pfam database (Re-
lease 33.1) [88]. Transcripts with significant Pfam hits
(E-value < 10.0) were classified as protein-coding. After
steps (iii) and (iv), transcripts with no significant Pfam
hits, CPC2 classification “coding”, PLEK score > 0, and
CNIT > 0 were classified as protein-coding, and tran-
scripts with no significant Pfam hits, CPC2 classification
“noncoding”, PLEK score < 0, and CNIT score < 0 were
classified as non-coding. All other transcripts were dis-
carded, as their coding potential was ambiguous.
The BLASTN algorithm from the BLAST+ package

[89] was used to identify homology between (1) novel
lncRNA and the NONCODE database (Version 5) and
(2) novel mRNA and the NCBI Non-redundant Nucleo-
tide database (nt; Version 5, https://ftp.ncbi.nlm.nih.gov/
blast/db/). BLASTN was run with default parameters,
and an E-value cutoff of 10.0 was used to define hom-
ologous sequences.

Differential expression and functional analyses
Raw read counts for the 70,841 transcripts and the
17,910 corresponding genes were normalized using
DESeq2 (Version 1.26) [90]. Gene expression distribu-
tions were computed for colostrum and mature milk
samples by averaging the normalized expression values
across samples. The PCA plot, using variance stabilizing
transform of normalized read counts, was generated
using the plotPCA function from the DESeq2 package.
Differential expression analysis of transcripts was per-
formed using DESeq2 with the following generalized lin-
ear model:
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Y ¼ Typeþ Parityþ Type x Parity:

Transcripts with FDR-adjusted P-value ≤0.01 were
considered DET for the type x parity interaction. Tran-
scripts that were not DET for the interaction term with
FDR-adjusted P-value ≤0.01 were considered DET for
the parity main effect. Transcripts that were not DET
for the interaction term with |log2 fold change| ≥ 2 and
FDR-adjusted P-value ≤0.01 were considered DET for
the milk type main effect.
Transcript P-values were aggregated for each gene

using the Lancaster method [91] to generate gene-level
analysis. This approach has been described in detail by
Yi et al. [55]. Briefly, the Lancaster method is an exten-
sion of the Fisher method [92] for P-value aggregation,
where under the null hypothesis that all genes have zero

effect, the test statistic T ¼ PK
i¼1ϕ

−1
wi
ðpiÞ follows a chi-

squared distribution with df ¼ PK
i¼1wi . Here, K denotes

the number of transcripts associated with the gene, w1,
…, wK a set of weights for the transcript P-values p1, …
pK, and ϕ−1

wi
the inverse CDF of the gamma distribution

with shape parameter αi ¼ wi
2 and scale parameter β = 2.

Here, the baseMean parameter from the DESeq2 output
was used as wi in the Lancaster method. Aggregated P-
values were corrected using the Benjamini-Hochberg
method. Genes with FDR-adjusted P-value ≤0.01 were
considered DEG. DEG for the milk type x parity inter-
action were removed from the milk type main effect
DEG set. Log2-fold changes (log2FC; mature milk vs.
colostrum) were computed for each of the genes using
DESeq2, and genes with |log2FC| ≤ 1.5 were filtered out
of the milk type main effect DEG set.
Enrichment analysis of gene function and cellular

pathways was performed for DEG using the iPathway-
Guide software (Version 2012; Advaita Bio, http://
advaitabio.com/ipathwayguide) with the default M. mus-
culus data as background. For GO analysis, an over-
representation test, based on a hypergeometric distribu-
tion, was used to compute the statistical significance of
observing more than the expected number of DEG. A
GO term was considered statistically significant at FDR-
corrected P ≤ 0.05. Pathway over-representation analysis
was performed by comparing the number of affected
genes associated with a pathway between groups. Path-
ways were considered statistically significant at FDR-
corrected P ≤ 0.05.
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