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Abstract

Background: Different factors have been introduced which influence the pathogenesis of chronic obstructive
pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). COPD as an independent factor is involved in
the development of lung cancer. Moreover, there are certain resemblances between NSCLC and COPD, such as
growth factors, activation of intracellular pathways, as well as epigenetic factors. One of the best approaches to
understand the possible shared pathogenesis routes between COPD and NSCLC is to study the biological pathways
that are activated. MicroRNAs (miRNAs) are critical biomolecules that implicate the regulation of several biological
and cellular processes. As such, the main goal of this study was to use a systems biology approach to discover
common dysregulated miRNAs between COPD and NSCLC, one that targets most genes within common enriched
pathways.

Results: To reconstruct the miRNA-pathways for each disease, we used the microarray miRNA expression data.
Then, we employed “miRNA set enrichment analysis” (MiRSEA) to identify the most significant joint miRNAs
between COPD and NSCLC based on the enrichment scores. Overall, our study revealed the involvement of the
targets of miRNAs (such as has-miR-15b, hsa-miR-106a, has-miR-17, has-miR-103, and has-miR-107) in the most
important common biological pathways.

Conclusions: According to the promising results of the pathway analysis, the identified miRNAs can be utilized as
the new potential signatures for therapy through understanding the molecular mechanisms of both diseases.
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Background
Chronic obstructive pulmonary disease (COPD) is a
lung-related disease specified by the continuous respira-
tory symptoms and boosted inflammatory response
owing to harmful gases and particles [1, 2]. On the one
hand, COPD raises oxidative stress leading to DNA

damage, chronic exposure, repression of the DNA repair
mechanisms, and cellular proliferation [3]; on the other
hand, lung cancer as the fifth cancer leading to global
mortality is usually classified into two main histologic
types: non-small cell lung cancer (NSCLC) and small cell
lung cancer (SCLC) [4]. Moreover, the mutations in on-
cogenes can also lead to lung cancer, and as a result, cell
proliferation and forming a tumor [4, 5]. Furthermore,
cell proliferation and unsuppressed cell growth are the
known characteristics of cancer progression in which
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several genes and proteins are involved, especially, the
kinases and kinase receptors [6].
The rate of lung cancer in patients with COPD is

nearly five times more than that of smokers without
COPD [7]; besides, the overlap between COPD and lung
cancer can be due to joint genetic susceptibility as well
as the smoking-related processes [8]. COPD is recog-
nized as an autonomous risk factor for lung cancer, par-
ticularly for NSCLC as the most prevalent lung cancer
type [9]. Both COPD and NSCLC are mostly caused by
cigarette smoking [8] through inducing inflammation
and oxidative stress in the lung [10]. Some common pro-
cesses would contribute to the development of COPD
and lung cancer in patients, such as abnormal immunity,
cell proliferation, apoptosis, and chromatin modifica-
tions [11].
MicroRNAs are a category of functional non-coding

RNAs containing 20 ~ 24 nucleotides, what negatively
governs mRNA stability and/or suppresses mRNA trans-
lation through binding to the 3′ untranslated region [12,
13]. The role of miRNAs in a wide range of cellular
process, including proliferation, cell cycle, differenti-
ation, apoptosis, and metastasis has been reported [13].
MiRNAs are involved in the initiation and development
of disparate cancer types, while they are dysregulated in
many cancers. Moreover, the alteration in the mRNA
expression levels is also correlated with several diseases
such as cardiovascular diseases, immunity- or
inflammation-related diseases, and COPD [14, 15]. Fur-
thermore, miRNAs function as oncogenes or tumor sup-
pressors through regulating their target genes. It should
be noted that miRNAs have great potential to be used as
therapeutic targets, therefore, the determination and
visualization of their positions in the regulatory path-
ways will be helpful in the development of novel medica-
tions [16]. If a miRNA is related to the physiological
process, it certainly regulates a gene or multiple genes in
a corresponding pathway.
There are many common pathways that are activated

in COPD and NSCLC [17]. Athyros and colleagues, for
one, found the impairment of several steps in the reverse
cholesterol transport pathway via systematic inflamma-
tion in COPD [18]. Moreover, Aldehydes identified the
elevation of histone 3 phosphorylation in cigarette
smokers via the activation of proliferative pathways, in-
cluding the phosphatidylinositol-3 kinase (PI3K) / pro-
tein kinase B (PKB/Akt) [19] and MAPK pathway [20,
21]. The KEGG database is a series of biological path-
ways wherein many genes, proteins and other products
are involved; however, the information about miRNAs is
not mentioned in them. Cong Pian et al. [21] designed a
new pathway database with the aid of KEGG plus miR-
NAs and integrated the human miRNA-target interac-
tions with KEGG pathways using the hypergeometric

test. Furthermore, C. Brinkrolf et al. [22] introduced a
platform called VANESA for reconstructing, visualizing,
and analyzing biological networks, to predict human
miRNAs that may be co-expressed with genes involved
in the KEGG pathway.
The aim of this study is to identify the most significant

miRNAs as the new biomarkers which are common be-
tween COPD and NSCLC via analyzing the shared path-
ways between both diseases. To this aim, we considered
two miRNA datasets related to COPD and NSCLC and
normalized each dataset; then, we enriched both datasets
to detect those pathways that contained more target
genes for each miRNA list.
Thus, we detected those miRNAs that targeted more

genes within the shared pathways and had more meta-
bolic and genetic impact on the enriched pathways; then,
we introduced the common pathways with the common
miRNAs between COPD and NSCLC; and finally, we an-
alyzed the enriched miRNA-pathway sets by identifying
the number of target genes for each miRNAs that con-
tributed in a specific pathway. To have an overall view,
the workflow of the different steps is visualized in Fig. 1.

Results
This study presents common miRNA biomarkers be-
tween COPD and NSCLC of pre-processed datasets via
miRNA-pathway set enrichment analysis and highlights
those pathways with more target genes of miRNAs asso-
ciated with COPD and NSCLC. As such, it specifies the
most significant miRNAs or core miRNAs using ana-
lyzed pathways. In addition, it assesses the most signifi-
cant pathways by affecting the core miRNAs on their
targets as the components in the pathways. In the mean-
while and as a final step, this study has performed a
literature-based search to study the identified miRNA
biomarkers on the common pathways.

MiRNA datasets
To construct the expression matrices for all samples, we
removed zero values from both datasets. Eventually, the
total number of miRNAs after normalization was equal
to 1308 and 1145 miRNAs for COPD and NSCLC, re-
spectively; which were considered for further analysis.
The workflow of steps performed in this study. This

scheme shows that after collecting miRNA expression
profiles, pre-processing was individually performed for
each dataset, and then, the enrichment miRNA-
pathways were utilized to discover dysregulated path-
ways though miRNA sets. Those common miRNAs that
had the most effects on the enriched pathways on the
basis of enrichment scores were selected, and the target
genes were extracted from target prediction databases
for common miRNAs between COPD and NSCLC. At
the end, the pathways analysis was performed.
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Enrichment analysis and identification of dysregulated
pathways
The results of miRNA set enrichment analysis revealed
the pathways regulated by each miRNA in each disease.
We identified 149 significant enriched pathways in
COPD (1 up-regulated and 148 down-regulated path-
ways) and 146 significant enriched pathways in NSCLC
(72 up-regulated and 74 down-regulated pathways).
Among all enriched pathways, similar pathways were
found between down-regulated pathways in COPD and
up-regulated pathways in NSCLC. In Tables 1 and 2, we
only demonstrated the top 10 significant enriched

pathways for COPD and NSCLC, respectively. In these
tables, size of pathways based on the number of contrib-
uted features (SIZE), pathways’ enrichment scores before
and after running enrichment peak (ES and NES), per-
centage of miRNA list before running enrichment peak
(Mir%), and the enrichment signal strength are repre-
sented in the columns. The full list of common pathways
between both diseases is shown in Table S2 and S3 for
COPD and NSCLC, respectively.
By comparing the enrichment results, we selected 7

common dysregulated pathways with different regula-
tions in COPD and NSCLC, including non-small cell

Fig. 1 The workflow of steps performed in this study. This scheme shows that after collecting miRNA expression profiles, pre-processing was
individually performed for each dataset, and then, the enrichment miRNA-pathways were utilized to discover dysregulated pathways though
miRNA sets. Those common miRNAs that had the most effects on the enriched pathways on the basis of enrichment scores were selected, and
the target genes were extracted from target prediction databases for common miRNAs between COPD and NSCLC. At the end, the pathways
analysis was performed

Table 1 Top 10 down-regulated pathways in COPD

Pathway SIZE ES NES Mir \% Signal

KEGG_OOCYTE MEIOSIS 54 − 0.76904 −2.6434 0.0726 0.502

KEGG_REGULATION OF ACTIN CYTOSKELETON 85 − 0.71525 −2.5143 0.0826 0.45

KEGG_CELL CYCLE 124 −0.66193 −2.4711 0.125 0.46

KEGG_RENAL CELL CARCINOMA 108 −0.67663 −2.4694 0.115 0.447

KEGG_NON-SMALL CELL LUNG CANCER 105 −0.64361 −2.407 0.121 0.464

KEGG_ERBB_SIGNALING_PATHWAY 97 −0.58372 −2.3976 0.115 0.414

KEGG_P53 SIGNALING PATHWAY 92 −0.66285 −2.396 0.115 0.455

KEGG_VEGF_SIGNALING_PATHWAY 68 −0.59528 −2.3986 0.108 0.415

KEGG_TGF_BETA_SIGNALING_PATHWAY 66 −0.65517 −2.3876 0.113 0.453

KEGG_WNT SIGNALING PATHWAY 32 −0.73266 −2.383 0.0657 0.539
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Table 2 Top 10 up-regulated pathways in NSCLC

Pathway SIZE ES NES Mir \% Signal

KEGG_PRIMARY IMMUNODEFICIENCY 10 0.83905 1.8172 0.00556 0.303

KEGG_P53 SIGNALING PATHWAY 100 0.49347 1.6518 0.127 0.325

KEGG_ERBB SIGNALING PATHWAY 90 0.47255 1.6308 0.102 0.285

KEGG_NON-SMALL CELL LUNG CANCER 86 0.48247 1.6235 0.089 0.253

KEGG_CELL CYCLE 116 0.4208 1.5168 0.106 0.267

KEGG_APOPTOSIS 67 0.46177 1.4878 0.132 0.343

KEGG_WNT SIGNALING PATHWAY 87 0.40255 1.382 0.124 0.321

KEGG_PRION DISEASES 27 0.51335 1.3818 0.113 0.273

KEGG_VEGF SIGNALING PATHWAY 62 0.37869 1.3925 0.128 0.277

KEGG_TGF BETA SIGNALING PATHWAY 60 0.37867 1.2741 0.0209 0.16

Fig. 2 The network of common pathways. Each node represents the pathway, the size and the color depth of each node indicate the number of
common core miRNAs between COPD and NSCLC in that pathway; also, the thickness of an edge in this network represents the number of
shared miRNAs between the two pathways. P53 signaling, cell cycle, and non-small cell lung cancer pathways have the highest number of
common miRNAs between COPD and NSCLC, in which the number of core miRNAs in p53 signaling, cell cycle, and non-small cell lung cancer
pathways are 15, 15, and 10, respectively
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lung cancer, cell cycle, P53 signaling pathway, VEGF sig-
naling pathway, TGF beta signaling pathway, WNT sig-
naling pathway, and ERBB signaling pathway.

Common miRNAs between COPD and NSCLC
Table S1 shows the enriched pathways and common
core miRNAs between COPD and NSCLC in each path-
way in such a way that these miRNAs were at least com-
mon between the two pathways. For better recognition,
in Table S1, each miRNA is highlighted with a color
scale from Green to Yellow to show well the degree of
the replication of the miRNAs in all enriched pathways.
Moreover, to detect significant miRNAs among all

pathways, the average enrichment scores of each miRNA
for all enriched pathways as well as the mean score of
core miRNAs within each pathway were calculated and
shown in Table 4. The zero value in each cell means that
the miRNA was not found in that pathway.
A network of common pathways is also shown in

Fig. 2, in which each node in this network represents the
pathway and each edge between two nodes indicates that
there are common miRNAs between two pathways.
Next, since we aimed to clarify the significant miRNAs

in common pathways between COPD and NSCLC, we
selected the most significant enriched pathways based
on two factors: the calculated scores (Table 4) and the
number of core miRNAs (Fig. 2). Given pathways, in-
cluding cell cycle, P53 signaling, non-small cell lung can-
cer, VEGF signaling, ERBB signaling, WNT signaling,
and TGF beta signaling pathways in KEGG had the

mean enrichment scores: − 0.0628, − 0.0554, − 0.04016,
− 0.0306, − 0.0208, − 0.0201, and − 0.0079, respectively.
The results showed that the average number of NES in
all pathways for COPD that have more pathways than
NSCLC were almost equal to − 2, this means that the
NES lower than − 2 could be meaningful in biology for
COPD. But for NSCLC, the changes of NES were almost
stable (0 ∙ 8 ≤NES ≤ 1 ∙ 1); thus, we considered those
pathways with the average of NES less than − 2 for
COPD and found the common significant pathways be-
tween both diseases. Moreover, the number of core miR-
NAs in each pathway, as the second factor, was
determined to be equal to 15, 15, 11, 10, 9, 7, and 5 for
p53 signaling, cell cycle, non-small cell lung cancer,
ERBB signaling, WNT signaling, VEGF signaling, and
TGF beta signaling pathways, respectively. Finally, the
pathways comprising the highest average enrichment
scores along with high number of common core miR-
NAs were selected. Therefore, three pathways including
cell cycle, non-small cell lung cancer, and p53 signaling
pathways were detected as the most significant path-
ways. As a further note, the number of shared miRNAs
between p53 signaling and cell cycle pathways was 12,
the common miRNA numbers between cell cycle and
NSCLC pathways was 9, and the number of shared miR-
NAs between p53 signaling and NSCLC pathways was 8.

Significant miRNAs in the selected enriched pathways
In Fig. 3, the results for the differential expression level
of miRNA set (miRNA-pathway) along with weighted

Table 3

KEGG_CELL_
CYCLE

KEGG_ERBB_
SIGNALING

KEGG_P53_
SIGNALING

KEGG_TGF_BETA_
SIGNALING

KEGG_VEGF_
SIGNALING

KEGG_WNT_
SIGNALING

KEGG_NON_SMALL_CELL_
LUNG_CANCER

hsa-miR-107 hsa-let-7b hsa-miR-107 hsa-miR-133a hsa-miR-17 hsa-miR-17 hsa-miR-103

hsa-miR-654-
3p

hsa-let-7c hsa-let-7d hsa-let-7c hsa-miR-107 hsa-miR-15a hsa-let-7c

hsa-let-7d hsa-miR-1 hsa-miR-654-3p hsa-miR-1 hsa-let-7b hsa-let-7c hsa-miR-17

hsa-miR-1 hsa-miR-654-3p hsa-miR-1 hsa-miR-455-3p hsa-let-7d hsa-miR-133a hsa-miR-455-3p

hsa-miR-455-
3p

hsa-miR-193a-3p hsa-miR-361-5p hsa-let-7d hsa-miR-16 hsa-miR-103 hsa-miR-106a

hsa-miR-17 hsa-miR-107 hsa-let-7c hsa-miR-193a-3p hsa-let-7b hsa-miR-107

hsa-miR-15b hsa-miR-17 hsa-miR-15a hsa-miR-133a hsa-miR-1285 hsa-miR-1285

hsa-miR-103 hsa-let-7d hsa-miR-133a hsa-miR-1 hsa-miR-133a

hsa-miR-1285 hsa-miR-133b hsa-miR-15b hsa-let-7e hsa-miR-133b

hsa-let-7b hsa-miR-106a hsa-let-7b hsa-miR-15b

hsa-let-7e hsa-miR-103 hsa-miR-203

hsa-miR-106a hsa-miR-106a

hsa-miR-361-
5p

hsa-miR-17

hsa-miR-203 hsa-miR-16

hsa-let-7c hsa-miR-1285
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miRNA correlation and ranked miRNA list based on
miRScores in non-small cell lung cancer, cell cycle, and
p53 signaling pathways are visualized.
Through the selected enriched pathways, we deter-

mined core miRNAs which were shared among these
pathways and also had higher average of enrichment
scores than the other miRNAs. In Fig. 4, the most sig-
nificant common core miRNAs among three selected
pathways are depicted; furthermore, the overlapping
core miRNAs of cell cycle, p53 signaling, and non-small
cell lung cancer pathways are shown as well.
As a result, the has-miR-15b, hsa-miR-106a, has-miR-

17, has-miR-103 and has-miR-107 were selected as the
most significant miRNAs with 0.094, 0.083, 0.07, 0.037,
and 0.022, respectively, to be the mean of their enrich-
ment scores among all pathways. Afterward, the target
genes of the most significant miRNAs in each pathway
were identified and the targets mapped to selected

pathways. The converted pathways are demonstrated in
Fig. 5a, b and c.

Discussion
Until now, diverse functions have been introduced for
miRNAs including inflammation, development of airway
epithelial cells, stress responses, and formation of pul-
monary surfactant; also, miRNAs have critical roles in
the disease’s progression [23]. Moreover, COPD as a
progressive and incompletely reversible disease leads to
chronic inflammation due to considerable dysregulation
of the immune system. Some studies have been con-
ducted to reveal the common pathogenesis mechanisms
between COPD and NSCLC [24–27]. Herein, we have
investigated common actuated pathways in both diseases
and the role of miRNAs in them. Although we have in-
vestigated the most significant common biological path-
ways between both diseases, our main goal has been to

Table 4 List of core miRNAs that are common among all pathways. Mean Score column is the average of all miRNA enrichment
scores among all pathways, and Mean Score raw is the average of enrichment scores about all miRNAs in a specific pathway

miRNAs CELL
CYCLE

ERBB
SIGNALING

P53
SIGNALING

TGF_BETA
SIGNALING

VEGF
SIGNALING

WNT
SIGNALING

NON_SMALL CELL LUNG
CANCER

Mean
Score

hsa-miR-
106a

0.0495 0.1025 0.067 0 0 0 0.1145 0.083375

hsa-miR-15b 0.076 0 0.085 0 0 0 0.121 0.094

hsa-miR-17 0.0775 0.1265 0.0885 0 0.079 −0.02 0.074 0.070917

hsa-miR-103 0.015 0 0.0245 0 0 0.051 0.0612 0.037925

hsa-miR-107 0.0075 0.033 0.007 0 0.0115 0 0.052 0.0222

hsa-miR-
133b

0 0.022 0 0 0 0 0.002 0.012

hsa-let-7d 0.059 0.03 0.0515 −0.08 0.03 0 0 0.0181

hsa-miR-
193a-3p

0 0.019 0 0 0.02 0 0 0.0195

hsa-miR-16 0 0 −0.0625 0 −0.0775 0 0 −0.07

hsa-miR-455-
3p

0.0455 0 0 0.082 0 0 0.052 0.059833

hsa-miR-15a 0 0 −0.032 0 0 −0.006 0 −0.019

hsa-miR-361-
5p

−0.0715 0 −0.0225 0 0 0 0 −0.047

hsa-let-7e −0.0915 0 0 0 0 −0.065 0 −0.07825

hsa-let-7c −0.1535 −0.0845 − 0.1355 −0.014 0 −0.001 − 0.0645 −0.0755

hsa-miR-
133a

0 0 −0.1325 −0.01185 − 0.1448 −0.075 − 0.075 −0.08783

hsa-let-7b −0.1315 −0.1605 − 0.1195 0 − 0.1325 −0.028 0 −0.1144

hsa-miR-
1285

−0.2455 0 −0.247 0 0 0.1155 −0.218 −0.14875

hsa-miR-1 −0.2115 −0.135 − 0.226 −0.01585 0 −0.1525 0 −0.14817

hsa-miR-654-
3p

−0.18 −0.1825 − 0.178 0 0 0 0 −0.18017

hsa-miR-203 −0.188 0 0 0 0 0 −0.561 −0.3745

Mean Score −0.0628 −0.0208 − 0.0554 −0.0079 − 0.0306 −0.0201 − 0.04016
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Fig. 3 (See legend on next page.)
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identify the common miRNAs through a pathway en-
richment analysis method, what has not been employed
before.
To this aim, we first identified DEMs within each

pathway as miRNA-pathway; and next, we considered
the miRNAs which had more target genes in that path-
way. In addition, to avoid the false-positive miRNA-
target interactions, we considered the experimentally
validated miRNA-target interaction using miRNA-target
prediction databases. To select the most significant
enriched pathways, a threshold was considered based on
the number of DEMs that enriched the pathways. After
pathway enrichment, we analyzed three pathways, in-
cluding non-small cell lung cancer, cell cycle, and p53
signaling pathways as the remarkable enriched pathways
based on average ES and their common involved miR-
NAs, including has-miR-15b, hsa-miR-106a, has-miR-17,
has-miR-103 and has-miR-107. These pathways were
down-regulated in COPD and up-regulated in NSCLC.
The aforementioned miRNAs have been demonstrated

to be associated with COPD and lung cancer [28–37].
The point is that though miRNAs’ roles are known in
COPD and NSCLC, understanding their functions in
common significant pathways may shed light on the
pathogenic mechanism of both diseases and develop
new therapeutic targets.
MiR-107 is a tumor suppressor that targets the epider-

mal growth factor receptor (EGFR). The deregulation of
EGFR has been observed in multiple types of cancers, in-
cluding NSCLC, while frequent EGFR protein overex-
pression was observed in NSCLC and COPD [38, 39].
Not only EGFR facilitates proliferative signaling through
downstream signaling pathways, i.e. PI3K/AKT/mTOR
and RAS/ERK, EGFR signaling pathway is one of the ac-
tivated pathways in lung cancer and employs down-
stream RAS or ERK pathways to direct proliferative
signaling for lung cancer cells [40]. Moreover, the down-
regulation of miR-107 may cause cell cycle and prolifer-
ation due to the up-regulation of CDK6 (also targeted
by miR-103) and CDK8 and metastasis and tumor

(See figure on previous page.)
Fig. 3 Results of miRNA set enrichment analysis in COPD and NSCLC for non-small cell lung cancer, cell cycle, and p53 signaling pathways.
MiRSEA performs differential expression analysis for miRNAs based on differential weighted scores (a); integrates the differential expression level
of miRNAs and miRNA-pathway weights, calculates miRScore, and creates a ranked list of miRNAs. Then, it maps miRNAs in the pathway to the
ranked list and calculates the miRNA enrichment score for each pathway and miRNA correlation profiles (b); after calculating the enrichment
score, MiRSEA prioritizes a pathway by FDR and the running miRNAs enrichment score for the pathway results (c)

Fig. 4 Significant core miRNAs among three enriched pathways based on average enrichment scores
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Fig. 5 Converted non-small cell lung cancer (a) cell cycle (b) and p53 signaling (c) pathways in KEGG. The target genes of has-miR-15b, hsa-miR-
106a, has-miR-17, has-miR-103 and has-miR-107 as the most significant core miRNAs are identified and then these miRNAs are mapped to
the pathways
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growth because of the up-regulation of BDNF as well
as indirect regulating of the P13K/AKT signaling
pathway [40, 41]. The specific binding of BDNF to
tropomyosin-related receptor kinase B (TrkB) results
in the activation of several downstream pathways such
as RAS/ERK, PLC/PKC, PI3K/AKT, JAK/STAT, and
AMPK/ACC [40]. However, miR-107 was up-
regulated in COPD, which might cause down-
regulation of its targets leading to down-regulation of
downstream pathways of cell cycle and non-small cell
lung cancer pathways. Furthermore, miR-107 has a
substantial role in the regulation of echinoderm
microtubule-associated protein-like 4 (EML4) - ana-
plastic lymphoma kinase (ALK) fusion - which may
result in the constitutive ALK activation, thus facili-
tating invasion, cell proliferation, and inhibition of
apoptosis [42].
MiR-106a, as a member of the identified common

miRNA families in this study, is an oncogenic miRNA
which targets transcription factor (TF) of FOXO3
thus modulating the expression of genes implicated in
apoptosis, cell cycle arrest, and autophagy. Further-
more, FOXO3a as a target gene of miR-103, can
boost metastasis downstream of PI3K/AKT prohib-
ition in collaboration with the WNT/β-catenin path-
way in colon cancer. However, the final results of
transcriptional activation or inactivation of FOXO are
changeable depending on the context wherein that
they occur, as it is a tumor suppressor within the
context of PI3K/AKT signaling in neuroblastoma [43].
Another TF targeted by miR-106a is E2F2 belonging
to the E2F family, which controls the cell cycle as
well as the function of tumor suppressor proteins. On
the other hand, the AKT3 protein is known as a crit-
ical regulator of the PI3K-AKT-mTOR pathway and
miR-106a may decrease the activities of the PI3K/
AKT pathway by suppressing the transcription func-
tion of E2F2 as well as down-regulation of AKT3.
D. Yang et al. [44] stated that the expression level of

miR-103, which we extracted as a common effective
miRNA between both diseases mentioned, decreases in
NSCLC and COPD tissues, while it inversely correlates
with tumor stage and size. Moreover, miR-103 can pro-
hibit cell proliferation, reduce tumor volume and weight,
and increase apoptosis in NSCLC, while targeting
MAP2K2 which is a member of MAPK signaling cascade
and also a RAS downstream signaling pathway regulat-
ing cell proliferation, differentiation, and survival by
ERK1/2 activation [45]. On the other hand, MAP2K2 as
the downstream of proto-oncogene BRAF is also tar-
geted by miR-17 which is up-regulated in NSCLC and
COPD. MAP2K2 has a key role in cell proliferation and
cell cycle regulation, so several compounds have been
developed to inhibit it in various diseases [46].

MiR-17 also targets TGFA that encodes transforming
growth factor-α (TGF-α), a member of the epidermal
growth factor family, what causes the activation of a sig-
naling pathway for cell proliferation, differentiation, and
development; this is while the down-regulation of TGF-
α due to overexpression of miR-17 may inhibit tumori-
genesis and disease progression [47]. Furthermore, in
[48], L. Chen et al. defined E2F3 as a transcriptional acti-
vator that is a target gene of miR-17 capable of increas-
ing the cellular proliferation via boosting the G1/S
transition; besides, the down-regulation of E2F3 might
be due to the molecular mechanism employed by up-
regulation of miR-17 as a tumor suppressor.
While MiR-15, the other common core miRNA be-

tween COPD and NSCLC, may also function as a
tumor-suppressor through the down-regulation of
PIK3R3, a gene can serve as a second messenger in
growth signaling pathways and can induce cell cycle ar-
rest in the G1-G0 phase and act as a tumorigenesis
miRNA in NSCLC [49–51]. However, T. Yang et al. [52]
reported that miR-15b may suppress cell proliferation
and induce apoptosis to inhibit cell survival, that is it
can inhibit cell proliferation and invasion through down-
regulation of ATK3.
S. Lim and P. Kaldis [53] investigated the regulation of

the cell cycle pathway in the cell growth and stated that
cyclin dependent kinases (CDKs), which are the target
genes of miR-17, miR-107, and miR-103, are the key
regulatory enzymes that regulate the progression of cells.
In addition, cyclin-CDK inhibitor (CKI) family members
have involved various functions including DNA damage
repair, transcription, metabolism, epigenetic regulation,
proteolytic degradation, stem cell self-renewal, sperm-
atogenesis, and neuronal functions [54]. Moreover, EM.
Gordon et al. [55] reported that the transcription factors
E2Fs and their regulator Rb are the targets of CDKs,
while the E2F proteins during the G1 phase of the cell
cycle are activated by phosphorylation of Rb by CDK4/
cyclin D (cycD) and Cdk2/cyclin E (cycE) complexes. As
such, the transcriptional regulator E2F was found to be a
crucial transcriptional regulator in cell cycle [56]. Ac-
cording to our enrichment analysis results, E2F is the
target of miR-15 and miR-106a, and it seems the dysreg-
ulation of CDKs by some regulator miRNAs could affect
cell proliferation or division. Moreover, P53 and its tran-
scriptional targets has a critical function in both G1 and
G2 checkpoints [53]. Furthermore, the transcription of
various miRNAs is activated by p53 resulting in the re-
pression of genes regulating DNA repair, apoptosis, and
cell-cycle progression. Moreover, the regulation of p53
by miR-17, miR-103a, and miR-103b in the cell cycle
pathway may be effective in apoptosis. Therefore, the ef-
fects of these miRNAs on cell cycle can provide new
perspectives on the treatment.
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Future work
This study has investigated the interactions between
core miRNAs and target genes within enriched pathways
through miRNA-pathway enrichment analysis in an at-
tempt to identify miRNA biomarkers that are common
between COPD and NSCLC. In addition to miRNA-
target genes in each pathway, there exist other miRNAs
that might have interactions with the miRNA-target
genes in the pathways; thus, the study of gene co-
expression networks between our identified target genes
and genes within the pathways might be a very inform-
ative site in this study and can be considered as a re-
search field for future work.

Conclusion
In conclusion, this study showed that the identified miR-
NAs including miR-106a, miR-17, miR-17, miR-15b,
miR-107, and miR-103 were dysregulated in COPD and
NSCLC. Moreover, the identification of molecular func-
tions and investigating common pathways regulated by
the discovered miRNAs and their target genes may help
to look into and understand the possible mechanisms at
work in such diseases. As such, it also may have the po-
tential to be used for diagnostic as well as therapeutic
goals regarding both diseases.

Methods
MiRNA expression profiles
In this project, we considered two miRNA expression
profiles related to COPD and NSCLC. Both datasets
were downloaded from the gene expression omnibus
database (https://www.ncbi.nlm.nih.gov/geo/). The first
dataset with the accession number GSE38974 contained
70 miRNAs that are differentially expressed between
COPD subjects and smokers without COPD. The used
platform is a miRCURY LNA microarray (GPL7723) for
the miRNA dataset. Accordingly, the differential miRNA
expression set between control and COPD samples were
identified using a statistical test with the false positive
discovery rate (pFDR) lower than 0.05 and with at least
1.5 fold changes between the groups. Finally, the dataset
contained the miRNA expression profiles of 27 samples
of which 19 samples were related to the COPD patients
and 8 samples were related to normal subjects.
The second dataset with the accession number

GSE36681 contained miRNA expression profiling of 56
pairs of fresh-frozen (FF) and 47 pairs of formalin-fixed,
paraffin-embedded (FFPE) samples taken from never
smokers’ lungs. The most differentially expressed miR-
NAs were evaluated by Cox analysis and Log-Rank test.
Then, the functional significance of the most significant
miRNAs was then measured via detecting the candidate
targets experimentally. The Illumina human microRNA
expression beadchip was used as the platform for this

experiment with GPL8179, what included 206 samples
of which again the same numbers of samples, as stated
above, were related to NSCLC patients and normal tis-
sues. As such, the GEOquery R package [57] was used
for downloading the expression data.

Normalization and pre-processing of miRNA expression
profiles
All expression data were quantile-normalized and log2-
transformed in R using EdgeR package [58]. Afterward,
the samples were checked to exclude the ones contain-
ing the missing data or zero variances. Two expression
matrices related to COPD and NSCLC cases were
reconstructed.

miRNA set enrichment analysis
In the next step, both datasets were enriched using the
MiRSEA package in R [59]. This package was utilized to
pathway enrichment analysis of differential expressed
miRNAs (DEMs) using KEGG pathways. It is to be men-
tioned that MiRSEA determines the miRNAs regulating
pathways and calculates miRNA-pathway weights based
on the hypergeometric test (eq. (1)).

Wij ¼ 1−pij ð1Þ
In this equation, Wij denotes the weight of association

between miRNA i and pathway j, and p is measured as
eq. 2.

pij ¼
Xn

x¼r

t
x

� �
m−t
n−x

� �

m
n

� � ð2Þ

Where m denotes the number of genes in the whole
genome; t is the number of genes involved in pathway j;
n is the number of targets of miRNA i; r denotes the
number of overlaps between targets of miRNA i and
genes in pathway j.
MiRSEA determines DEMs between the two pheno-

types considering FDR < 1 and it thus carries out enrich-
ment analysis by comparing DEMs with the miRNAs list
in various pathways. Following this, it combines the dif-
ferential expression levels of the miRNAs and the
miRNA-pathway weight (Wij), and defines a miRScore
for each enriched miRNA-pathway as eq. (3).

miRScore ¼ 1þWið Þ � DEi ð3Þ
Where Wi is the weight of miRNA i with a given path-

way and DEi is the differential expression level of
miRNA i.
Thus, a miRNA in a pathway with miRScore greater

than zero indicates that the miRNA would probably
regulate the pathway in the specific phenotype. MiRSEA
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ranks miRNAs in the profile and forms miRNA list ac-
cording to the decreasing miRScore. We selected core
miRNAs with the highest miRScores in each pathway for
COPD and NSCLC, each separately, as these core miR-
NAs may have key functions in their pathways through
regulating their target genes.

Discovering dysregulated pathways and common miRNAs
between COPD and NSCLC
To identify dysregulated KEGG pathways, we first sorted
all enriched pathways based on miRNA Enrichment
Score (miRES) that shows the extent of overrepresenta-
tion of pathways toward top or bottom of the ranked
miRNA list. For COPD and NSCLC, we mapped both
ranked list of dysregulated pathways and selected miR-
NAs which either were common or had higher miRESs.
Then, we identified canonical pathways associated with a
specific phenotype. We discovered the regulated path-
ways by miRNA set that were common between COPD
and NSCLC and also had the differential expression of
miRNAs among the two phenotypes. Finally, we selected
the most significant pathways and related miRNAs
(miRNA-pathways) based on ES.
For each pathway in both diseases, we evaluated the

miRNA-pathways to determine which miRNAs regulated
the pathway with more targets. We determined the cor-
related miRNAs within each pathway with a differential
weighted score (dw-score) based on eq. (1) for each dis-
ease, separately. Among these miRNAs, we specified
core miRNAs at and before the point where miRSEA is
acquired (miRSEA(p) < 0) and then selected common
miRNAs between COPD and NSCLC. After identifying
common core miRNAs between the two diseases, we
found those miRNAs that were common among all se-
lected pathways, and created two lists of miRNAs
(COPD and NSCLC cases) for each enriched pathway.
We then combined both miRNA lists related to the dis-
eases for each common enriched pathway in order to
preserve only joint core miRNAs in each list. Finally, we
calculated the mean of enrichment scores for each path-
way and reconstructed a list of common miRNAs among
all enriched pathways. In order to select the most signifi-
cant common miRNAs among all enriched pathways, we
selected the miRNAs based on the highest of average en-
richment score found in all enriched pathways.

Predicting miRNA targets and analyzing significant
common pathways
The target genes of the selected miRNAs were identified
by MiRSEA through four target genes prediction data-
bases, i.e. miRWalk, TarBase, miRTarBase, and miR2Di-
sease. To better understand the regulation mechanisms
of these common miRNAs within the enriched path-
ways, we mapped these targets into three numbers of

the most common pathways. In addition, to visualize
miRNAs and their target genes in a pathway, we used
WikiPathway [60] and Pathvisio [61] aiming to map and
analyze the miRNAs within pathways.
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