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Abstract 

Objectives: Cupressaceae is the second largest family of coniferous trees (Coniferopsida) with important economic 
and ecological values. However, like other conifers, the members of Cupressaceae have extremely large genome (> 8 
gigabytes), which limited the researches of these taxa. A high-quality transcriptome is an important resource for gene 
discovery and annotation for non-model organisms.

Data description: Juniperus squamata, a tetraploid species which is widely distributed in Asian mountains, rep-
resents the largest genus, Juniperus, in Cupressaceae. Single-molecule real-time sequencing was used to obtain 
full-length transcriptome of Juniperus squamata. The full-length transcriptome was corrected with Illumina RNA-seq 
data from the same individual. A total of 47,860 non-redundant full-length transcripts, N50 of which was 2839, were 
obtained. A total of 57,393 simple sequence repeats were identified and 268,854 open reading frames were predicted 
for Juniperus squamata. A BLAST alignment against non-redundant protein database was conducted and 10,818 
sequences were annotated in Gene Ontology database. InterPro analysis shows that 30,403 sequences have been 
functionally characterized against its member database. This data presents the first comprehensive transcriptome 
characterization of Juniperus species, and provides an important reference for researches on the genomics and evolu-
tionary history of Cupressaceae plants and conifers in the future.
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Objective
Compared with other plant groups, the genome analy-
sis of coniferous species lags behind because of their 
larger genome [1, 2]. At present, only a few genome-wide 
datasets are available, such as Sequoiadendron gigantea, 
Pinus taeda L. and Picea abies [3–5]. Whole genome 
sequencing of conifers is prohibitively expensive for 
large genome sizes, and it also produces datasets which 

are inconvenient to analyze. In contrast, analyses on the 
dataset produced by transcriptome sequencing is much 
easier, and it is a convenient and cost-effective method 
for sequencing coding sequences of complex genomes.

Juniperus squamata is an evergreen shrub of the fam-
ily Cupressaceae reaching 1–3 m tall, with brownish-gray 
bark [6]. It is found in mountains from southwestern 
China to northeastern Afghanistan, with separate popu-
lations east to Fujian and north to western Gansu in 
China [7]. This tetraploid species is not only of great 
value to gardening but also of enormous ecological val-
ues in subalpine and alpine shrubland ecosystems in 
Asian mountains. However, very limited genomic infor-
mation is available for this species. Hence the objective 
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of this work is to generate full-length transcriptome 
sequences for Juniperus squamata. Considering the 
importance of simple sequence repeats (SSRs) to plant 
population genetic analysis, we also developed SSRs for 
this species [8, 9]. To functionally characterize the full-
length transcriptome, open reading frame (ORF) predic-
tion and Gene Ontology (GO) annotation analysis were 
performed [10]. To functionally analyze the protein, the 
final isoforms were searched against InterPro’s predic-
tive models [11]. The full-length transcriptome data set 
of Juniperus squamata can provide an important refer-
ence for its downstream analysis, such as genomic basis 
of environmental adaptation and genome evolution of 
Cupressaceae and even conifers.

Data description
Fresh leaves, stems, and strobiles of one Juniperus squa-
mata individual were collected from Kangding, Sichuan 
Province, China. For each tissue, the short paired reads 
were sequenced by Illumina platform. We also mixed 
the samples of each tissue and generated the long reads 
by the PacBio Sequel platform. Total RNA of the samples 
was isolated using the Plant RNA kit (Omega bio-Tech., 
USA) and then treated with RNase-free DNase I (NEB) 
to remove DNA. RNA degradation and contamination 
were monitored on 1% agarose gels and RNA purity was 
checked using the NanoPhotometer® spectrophotometer 
(IMPLEN, CA, USA). RNA concentration was measured 
using Qubit® RNA Assay Kit in Qubit® 2.0 Fluorom-
eter (Life Technologies, CA, USA). RNA integrity was 
assessed using the Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA). The Single-molecule real-time 
(SMRT) bell library was constructed with the Pacific Bio-
sciences DNA Template Prep Kit 2.0 and SMRT sequenc-
ing was then performed on the Pacific Bioscience Sequel 
System. The sample used for Illumina sequencing was 
harvested using the same methods. The library was con-
structed using Illumina HiSeq X Ten. Adapter clipping 
and quality filtering of the Illumina raw reads was done 
using Trimmomatic version 0.36 [12]. Based on the qual-
ity check, the last two base pairs from each read were 
removed to minimize the overall sequencing error.

The raw full-length transcriptome sequencing data 
of samples were processed using the SMRT link ver-
sion 4.0 software (https:// www. pacb. com/ suppo rt/ 
softw aredo wnloa ds). Subread BAM files were generate 
from raw reads, parameters: -minLength 200, −min-
ReadScore 0.75. Circular consensus sequence (CCS) 
was generated from subread BAM files, parameters: 
-min_length 50, −max_drop_fraction 0.8, −no_polish 
TRUE, −min_zscore − 9999.0, −min_passes 2, −min_
predicted_accuracy 0.8, −max_length 15,000. CCS 

BAM files were output, which were then classified into 
Full-Length non-chimeric (FLNC) and non-full length 
(NFL) fasta files by examining the 5′ and 3′ adapters 
and the poly(A) tail. Iterative Clustering and Error Cor-
rection (ICE) algorithm was utilized to cluster FLNC 
fasta files to obtain cluster consensus. Quiver from 
SMRT link (parameters: -hq_uiver_min_accuracy 0.99, 
−bin_by_primer false, −bin_size_kb 1, −qv_trim_5p 
100, −qv_trim_3p 30) were then utilized to polish clus-
ter consensus sequence with NFL fasta files to obtain 
polished consensus sequence.

To obtain high quality corrected consensus sequence, 
additional nucleotide errors in polished consensus 
sequence were corrected using the Illumina RNA-seq 
data obtained from the same individual with the soft-
ware LoRDEC version 0.7 [13] (parameters: -k 23 -s 3). 
Any redundancy in corrected consensus sequence was 
removed by CD-HIT version 4.6.1 [14] (parameters: 
-c 0.95 -T 6 -G 0 - aL 0.00 -aS 0.99 -AS 30) to obtain 
final a set of unique transcript isoforms. Benchmarking 
universal single-copy orthologs (BUSCO) version 3 was 
used to assess the quality of final transcript isoforms 
[15]. The summary statistics and length distributions of 
the PacBio SMART sequencing are shown in Data file 1 
(Table S1 and Fig. S1). The results of BUSCO are shown 
in Data file  1 (Table  S2). All three data sets obtained 
and their NCBI GenBank Accession numbers are listed 
in Table 1 (Data set 1, Data set 2, and Data set 3).

MISA version 1.0 was employed to identify SSRs 
from final unique transcript isoforms of Juniperus 
squamata [16](parameters: definition (unit_size, min_
repeats): 1–10 2–6 3–5 4–5 5–5 6–5, interruptions 
(max_difference_betw-een_2_SSRs): 100). Finally, 57, 
393 SSRs were identified which were containing in 42, 
273 sequences. The details of SSRs of Juniperus squa-
mata, including primer sequences, SSR type, anneal-
ing temperature, product size etc., are shown in Data 
file 2. TransDecoder version 5.5.0 (https:// github. com/ 
Trans Decod er/ Trans Decod er) was employed to iden-
tify ORF within the transcripts of Juniperus squamata. 
The results of ORF prediction are shown in Data file 3.

DIAMOND version 2.0.9.147 was used to align the 
final unique transcript isoforms against non-redun-
dant protein database with a significance threshold of 
E ≤  10− 5 [17]. A custom python (https:// www. python. 
org/) script was used to carry out GO annotation 
(available at https:// github. com/ shanz ha09/ GO- annot 
ation. git). InterProScan version 5.52–86.0 was used to 
search the final isoforms against interPro database [18]. 
The results of BLASTX alignment, GO annotation, and 
interPro analysis are shown in Data file  4, Data file  5, 
and Data file 6, respectively.

https://www.pacb.com/support/softwaredownloads
https://www.pacb.com/support/softwaredownloads
https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
https://www.python.org/
https://www.python.org/
https://github.com/shanzha09/GO-annotation.git
https://github.com/shanzha09/GO-annotation.git
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Limitations
There is a shortcoming that we only collected one 
sample for single-molecule real-time sequencing of 
transcriptome.

Abbreviations
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sus sequence; FLNC: Full-length non-chimeric; ICE: Iterative Clustering for Error 
Correction; NFL: Non-full length; ROI: Reads of insert; SMRT: Single-molecule 
real-time; SSRs: Simple sequence repeats.
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