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Abstract 

Background: The identification of markers and genes for growth traits may not only benefit for marker assist selec-
tion /genomic selection but also provide important information for understanding the genetic foundation of growth 
traits in broilers.

Results: In the current study, we estimated the genetic parameters of eight growth traits in broilers and carried 
out the genome-wide association studies for these growth traits. A total of 113 QTNs discovered by multiple meth-
ods together, and some genes, including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, 
APCDD1, GPR39, and GATA4, were identified as important candidate genes for rapid growth in broilers.

Conclusions: The results of this study will provide important information for understanding the genetic foundation 
of growth traits in broilers.
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Background
The chicken (Gallus gallus), as an important model ani-
mal, could fulfill the evolutionary gap among mam-
mals and other vertebrates. Some substantial advances 
have been made to improve the growth rate in chicken 
for the past more than 60 years under artificial selec-
tion and rapid growth in broilers will continue to be the 
most important economic trait in breeding programs. 
Growth traits in chicken often have high heritability and 
phenotypic selection may obtain good selection pro-
gress. However, the identification of markers and genes 
for growth traits may not only benefit for marker assist 
selection (MAS)/genomic selection (GS) but also provide 

important information for understanding the genetic 
basis of growth traits in broilers.

Genome-wide association studies (GWAS) is a tech-
nology to identify loci significantly associated with traits 
of interested by using single nucleotide polymorphisms 
(SNP) chips or sequencing technology which screen hun-
dreds of thousands or even millions of SNPs or some 
other kinds of variants in the genomes. This approach is 
first used in human to detect causal mutations for dis-
ease and until now many loci for diseases, especially for 
many kinds of cancers, are identified [1, 2]. GWAS is also 
implemented in domestic animals to identify the genetic 
factors associated with economically important traits [3–
5]. Thanks to the advantage of SNP arrays and genomic 
resequencing methods for animals, it is relatively easy to 
genotype a wide array of individuals. As a result, many 
GWAS have been carried out in the past few years. In 
chickens, a number of markers or genes important for 
growth, meat quality, and fertility traits, were identified 
in different populations by using GWAS [6–9].
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Our team constructed the Northeast Agricultural Uni-
versity broiler lines divergently selected for abdominal 
fat content (NEAUHLF) since 1996 [10]. Plasma VLDL 
concentration of individual and its fullsibs’ abdominal 
fat percentage (AFP) were used as criteria. Using this 
population, we carried out the GWAS analysis for plasma 
VLDL concentration and for fertility traits [11, 12]. For 
growth rate, an important quantitative trait in broilers, it 
is important to identify markers or genes that could be 
used in breeding program to improve it quickly. There-
fore, in the current study, GWAS was used to identify 
important genes for growth traits in NEAUHLF. The 
results of this study will provide important information 
for understanding the genetic background of growth 
traits in broilers.

Results
Genetic parameter estimation of growth traits in broilers
The descriptive information of the eight growth traits, 
including BW1, BW3, BW5, BW7, ChWi, KeL, MeC and 
MeL, was shown in Table  1. The results indicated that 
BW7 used in the current study was about 2.4 kg. The 
heritability of these eight growth traits were estimated 
and we found that six of these traits, including BW1, 
BW3, BW5, BW7, ChWi and MeC, have high heritabil-
ity (h2 > 0.3) (Fig. 1). However, KeL (h2 = 0.16) and MeL 
(h2 = 0.18) have a little low heritability. The genetic and 
phenotypic correlation between body weight at differ-
ent weeks of age were high (r > 0.3) (Fig.  1). Overall, 
the genetic correlation between every two of the eight 
growth traits were moderate or high except several low 
ones, such as the genetic correlation between ChWi 
and MeC, and between ChWi and MeL were − 0.02 
and − 0.09, respectively (Fig. 1).

GWAS results for growth traits in broilers
The six multi-locus GWAS methods in the mrMLM 
v4.0.2 package, were used to carry out the GWAS analy-
sis for the eight growth traits of 475 male birds from the 

11th generation of NEAUHLF (Fig.  2). We identified 
285 quantitative trait nucleotides (QTNs) with signifi-
cant effects on eight of the growth traits, including BW1, 
BW3, BW5, BW7, ChWi, KeL, MeC and MeL, based on 
a logarithm of odds (LOD) threshold of ≥3. Of these 
QTNs, 113 ones were discovered by multiple methods 
together (at least two methods) (Table S1). These signif-
icant QTNs for growth traits were distributed on chro-
mosomes 1, 2, 3, 4, 6, 7, 8, 12, 13, 15, 19, 20, 23, and 26 
(Fig. 2).

Difference of phenotypes between different alleles
A total of 26 QTNs with significant effects on growth 
traits were detected by at least four multi-locus GWAS 
methods, including 3, 3, 3 and 1 significant QTNs for 
body weight at 1, 3, 5 and 7 weeks of age, respectively, and 
6 QTNs for ChWi, 4 QTNs for KeL, 4 QTNs for MeC and 
2 QTNs for MeL. The difference of growth traits between 
two alleles of the QTNs with significant effects were cal-
culated. The results indicated that birds with different 
alleles have significantly different (P < 0.05) phenotypes 
(BW1, BW3, BW5, BW7, ChWi, KeL, MeC and MeL) for 
all 26 QTNs (Fig. 3).

Candidate genes for growth traits in broilers
A total of 184 chicken Refgenes were harbored in 1 Mb 
regions surrounding the 113 QTNs with significant 
effects on growth traits by multiple methods together 
(Table  S1). Using these 184 genes, the GO and KEGG 
analyses were carried out. The results indicated that 
twenty-seven GO terms reached the statistically signifi-
cant level (P < 0.05) (Fig. 4). These GO terms were mainly 
involved in cell differentiation, regulation of cellular 
macromolecule biosynthetic process, postsynaptic mem-
brane, RNA polymerase II-specific and etc. Only three 
KEGG pathways reached the significant level according 
to the KEGG pathway analyses (Fig. 4). The papers about 
these 184 genes were found and some genes, includ-
ing Acetyl Coenzyme A Acetyltransferase 1 (ACTA1), 

Table 1 Descriptive information of growth traits in broilers

Growth traits Mean Standard 
deviation

Max Min C.V. (%) Phenotypic variance Genetic variance

BW1 (g) 122.00 12.33 174.60 70.10 10.11 157.64 86.12

BW3 (g) 615.22 65.90 797.00 332.00 10.71 4527.37 2564.09

BW5 (g) 1491.19 142.38 1815.00 940.00 9.55 20,517.80 7370.30

BW7 (g) 2400.97 221.41 3020.00 1755.00 9.22 49,804.20 16,163.70

ChWi (cm) 9.23 0.74 11.84 7.21 8.02 0.48 0.16

KeL (cm) 13.75 0.73 18.84 9.96 5.31 0.45 0.07

MeC (cm) 5.10 0.39 6.35 4.35 7.65 0.06 0.03

MeL (cm) 9.25 0.46 10.54 7.75 4.97 0.14 0.03
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Insulin-Like Growth Factor 2 MRNA Binding Protein 1 
(IGF2BP1), Transmembrane Anterior-Posterior Trans-
formation 1 (TAPT1), LIM Domain Binding 2 (LDB2), 
Protein Kinase C Alpha (PRKCA), Transforming Growth 
Factor Beta Receptor 2 (TGFBR2), GLI Family Zinc 
Finger 3 (GLI3), Solute Carrier Family 16 Member 7 
(SLC16A7), Inhibin Subunit Beta A (INHBA), BMP And 
Activin Membrane-Bound Inhibitor (BAMBI), (APC 
Down-Regulated 1 APCDD1), G Protein-Coupled Recep-
tor 39 (GPR39) and GATA Binding Protein 4 (GATA4), 
were selected as candidates for broiler growth based on 
these results.

Discussion
Growth trait, especially body weight, is the most impor-
tant economic trait in the poultry industry. In the cur-
rent study, we measured eight growth traits in broilers 
and the genetic parameters of these traits were esti-
mated. We found that the heritability of body weight at 
different weeks of age was high (h2 > 0.3), which is con-
sistent with previous studies, such as Venturini et a1 
[13]. found that the heritability of BW5 and BW6 were 
0.41 and 0.45 respectively; Kapell et al. [14, 15] estimated 

the heritability of body weight which ranged from 0.326 
to 0.399; Mebratie et  al. [16] found that the heritabil-
ity of body weight ranged from 0.31 to 0.37 at different 
weeks of age in broiler chickens; and Chu et al. [17] found 
that the heritability of body weight of broilers ranged 
from 0.28 to 0.33 at different weeks of age. However, the 
results of some other studies, which found that whereas 
in our study they ranged from 0.156 to 0.187 [18], were 
different from the current study. The differences in the 
results from these studies may be because that the birds 
used in these studies have different genetic backgrounds 
and the population sizes were also different. The current 
study found that the genetic and phenotypic correla-
tions between different growth traits had a large range. 
Therefore, it is important to pay much more attention 
when editing the breeding program because when we 
select one trait the other traits may also have selection 
responses.

In this study, we used the six multi-locus GWAS meth-
ods applied by mrMLM v4.0.2 package to identify SNPs 
significantly associated with growth traits in broiler 
chickens. The mixed linear model (MLM) approach has 
been widely used in GWAS because it can effectively 

Fig. 1 Genetic parameters of the eight growth traits in broilers. Heritability was on the diagonal. Above the diagonal were the genetic correlations 
between every two traits and below the diagonal were the phenotypic correlations
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control the false positive rate of SNP detection. Bonfer-
roni correction is a common approach in single-locus 
GWAS models, but it assumes that markers are inde-
pendent of each other. Bonferroni correction is too strin-
gent for growth trait data so that many important small 
effect loci are lost [19, 20]. In order to solve this problem, 
Zhang et al. [21] developed an R software mrMLM v4.0.2, 
including six multi-locus methods (mrMLM [19], FAST-
mrMLM [21], FASTmrEMMA [20], ISIS EM-BLASSO, 
pLARmEB, and pKWmEB). Since the number and effects 
of all potentially associated markers can be determined 
and estimated simultaneously in the six multi-locus 
methods, no Bonferroni correction is required. Although 
the LOD score threshold of 3.0 is set, it can control the 
false positive rate well and obtain high statistical power.

A total of 113 QTNs with significant effects on 
growth traits by multiple methods (at least two meth-
ods) together in the current study and these QTNs were 
located on chicken chromosomes 1, 2, 3, 4, 6, 7, 8, 12, 13, 
15, 19, 20, 23, and 26. GWAS for body weight was also 
carried out in some other populations in chicken and 
these results had some overlaps with the current study. 
Mebratie et  al. [22] carried out the GWAS analysis for 
body weight and found that QTNs with significant effects 
on body weight were located on chicken chromosomes 1, 

6, 8, 12, 14, 23, and Z, which overlapped with the current 
study. Xu et  al. [23] reported that chromosomes 1 and 
4 are the two critical chromosomes influencing growth 
traits particularly body weight in chickens according to 
the results of GWAS analysis. Van et al. [24] also identi-
fied some QTNs with significant effects on body weight 
located on chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 14, and 26. 
The phenotype differences between two alleles of the 26 
QTNs with significant effects on growth traits by at least 
four multi-locus GWAS methods were calculated and the 
results showed that birds with different alleles have sig-
nificantly different phenotypes (growth traits) for all 26 
QTNs. These results indicated that these QTNs could be 
used in MAS/GS to select rapid growth in broilers.

There were 184 Refgenes of chicken in 1 Mb region of 
these 113 QTNs with significant effects on growth traits. 
The basic function of these 184 genes was extracted from 
the previous reports and some genes, including ACTA1, 
IGF2BP1, TAPT1, LDB2, PRKCA, TGFBR2, and GLI3, 
which were reported to be associated with growth traits in 
farm animals, were selected as important candidate genes 
for growth traits in broilers. The results of association 
study showed that ACTA1 can be used together with oth-
ers already described to increase the economically impor-
tant traits in broilers [25]. Three InDels were identified 
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BW5
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MeC

BW3

BW7
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Fig. 2 Manhattan and QQ plots for eight growth traits in GWAS using mrMLM v4.0.2. Left is Manhattan plot, while right is QQ plot. Loci discovered 
by multiple methods together are marked with pink dots in the Manhattan diagram, those discovered by a single method are marked in dark blue, 
and the horizontal line indicates a critical LOD score of 3.0. BW1, 3, 5, 7 = body weight at 1, 3, 5 and 7 weeks of age; ChWi = chest width; KeL = keel 
length; MeC = metatarsus circumference; MeL = metatarsus length
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Fig. 3 Phenotypic differences of growth traits in broilers between two alleles of significant QTNs
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on IGF2BP1 gene that were significantly associated with 
growth traits in sheep [26]. The polymorphisms of TAPT1 
were significantly associated with carcass weight and evis-
cerated weight in broilers [27]. The 31-bp InDel of the LDB2 
gene was significantly correlated with multiple growth and 
carcass traits in the  F2 resource population and affected 
the expression of LDB2 in muscle tissue [28]. The PRKCA 
gene was associated with intramuscular fat content in 
bovine muscle tissue [29]. The TGFBR2 gene plays a nega-
tive role in the growth of the scallop, which had a SNP in the 
3′ UTR that gives the scallop higher growth performance 
[30]. The GLI3 gene was important for the development of 

the mammalian brain and lungs [31]. Furthermore, some 
other genes, such as SLC16A7, INHBA, BAMBI, APCDD1, 
GPR39, GATA4 and etc., may also be related to growth traits 
based on their results on humans and mice [32–38].

Conclusions
In summary, in this study, we estimated the genetic 
parameters of eight growth traits in broilers and carried 
out the GWAS analysis for these growth traits. A total of 
113 QTNs with significant effects were detected by mul-
tiple methods (at least two methods), and some genes, 
including ACTA1, IGF2BP1, TAPT1, LDB2, PRKCA, 

Fig. 4 Significant GO categories and KEGG pathways of the genes around QTNs for growth traits in broilers
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TGFBR2, GLI3, SLC16A7, INHBA, BAMBI, APCDD1, 
GPR39, and GATA4 were identified as important candi-
date genes for rapid growth in broilers.

Methods
Sampling
Two Northeast Agricultural University broiler lines diver-
gently selected for abdominal fat content (NEAUHLF) were 
used in this study. A total of 475 male birds (203 and 272 
from the lean and fat lines, respectively) from the 11th gen-
eration of NEAUHLF were selected to carry out the genome 
wide association study (GWAS). The same environmental 
conditions and free access to feed and water were supplied to 
all these birds. Commercial corn-soybean-based diets which 
met the requirements of National Research Council were 
provided. A starter feed (3000kal ME = kg and 210 g = kg 
CP) was supplied to birds from hatch to 3 weeks of age and 
a grower diet (3100 kal ME = kg and 190 g = kg CP) was sup-
plied to birds from 4 weeks of age to slaughter. For reporting 
of results, we complied with the Animal Research: Reporting 
In Vivo Experiments guidelines [39]. The birds were weighed 
at 0 (birth), 1, 3, 5 and 7 weeks of age (BW0, BW1, BW3, 
BW5 and BW7). At 7 weeks of age, the metatarsus length 
(MeL), metatarsus circumference (MeC), keel length (KeL) 
and chest width (ChWi) were measured before slaughter as 
previously described [40]. Genotypes were obtained using 
the Illumina chicken 60 K SNP chip which containing a total 
of 57,636 SNPs. Quality control was carried out with criteria 
of a call rate ≥ 95% and minor allele frequency (MAF) ≥ 0.05 
and a total of 48,824 SNPs were left for GWAS analysis.

Statistical analysis
The difference of phenotypes between two alleles of every 
SNPs was calculated using t-test. The genetic parameters, 
including the heritability of growth traits and the genetic 
and phenotypic correlations between every two of these 
growth traits, were estimated using Wombat software 
[41], with line treated as the fixed effects. Heritability of 
these traits were estimated using a single-variate model, 
and the bivariate model was used to calculate the genetic 
and phenotypic correlations. The genetic model used for 
parameter estimations is described as follows:

in which y is an n-dimensional vector of observed values 
for the traits, X is an n × p matrix of the fixed effects, β is 
a p-dimensional vector of the fixed effects, Z is an n × q 
matrix of the random effects, u is a q-dimensional vector 
of the random genetic effects, and e is an n-dimensional 
vector of the random residual effects.

The random effects u and e were assumed to follow the nor-
mal distributions with mean 0, that is, Expectation [y] = Xβ. 
The variances of u and e were assumed to be Var(u) = Ag and 

y = Xβ+ Zu + e

Var(e) = Ir, respectively, in which A is the numerator relation-
ship matrix of all animals in the pedigree file, g is the additive 
genetic variance for the single-variate and the additive genetic 
variance–covariance matrix between traits for the bivariate 
model analysis, I is the identity matrix of order equal to the 
number of animals with phenotypes, and r is the residual vari-
ance for the single-variate and the variance–covariance matrix 
between residuals on the same animal when performing the 
bivariate model analysis, where residual covariance equal to 0 
[42]. The SNP makers were also used to calculate the genetic 
correlation between every two traits, which means that the 
individual correlation matrix (A) from pedigree information 
was replaced by genomic information (G matrix). And the 
results from G matrix were described in Fig. 1.

The Genome-wide Rapid Association using multi-locus 
GWAS methods in the mrMLM v4.0.2 package, [21] was 
used to carry out GWAS. This mixed model contained 
Line (two broiler lines) and BW0 as covariates. Default 
values were used for all parameters.

Gene detection and functional annotation
SNPs with significant effects on growth traits were detected 
by using GWAS method as above and the genes located in 
1 Mb region of these significant SNPs were retrieved from 
UCSC (https:// genome. ucsc. edu/) (Galgal6). The Gene 
Ontology (GO) terms and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were carried out using 
DAVID bioinformatics resources 6.8 (http:// david. abcc. ncifc 
rf. gov/ summa ry. jsp) for these genes [43–46]. P-value <0.05 
was used as the statistical significance level.
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