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a network of mtDNA variants in different types 
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Abstract 

Background: Mitochondrial participation in tumorigenesis and metastasis has been studied for many years, but sev‑
eral aspects of this mechanism remain unclear, such as the association of mitochondrial DNA (mtDNA) with different 
cancers. Here, based on two independent datasets, we modelled an mtDNA mutation‑cancer network by systematic 
integrative analysis including 37 cancer types to identify the mitochondrial variants found in common among them.

Results: Our network showed mtDNA associations between gastric cancer and other cancer types, particularly 
kidney, liver, and prostate cancers, which is suggestive of a potential role of such variants in the metastatic processes 
among these cancer types. A graph‑based interactive web tool was made available at www2.lghm.ufpa.br/mtdna. We 
also highlighted that most shared variants were in the MT-ND4, MT-ND5 and D‑loop, and that some of these variants 
were nonsynonymous, indicating a special importance of these variants and regions regarding cancer progression, 
involving genomic and epigenomic alterations.

Conclusions: This study reinforces the importance of studying mtDNA in cancer and offers new perspectives on the 
potential involvement of different mitochondrial variants in cancer development and metastasis.
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Background
Mitochondria are cytoplasmic organelles responsible for 
several pathways in cell stability and operation and are 
mainly known for their role in ATP production during 
aerobic respiration. Two of the three main steps of this 
process occur inside these organelles, the tricarboxylic 
acid cycle (TCA) in the mitochondrial matrix and oxi-
dative phosphorylation (OXPHOS) in the mitochondrial 
cristae, the latter generating most of the ATP from aero-
bic respiration [1]. Because of their origin, mitochondria 
have their own genome, a double-stranded (heavy and 

light strands) circular molecule called the mitochondrial 
genome (mtgenome or mitogenome), which is highly spe-
cialized for energy metabolism. The human mtgenome is 
composed of 37 genes, of which 13 encode subunits of 
the OXPHOS protein complexes, 22 tRNA and 2 rRNA; 
in addition, more than 1,000 proteins encoded by the 
nuclear genome are necessary for overall mitochondrial 
function [2].

Considering the importance of mitochondrial energy 
metabolism and other functions to cellular homeosta-
sis, imbalances in such processes may lead to the devel-
opment of diseases. In fact, for the past few decades, 
mitochondria have been known to be related to cancer, 
but many aspects of this involvement remain unknown. 
Notably, the mtgenome has been reported to be altered in 
tumours, similar to the nuclear genome, and to be more 
susceptible to damage than the nuclear genome [3, 4]. 
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Although many efforts are being made to understand the 
related mechanisms, it seems that mitochondrial genetics 
should be taken into consideration more often [5].

In this context, we recently published a study perform-
ing whole-genome sequencing for the first time in regard 
to gastric cancer (GC) in a Brazilian population [6]. Even 
more recently, a study by [7] was published with the 
whole mtgenome of multiple types of cancer from dif-
ferent populations – which do not seem to include Brazil 
– as part of the International Cancer Genome Consor-
tium/The Cancer Genome Atlas Pan-Cancer Analysis 
of Whole Genomes Consortium (ICGC/TCGA PAWG 
Consortium), and the database was named The Cancer 
Mitochondria Atlas (TCMA). Based on these datasets, 
the present study aimed to analyse the mtDNA muta-
tions that occur in common among GC and different 
types of cancer by modelling and developing an interac-
tive web tool to explore the generated mtDNA mutation-
cancer network, suggesting potential biomarkers in the 
mtgenome that may be involved in cancer development 
and progression.

Results
General analysis of the merged datasets
Here, we analysed the set of variants that are shared by 
individuals from two datasets, as described in the Mate-
rials and Methods section, and it should be noted that the 
INDEL file from the TCMA database shared no variants 
with the GC dataset and was therefore excluded from this 
study. After dataset merging, we observed 90 individuals 
and 22 cancer types from TCMA that presented shared 
variants with GC. This was probably a reflection of differ-
ent genetic ancestries in both datasets, considering that 
the GC dataset consisted of individuals from the Brazil-
ian Amazon region, in which Native American mtDNA 
haplogroups are frequently found [6], while the TCMA 
dataset does not seem to include the Brazilian popula-
tion. This emphasizes the importance of considering 
the genetic background of the studied populations and 
stresses the potential of the shared mutations observed in 
this analysis.

Nevertheless, the sample size per cancer type was as 
follows: 7 breast adenocarcinoma (Breast-AdenoCA), 
1 lobular breast cancer (Breast-LobularCA), 1 cervical 
squamous cell carcinoma (Cervix-SCC), 3 central nerv-
ous system medulloblastoma (CNS-Medullo), 1 central 
nervous system oligometastatic cancer (CNS-Oligo), 
2 colorectal adenocarcinoma (ColoRect-AdenoCA), 7 
oesophageal adenocarcinoma (Eso-AdenoCA), 3 head 
and neck squamous cell carcinoma (Head-SCC), 4 chro-
mophobe renal cell carcinoma (Kidney-ChRCC), 9 renal 
cell carcinoma (Kidney-RCC), 14 hepatocellular car-
cinoma (Liver-HCC), 1 lung squamous cell carcinoma 

(Lung-SCC), 4 B-cell non-Hodgkin lymphoma (Lymph-
BNHL), 2 chronic lymphocytic leukaemia (Lymph-CLL), 
5 ovarian adenocarcinoma (Ovary-AdenoCA), 6 pan-
creatic adenocarcinoma (Panc-AdenoCA), 2 pancre-
atic cancer endocrine neoplasms (Panc-Endocrine), 10 
prostate adenocarcinoma (Prost-AdenoCA), 1 soft tissue 
leiomyosarcoma (SoftTissue-Leiomyo), 1 stomach ade-
nocarcinoma (Stomach-AdenoCA), and 3 thyroid adeno-
carcinoma (Thy-AdenoCA). We understand that many of 
these tumours have different metabolic profiles and we 
believe that this factor could strengthen the results found 
here, as shared variants in this context could represent a 
common pathway for cancer progression.

In total, 30 mitochondrial SNVs were shared between 
the GC and TCMA datasets, with 15 being more frequent 
in GC, 10 being more frequent in TCMA and five being 
equally frequent in these datasets (Fig. 1). All found vari-
ants were distributed in 11 mitochondrial regions: MT-
RNR1 (1438), MT-RNR2 (2706), T-ND1 (3594 and 3666), 
MT-CO1 (7028), MT-ATP6 (8584), MT-CO3 (9545), MT-
ND4 (10810, 10873, 11719 and 11914), MT-ND5 (12705, 
13650 and 13789), MT-ND6 (14178 and 14560), MT-CYB 
(15043) and D-loop (73, 489, 16093, 16111, 16129, 16189, 
16223, 16278, 16311, 16327, 16360, 16519 and 16527). It 
is noteworthy that 11 of these variants were exclusive to 
tumours (somatic) in the study by [6] and distributed in 
four regions: D-loop (73, 489, 16093, 16189 and 16360), 
MT-ND1 (3594 and 3666), MT-ND4 (10810 and 10873), 
and MT-ND5 (13650 and 13789). Regardless, from the 
total of 30 variants, the most frequent variants in GC 
were 11719 and 16223 (present in 12 individuals each), 
while the most frequent in TCMA was 11914 (15 individ-
uals). Interestingly, these most frequent mutations are in 
either the MT-ND4 or D-loop regions, which are also the 
regions containing more shared variants in this analysis.

Shared mtDNA variants and their potential impact
Then, we performed a more in-depth analysis of the 
mutations in common among the different types of can-
cer by modelling an mtDNA mutation-cancer network, 
which resulted in 7,020 associations of mitochondrial 
variants with these 37 cancer types (36 from TCMA 
and GC as a reference). In Fig. 2, we plotted the mtDNA 
mutation-cancer network, providing a general overview 
of the shared variants, while Table 1 shows the statistical 
analysis of the variant overlaps between GC and the dif-
ferent cancer types, with 11 being statistically significant 
(from a total of 22). The empirical p-values were obtained 
by runs of network randomizations between pairs of can-
cer types regarding the Jaccard index for the number of 
found variants, based on the complex network strategy 
proposed by Araújo et  al. (2016). The probability of a 
given Jaccard index was calculated with the equation.
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where SNPA is the number of SNPs of Cancer A, SNPB 
is the number of SNPs of Cancer B and CAB is the JC 
calculated for the overlap between phenotypes A and B. 
The low values for the Jaccard index indicate that can-
cers showed more exclusive variants than shared ones, 
highlighting the found variants as potential biomarkers. 
Importantly, the largest number of shared mtDNA muta-
tions per pair was eight, found in each of the following 
cancer types: Liver-HCC, Kidney-RCC and Prost-Ade-
noCA. This result suggests a possible correlation of these 
types with cancer progression.

Notably, 11 variants in the following regions were 
shared between GC and at least two other types of can-
cer with statistical significance: two in MT-ND4 – 10810 
(Liver-HCC and Kidney-RCC) and 11914 (Liver-HCC, 
Eso-AdenoCA, Kidney-RCC, Panc-Endocrine and 
Prost-AdenoCA); one in MT-ND5 – 12705 (Liver-HCC 
and Kidney-RCC); and eight in D-loop – 73 (Breast-
AdenoCA and Prost-AdenoCA), 16111 (Liver-HCC, 
Eso-AdenoCA, Kidney-RCC, Panc-Endocrine and 
Prost-AdenoCA), 16129 (Kidney-ChRCC and Panc-
Endocrine), 16189 (Breast-AdenoCA, Kidney-ChRCC 
and Prost-AdenoCA), 16278 (Breast-AdenoCA, Panc-
Endocrine and Prost-AdenoCA), 16311 (Eso-AdenoCA, 
Stomach-AdenoCA and Kidney-RCC), 16327 (Panc-
Endocrine, Prost-AdenoCA and Lymph-CLL), and 16527 

P(CA = SNPA;CB = SNPB|JC = CAB )
(Liver-HCC and Kidney-RCC). Curiously, there was only 
one variant shared with statistical significance between 
GC and Stomach-AdenoCA, which could be due to the 
reduced sample number of this type of cancer in both 
datasets, a general limitation of this study that could 
lead to a loss of information, so future studies with larger 
datasets are encouraged. Nevertheless, it is remarkable 
that all 11 variants with statistical significance in the ana-
lysed tumour samples are in MT-ND4, MT-ND5 or the D 
D-loop, that is, two genes that encode subunits of Com-
plex I and a regulatory region.

Among these shared variants, three are nonsynony-
mous, predicted as pathogenic with a Mutpred prob-
ability ranging from 0.51 to 0.63. The amino acid 
change associations were previously predicted between 
Prost-AdenoCA and MT-ND5 (13789  T > C, Y485H), 
Kidney-RCC and MT-ND6 (14178 T > C, I166V), and 
Kidney-ChRCC and MT-ATP6 (8584 G > A, A20T) [7].

Different approaches in cancer‑related SNP networks
Considering our results, as seen in Fig. 2, we stress that 
much information can be lost if most efforts only focus 
on the nuclear genome, leaving the mitochondrial 
genome aside. Indeed, by dissecting the mtDNA network, 
we identified genetic overlaps suggesting novel events 
that are not observed when building nuclear SNP-disease 
networks. In Fig. 3, we show a network of this sort that 
was modelled using GWAS hits from the DANCE web 

Fig. 1 Individuals with each of the observed mitochondrial variants. Number of individuals in both datasets (GC in blue and TCMA in purple) 
carrying each mitochondrial variant found in the analysis
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tool regarding GC, prostate cancer, renal cell carcinoma 
and hepatocellular carcinoma. This finding adds a layer of 
complexity in understanding the genetics of several can-
cers. In this context, our study contributes to the identi-
fication of a set of mitochondrial variants associated with 
GC and other types of cancer.

Taking this into consideration, we developed a graph-
based visualization tool of the dataset overlaps analysed 
here to improve the understanding of the relation-
ship among mtDNA variants and cancer types. The 
mtDNA mutation-cancer interactions found here were 
catalogued and reported as seen in Fig.  2, along with 
raw data for the network, which can be interactively 

explored. This user-friendly web tool was made freely 
available at https:// www2. lghm. ufpa. br/ mtdna.

Discussion
In this study, our analyses with multiple types of cancer 
have highlighted different mtDNA mutations, particu-
larly in the MT-ND4, MT-ND5 and D-loop, suggesting 
a special importance of such mitochondrial mutations 
and regions during cancer development and progres-
sion. The MT-ND4 and MT-ND5 genes encode core 
subunits of respiratory chain complex I (also known 
as NADH dehydrogenase), which receives electrons 
from carrier NADH (reduced nicotinamide adenine 

Fig. 2 Mitochondrial mutation‑cancer network. The mtDNA mutation‑cancer network of mitochondrial variants (in orange) shared between 
different types of cancer (in blue)

https://www2.lghm.ufpa.br/mtdna
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dinucleotide) after the TCA cycle, initiating the pro-
cess of OXPHOS [1]. Because OXPHOS is responsible 
for most ATP produced in aerobic cellular respiration 
and Complex I is the main entry of electrons, defects 
in this complex could result in impairment of the entire 
process. It can also increase the production of reactive 
oxygen species (ROS), culminating in oxidative stress 
and promoting tumorigenesis [8]. In fact, mutations in 
MT-ND4 and MT-ND5 leading to complex I dysfunc-
tion have been previously associated with procancerous 
phenotypes and tumorigenesis in different types of can-
cer, although the particularities of this relationship are 
still unknown [9, 10].

The D-loop, which is part of the major noncoding 
region (NCR) in the mt genome, is responsible for the 
start of heavy strand replication, as well as the tran-
scription of both strands, and it is known to be hyper-
variable [11, 12]. Since D-loop and NCR are terms 
frequently used as synonyms, it should be noted that, 
here, "D-loop” represents not only the D-loop per se 
but also the major NCR. Nevertheless, abnormalities 
in replication and transcription of mtDNA could lead 
to mitochondrial instability and malfunction, which in 

turn could play a role in carcinogenesis and metasta-
sis. Independent studies have reported D-loop variants 
in association with different kinds of cancer, includ-
ing gastric cancer, but there is still no consensus as to 
which variants influence this process [12–14].

Notably, epigenomic factors may also play a role in 
D-loop function. For instance, long noncoding RNAs 
(lncRNAs) generated by heavy strand transcription have 
been described in the D-loop with an interaction with 
mitochondrial topoisomerase 1B (TOP1MT), which nor-
mally promotes mtDNA replication, suggesting a possible 
influence of these lncRNAs on the regulation of mtDNA 
expression [15]. In addition, treatment with miR34a 
encapsulated in hyaluronic acid nanoparticles has been 
demonstrated to reduce CpG methylation in the D-loop 
and to increase mRNA transcripts of different mitochon-
drial genes in lung cancer cells [16]. Currently, little is 
known about epigenomic mechanisms such as noncod-
ing RNAs in mitochondria, particularly in D-loops, but 
it is increasingly clear that this matter should be further 
explored [1].

Regardless, in our analyses, it was also notable that 
11914 (MT-ND4) and 16111 (D-loop) are not only 

Table 1 Statistical test summary for shared variants between GC and the other types of cancer

CT Cancer Type (1 and 2), JC Jaccard index, N Number of found variants. Statistical significance: * not significant (P value > 0.01); ** (P value < 0.01); *** (P 
value ≤ 0.000001)

CT1 CT2 JC N P‑value Variants

GC Breast‑AdenoCA 0.006 4 *** 16,189|16,278|7028|73

GC Liver‑HCC 0.007 8 *** 10,810|11,914|12,705|14,560|16,111|16,360|16,519|16,527

GC Stomach‑AdenoCA 0.004 1 *** 16,311

GC Lung‑SCC 0.005 1 ** 11,719

GC Prost‑AdenoCA 0.011 8 ** 11,914|13,789|1438|16,111|16,189|16,278|16,327|73

GC Panc‑AdenoCA 0.008 6 ** 11,914|15,043|16,111|16,129|16,278|16,327

GC Kidney‑RCC 0.014 8 ** 10,810|11,914|12,705|14,178|16,111|16,311|16,527|9545

GC ColoRect‑AdenoCA 0.007 2 ** 13,650|2706

GC Eso‑AdenoCA 0.011 5 ** 11,914|16,093|16,111|16,223|16,311

GC Lymph‑CLL 0.011 2 ** 16,327|3594

GC Kidney‑ChRCC 0.011 3 ** 16,129|16,189|8584

GC Cervix‑SCC 0.010 1 * 11,914

GC Uterus‑AdenoCA 0.015 3 * 14,560|16,093|16,189

GC CNS‑Medullo 0.014 3 * 10,873|16,360|16,519

GC Ovary‑AdenoCA 0.009 4 * 11,914|14,560|16,111|16,189

GC Breast‑LobularCA 0.011 1 * 489

GC Head‑SCC 0.015 3 * 13,650|16,519|7028

GC Thy‑AdenoCA 0.014 3 * 16,129|16,223|3666

GC SoftTissue‑Leiomyo 0.012 1 * 16,527

GC CNS‑Oligo 0.011 1 * 16,223

GC Panc‑Endocrine 0.009 2 * 16,527|3666

GC Lymph‑BNHL 0.016 4 * 11,914|14,560|16,189|3666
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present in the greatest number of cancer types, but these 
types are the same (hepatocellular carcinoma, oesopha-
geal adenocarcinoma, pancreatic adenocarcinoma, renal 
cell carcinoma and prostate adenocarcinoma). Addi-
tionally, 10810 (MT-ND4), 12705 (MT-ND5) and 16527 
(D-loop) are also shared by the same cancer types (hepa-
tocellular carcinoma and renal cell carcinoma). Another 
interesting finding, as previously mentioned, is that kid-
ney, prostate, and liver cancers (renal cell carcinoma, 
prostate adenocarcinoma, and hepatocellular carcinoma, 
respectively) presented more shared variants with GC 
than the other types of cancer (eight variants).

Curiously, no studies were found reporting a positive 
association with such variants in cancer, except for 16189 
(D-loop). This mutation, which is suggested to generate 
mitochondrial impairment and genome instability, has 
been related to different complex conditions, such as 
endometriosis [17], coronary artery disease [18], type 2 
diabetes mellitus and metabolic syndrome [19], as well as 
multiple types of cancer, namely, endometrial [20], breast 
[21], colorectal [22] and acute myeloid leukaemia [23]. 

Additionally, a study by [24] suggested that variant 16189 
could especially affect iron homeostasis and electron 
transport chains of OXPHOS, leading to increased oxida-
tive stress. In fact, excess iron has been considered a risk 
factor for cancer development and progression [25–27].

Notably, mitochondria have been associated with 
tumorigenesis and metastasis, even though the mito-
chondrial mechanisms and dynamics involved in these 
processes are not fully understood [28]. A recent review 
by [29] highlighted the importance of studying mitochon-
drial dysfunction in different complex diseases, includ-
ing cancer, in regard to mtDNA alterations as potential 
biomarkers for the development, metastasis and progno-
sis of cancer. In this sense, our findings might shed light 
on this matter, considering the overlap of cancer types, 
particularly GC with kidney, liver, and prostate cancers, 
which allowed us to hypothesize that these variants are 
likely to play a role in their progression with potential 
involvement in a metastatic process between these types 
of cancer.

Fig. 3 SNP‑Disease Network for different types of cancer. Nuclear SNP‑Disease Network for gastric cancer, renal cell carcinoma, hepatocellular 
carcinoma, and prostate cancer (in blue). The red gradient indicates frequency of SNPs in European populations. Low genetic overlap was found for 
these types of cancers at the genomic variation layer
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In the specialized literature, although considered an 
uncommon process, it is possible to find various case 
reports of gastric metastases from renal cell carcinoma 
[30, 31] or prostatic adenocarcinoma [32, 33], even sev-
eral years after the first diagnosis [34]. A secondary 
tumour might also be so similar to a primary tumour 
that it could be challenging to diagnose it as a metastatic 
tumour at first [35]. Recently, a case report has reinforced 
that it is still unclear how gastric metastasis from prostate 
cancer occurs – whether it is by lymphatic or haematog-
enous spread – as well as the importance of an early diag-
nosis [36]. It is noteworthy that some cases of prostate or 
kidney metastasis from gastric adenocarcinoma have also 
been reported [37, 38]. Regarding liver metastasis from 
gastric cancer, it has been pointed out that the liver is one 
of the most frequently affected organs in metastasis from 
gastric cancer: metastasis is found in approximately 35% 
of gastric cancer cases at first diagnosis, of which up to 
14% involve this organ [39, 40]. On the other hand, hepa-
tocellular carcinoma with gastric metastasis seems to be 
very rare, occurring in less than 1% of patients with this 
type of cancer, and thus, it is possible to misdiagnose it as 
gastric cancer with liver metastasis [41].

In this context, understanding the effects of genetic 
variants on complex diseases such as cancer may directly 
impact clinical strategies for personalized patient care. 
Approaches to building disease networks have been pre-
viously developed based on genetic associations, mainly 
using autosomal DNA, molecular pathways or candidate 
nuclear genes [42, 43]. Genetic comorbidity was shown 
for intraclass diseases, such as neuropsychiatric disor-
ders, and this was recently found for cancer in a TCGA 
(The Cancer Genome Atlas) analysis that reported 10 
signalling pathways in common among 33 tumours [44]. 
The comprehension of interactions between phenotype 
and genotype and between intraclass diseases impacts 
the understanding of many progressive aspects of a dis-
ease such as cancer, including cancer types, metastatic 
mechanisms and the development of a personalized diag-
nosis or prognosis, as well as pharmacogenomic preven-
tion strategies.

Importantly, genetic studies have not generally con-
sidered mitochondrial variants on a large scale and their 
impact during investigations of genetic comorbidity. 
Here, we have shown that many variants of interest could 
be overlooked, so we highlight the idea of data integra-
tion with several layers of genetic associations for model-
ling disease networks. This approach may contribute to 
the identification of patterns of genetic similarity and to 
the discovery of new mtDNA associations in the mecha-
nism of gastric cancer and other types of cancer.

Conclusions
In summary, this work has provided new information 
on the mitochondrial influence on tumorigenesis and 
metastasis from a network perspective, indicating some 
potential mtDNA biomarkers – particularly MT-ND4, 
MT-ND5 and D-loop – and emphasizing the importance 
of studying mitochondrial genetics in association with 
cancer progression. Therefore, considering the sample 
number to be a limitation of this work (together with 
the absence of heteroplasmy and haplogroup analyses 
due to a lack of data), future studies with larger data-
sets in systems biology, as well as functional studies, are 
recommended to reinforce the observed interactions of 
these variants in different types of cancer. We also pro-
vide a user-friendly web tool to explore the broad set of 
shared mitochondrial variants among cancers that may 
support larger datasets from future studies, encouraging 
the development of new software for cancer and genetics 
epidemiology while also improving the transparency and 
reproducibility of research studies.

Methods
Data Collection and Characterization
Data of mitochondrial variants were extracted from two 
sources: (i) homoplasmic mtDNA mutations in gastric 
cancer from the study by [6] and (ii) the mutation section 
(Single Nucleotide Variant – SNV and Insertion/Dele-
tion – INDEL files) of The Cancer Mitochondria Atlas 
(TCMA) portal (https:// ibl. mdand erson. org/ tcma/), 
which was made public and freely available by [7]. The 
first dataset included 13 tumour samples from gastric 
cancer (GC) patients, while the second included 2,536 
tumour samples distributed in 36 cancer types. More 
detailed characterization of the samples can be found in 
the mentioned works.

Data Analyses
Datasets from both sources were merged into one, con-
sidering each variant/position in common. For that and 
all other analyses, we used Python 3 programming lan-
guage and the following libraries in this environment: 
Pandas [45], Matplotlib [46], Seaborn [47] and Scipy [48].

The mtDNA mutation‑cancer network
We constructed a bipartite network of mitochondrial 
mutations and cancer with datasets of different types of 
cancer. The mtDNA mutation-cancer network is pre-
sented as a graph G(V, E), where V comprises two distinct 
sets of nodes: mitochondrial mutations (u) and cancers 
(v). In this analysis, we considered a mitochondrial muta-
tion to be associated with cancer if this association was 
reported in the works that originated the analysed data-
sets [6, 7].

https://ibl.mdanderson.org/tcma/
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Next, we assessed the topology of the mtDNA muta-
tion-cancer network and computed an empirical p value 
of mutation overlap (i.e., mutations in common) between 
pairs of cancer types. This was done by runs of 100 K ran-
domization of associations between the cancers to gener-
ate their empirical distribution. Thus, the probability (P) 
of a given overlap was calculated with P(NA, NB | NAB), 
where NA is the number of mitochondrial mutations of 
cancer "A", NB is the number of mitochondrial mutations 
of cancer "B" and NAB is the overlap calculated for the 
pair of cancers "A" and "B". This strategy was inspired 
by the work of [42], which found significant associa-
tion overlap for complex diseases based on data from 
the NHGRI/EBI GWAS Catalog (https:// www. ebi. ac. uk/ 
gwas/).

We then implemented a web tool to better visual-
ize and explore this mtDNA mutation-cancer network. 
HTML5 with the bootstrap framework (https:// getbo 
otstr ap. com/) was used for front-end development. The 
mtDNA mutation-cancer network was generated using 
the D3.js library, and raw data were implemented with 
DataTables (https:// datat ables. net/), with both libraries 
in JavaScript and JQuery (https:// jquery. com/). The net-
work and raw data were stored in JSON files and accessed 
via Ajax combined with libraries in Python 3 using the 
Flask framework for web applications (https:// flask. palle 
tspro jects. com/ en/1. 1.x/) in the backend.

Nuclear SNP‑Disease Network
We retrieved genetic association data using the Disease-
Ancestry Network (DANCE – www. ldgh. com. br/ dance), 
which is a web tool that allows the recovery of associa-
tions among complex diseases and nuclear single nucleo-
tide polymorphisms (SNPs) in a bipartite network called 
SNP-Disease Network [42]. DANCE integrates data 
from the 1000 Genomes Project (Phase 3) [49] and the 
NHGRI GWAS Catalog (v. March 2020) [50], comprising 
data from 3,885 public genome-wide association stud-
ies (GWAS). DANCE database stores 149,262 associa-
tions among 4,208 phenotypes and 120,748 risk-alleles. 
We queried risk-alleles associations with GC, renal cell 
carcinoma, hepatocellular carcinoma, and prostate can-
cer. Risk-alleles were considered for those variants that 
reached a statistical significance (P-value ≤ 1e-8) and 
odds ratio > 1.
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Bioinformatics Institute; Eso‑AdenoCA: Esophageal adenocarcinoma; GC: 

Gastric cancer; GWAS: Genome‑wide analysis study; Head‑SCC: Head and neck 
squamous cell carcinoma; ICGC/TCGA PAWG Consortium: International Cancer 
Genome Consortium/The Cancer Genome Atlas Pan‑Cancer Analysis of Whole 
Genomes Consortium; INDEL: Insertion/Deletion; JC: Jaccard index; Kidney‑
ChRCC : Chromophobe renal cell carcinoma; Kidney‑RCC : Renal cell carcinoma; 
Liver‑HCC: Hepatocellular carcinoma; lncRNAs: Long non‑coding RNAs; Lung‑
SCC: Lung squamous cell carcinoma; Lymph‑BNHL: B‑cell non‑Hodgkin lym‑
phoma; Lymph‑CLL: Chronic lymphocytic leukemia; miR34a: MicroRNA 34a; 
mRNA: Messenger RNA; MT‑ATP6: Mitochondrially encoded ATP synthase 6, 
also known as ATP6; MT‑CO1: Mitochondrially encoded cytochrome c oxidase 
I, also known as CO1; MT‑CO3: Mitochondrially encoded cytochrome c oxidase 
III, also known as CO3; MT‑CYB: Mitochondrially encoded cytochrome b, also 
known as CYB; MT‑ND1: Mitochondrially encoded NADH dehydrogenase 1, 
also known as ND1; MT‑ND4: Mitochondrially encoded NADH dehydrogenase 
4, also known as ND4; MT‑ND5: Mitochondrially encoded NADH dehydro‑
genase 5, also known as ND5; MT‑ND6: Mitochondrially encoded NADH 
dehydrogenase 6, also known as ND6; MT‑RNR1: Mitochondrially encoded 
12S RNA, also known as RNR1; MT‑RNR2: Mitochondrially encoded 16S RNA, 
also known as RNR2; mtDNA: Mitochondrial DNA; mtgenome: Mitochondrial 
genome; N: Number of found variants; NA: The number of mitochondrial 
mutations of cancer "A" in P(NA, NB | NAB); NAB: The overlap calculated for the 
pair of cancers "A" and "B" in P(NA, NB | NAB); NADH: Reduced nicotinamide 
adenine dinucleotide or nicotinamide adenine dinucleotide (NAD) + hydro‑
gen (H); NB: The number of mitochondrial mutations of cancer "B" in P(NA, NB 
| NAB); NCR: Non‑coding region; NHGRI: National Human Genome Research 
Institute; Ovary‑AdenoCA: Ovarian adenocarcinoma; OXPHOS: Oxidative 
phosphorylation; P: Probability of a given overlap, calculated with P(NA, NB | 
NAB); Panc‑AdenoCA: Pancreatic adenocarcinoma; Panc‑Endocrine: Pancreatic 
cancer endocrine neoplasms; Prost‑AdenoCA: Prostate adenocarcinoma; 
ROS: Reactive oxygen species; rRNA: Ribosomal RNA; SNP: Single nucleotide 
polymorphism; SNV: Single nucleotide variant; SoftTissue‑Leiomyo: Soft 
tissue leiomyosarcoma; Stomach‑AdenoCA: Stomach adenocarcinoma; 
TCA : Tricarboxylic acid cycle; TCGA : The Cancer Genome Atlas; TCMA: The 
Cancer Mitochondria Atlas; Thy‑AdenoCA: Thyroid adenocarcinoma; TOP1MT: 
Mitochondrial topoisomerase 1B; tRNA: Transfer RNA; Uterus‑AdenoCA: Uterus 
adenocarcinoma.

Acknowledgements
The authors would like to thank the funding agencies and all participants of 
both studies that generated the datasets analysed in this work

Authors’ contributions
G.C.C. conceptualized and designed the study, performed the experiments, 
curated the data and wrote and reviewed the manuscript. Â.R.S. provided the 
resources, participated in the project administration, and made major contri‑
butions to the manuscript. G.S.A. performed the experiments, including the 
web tool development, wrote and reviewed the manuscript and supervised 
the project. All authors read and approved the final manuscript.

Funding
This research was funded by Rede de Pesquisa em Genômica Populacional 
Humana (Biocomputacional — Protocol no. 3381/2013/CAPES/Brazil); 
Conselho Nacional do Desenvolvimento Científico e Tecnológico—CNPq/
Brazil (Â.R.S. was supported by CNPq/Productivity: 304413/2015–1), Fundação 
Amazônia Paraense de Amparo à Pesquisa – FAPESPA (No. BJT—2021/658671), 
Hydro (Project 4227 Hydro/UFPA/FADESP/Brazil), Coordenação de Aper‑
feiçoamento de Pessoal de Nível Superior (CAPES/Brazil) and Pró‑Reitoria de 
Pesquisa (PROPESP/Brazil) of Universidade Federal do Pará (UFPA/Brazil). The 
funders had no role in the design of the study, collection, analysis, interpreta‑
tion of the data or writing of the manuscript.

Availability of data and materials
The datasets generated and/or analysed during the current study are available 
in the FigShare repository (https:// doi. org/ 10. 6084/ m9. figsh are. 15062 628).

Declarations

Ethics approval and consent to participate
Not applicable.

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://getbootstrap.com/
https://getbootstrap.com/
https://datatables.net/
https://jquery.com/
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/
http://www.ldgh.com.br/dance
https://doi.org/10.6084/m9.figshare.15062628


Page 9 of 10Cavalcante et al. BMC Genomic Data           (2022) 23:16  

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Laboratory of Human and Medical Genetics, Graduate Program in Genet‑
ics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 
Belém, PA 66075‑110, Brazil. 2 Graduate Program in Oncology and Medical 
Sciences, Center of Oncology Research, Federal University of Pará, Rua dos 
Mundurucus, Belém, PA 4487, 66073‑005, Brazil. 

Received: 19 July 2021   Accepted: 14 February 2022

References
 1. Cavalcante GC, Magalhães L, Ribeiro‑Dos‑Santos Â, Vidal AF. Mitochon‑

drial Epigenetics: Non‑Coding RNAs as a Novel Layer of Complexity. Int J 
Mol Sci. 2020;21:1838.

 2. Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: impli‑
cations for rare and common diseases. J Intern Med. 2020;287:634–44.

 3. Keogh MJ, Chinnery PF. Mitochondrial DNA mutations in neuro‑
degeneration. Biochimica et Biophysica Acta (BBA) Bioenergetics. 
2015;1847:1401–11.

 4. Weigl S, Paradiso A, Tommasi S. Mitochondria and Familial Predisposition 
to Breast Cancer. Curr Genomics. 2013;14:195–203.

 5. Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncog‑
enome? BMC Biol. 2019;17:53.

 6. Cavalcante GC, Marinho ANR, Anaissi AK, Vinasco‑Sandoval T, Ribeiro‑
Dos‑Santos A, Vidal AF, et al. Whole mitochondrial genome sequencing 
highlights mitochondrial impact in gastric cancer. Sci Rep. 2019;9:15716.

 7. Yuan Y, Ju YS, Kim Y, Li J, Wang Y, Yoon CJ, et al. Comprehensive molecular 
characterization of mitochondrial genomes in human cancers. Nat Genet. 
2020;52:342–52.

 8. Saikolappan S, Kumar B, Shishodia G, Koul S, Koul HK. Reactive oxygen 
species and cancer: A complex interaction. Cancer Lett. 2019;452:132–43.

 9. Singh RK, Saini S, Verma D, Kalaiarasan P, Bamezai RNK. Mitochondrial 
ND5 mutation mediated elevated ROS regulates apoptotic pathway 
epigenetically in a P53 dependent manner for generating pro‑cancerous 
phenotypes. Mitochondrion. 2017;35:35–43.

 10. Tzen C‑Y, Mau B‑L, Wu T‑Y. ND4 mutation in transitional cell carcinoma: 
Does mitochondrial mutation occur before tumorigenesis? Mitochon‑
drion. 2007;7:273–8.

 11. Nicholls TJ, Minczuk M. In D‑loop: 40 years of mitochondrial 7S DNA. Exp 
Gerontol. 2014;56:175–81.

 12. Zhao Y‑B. Mutation in D‑loop region of mitochondrial DNA in gastric 
cancer and its significance. WJG. 2005;11:3304.

 13. Wang H, Wang Y, Zhao Q, Guo Z, Zhang F, Zhao Y, et al. Identification of 
sequence polymorphisms in the D‑Loop region of mitochondrial DNA as 
a risk factor for gastric cancer. Mitochondrial DNA A DNA Mapp Seq Anal. 
2016;27:1045–7.

 14. Wei L, Zhao Y, Guo T, Li P, Wu H, Xie H, et al. Association of mtDNA D‑Loop 
Polymorphisms with Risk of Gastric Cancer in Chinese Population. Pathol‑
ogy & Oncology Research. 2011;17:735–42.

 15. Dalla Rosa I, Zhang H, Khiati S, Wu X, Pommier Y. Transcription profiling 
suggests that mitochondrial topoisomerase IB acts as a topological 
barrier and regulator of mitochondrial DNA transcription. J Biol Chem. 
2017;292:20162–72.

 16. Trivedi M, Singh A, Talekar M, Pawar G, Shah P, Amiji M. MicroRNA‑34a 
Encapsulated in Hyaluronic Acid Nanoparticles Induces Epigenetic 
Changes with Altered Mitochondrial Bioenergetics and Apoptosis in 
Non‑Small‑Cell Lung Cancer Cells. Sci Rep. 2017;7:3636.

 17. Cho S, Lee Y‑M, Choi YS, Yang HI, Jeon YE, Lee KE, et al. Mitochondria DNA 
polymorphisms are associated with susceptibility to endometriosis. DNA 
Cell Biol. 2012;31:317–22.

 18. Mueller EE, Eder W, Ebner S, Schwaiger E, Santic D, Kreindl T, et al. The 
mitochondrial T16189C polymorphism is associated with coronary artery 
disease in Middle European populations. PLoS ONE. 2011;6:e16455.

 19. Kwak SH, Park KS. Role of mitochondrial DNA variation in the pathogen‑
esis of diabetes mellitus. Front Biosci (Landmark Ed). 2016;21:1151–67.

 20. Liu VWS, Yang HJ, Wang Y, Tsang PCK, Cheung ANY, Chiu PM, et al. High 
frequency of mitochondrial genome instability in human endometrial 
carcinomas. Br J Cancer. 2003;89:697–701.

 21. Tipirisetti NR, Govatati S, Pullari P, Malempati S, Thupurani MK, Perugu S, 
et al. Mitochondrial control region alterations and breast cancer risk: a 
study in South Indian population. PLoS ONE. 2014;9:e85363.

 22. Govatati S, Saradamma B, Malempati S, Dasi D, Thupurani MK, Nagesh N, 
et al. Association of mitochondrial displacement loop polymorphisms 
with risk of colorectal cancer in south Indian population. Mitochondrial 
DNA A DNA Mapp Seq Anal. 2017;28:632–7.

 23. Kim HR, Kang M‑G, Lee YE, Na BR, Noh MS, Yang SH, et al. Spectrum of 
mitochondrial genome instability and implication of mitochondrial 
haplogroups in Korean patients with acute myeloid leukemia. Blood 
research. 2018;53:240.

 24. Salvador M, Villegas A, Llorente L, Ropero P, González FA, Bustamante 
L. 16189 Mitochondrial variant and iron overload. Ann Hematol. 
2007;86:463–4.

 25. Cheng M, Liu P, Xu LX. Iron promotes breast cancer cell migration via 
IL‑6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL‑
6‑rich inflammatory environment. J Inorg Biochem. 2020;210:111159.

 26. Khan A, Singh P, Srivastava A. Iron: Key player in cancer and cell cycle? J 
Trace Elem Med Biol. 2020;62:126582.

 27. Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: 
recent insights. Ann N Y Acad Sci. 2016;1368:149–61.

 28. Denisenko TV, Gorbunova AS, Zhivotovsky B. Mitochondrial Involve‑
ment in Migration, Invasion and Metastasis. Front Cell Dev Biol. 
2019;7:355.

 29. Nguyen NNY, Kim SS, Jo YH. Deregulated Mitochondrial DNA in Dis‑
eases. DNA Cell Biol. 2020;39:1385–400.

 30. O’Reilly MK, Sugrue G, Han‑Suyin K, Fenlon H. Radiological, pathologi‑
cal and gross correlation of an isolated renal cell carcinoma metastasis 
to the stomach. BMJ Case Rep. 2017;2017:bcr2017220469.

 31. Pollheimer MJ, Hinterleitner TA, Pollheimer VS, Schlemmer A, Langner 
C. Renal cell carcinoma metastatic to the stomach: single‑centre expe‑
rience and literature review. BJU Int. 2008;102:315–9.

 32. Bilici A, Dikilitas M, Eryilmaz OT, Bagli BS, Selcukbiricik F. Stomach 
metastasis in a patient with prostate cancer 4 years after the initial 
diagnosis: a case report and a literature review. Case Rep Oncol Med. 
2012;2012:292140.

 33. Solis Lara HE, Villarreal Del Bosque N, SadaTreviño MA, Yamamoto 
Ramos M, Argueta Ruiz RDC. Gastric Metastasis of Prostate Cancer 
as an Unusual Presentation Using 68Ga‑Prostate‑Specific Membrane 
Antigen PET/CT. Clin Nucl Med. 2018;43:e156–9.

 34. Namikawa T, Iwabu J, Kitagawa H, Okabayashi T, Kobayashi M, Hanazaki 
K. Solitary gastric metastasis from a renal cell carcinoma present‑
ing 23 years after radical nephrectomy. Endoscopy. 2012;44(Suppl 2 
UCTN):E177‑178.

 35. Inagaki C, Suzuki T, Kitagawa Y, Hara T, Yamaguchi T. A case report of pros‑
tate cancer metastasis to the stomach resembling undifferentiated‑type 
early gastric cancer. BMC Gastroenterol. 2017;17:93.

 36. Then EO, Nutakki S, Ofosu A, Saleem S, Saleem V, Sunkara T, et al. An 
Unlikely Culprit: Gastric Metastasis from Primary Prostatic Adenocarci‑
noma. J Gastrointest Cancer. 2020;51:1081.

 37. Wada Y, Yoshida K, Hihara J, Tanabe K, Ukon K. Kidney metastasis 
of resected early gastric carcinoma: report of a case. Surg Today. 
2007;37:248–50.

 38. Zhang P, Zheng Y, Ran H, Leng Z, Wang Z. Case report: gastric adenocarci‑
noma metastatic to the prostate gland. J Radiol Case Rep. 2010;4:35–8.

 39. Uggeri F, Ripamonti L, Pinotti E, Scotti MA, Famularo S, Garancini M, et al. 
Is there a role for treatment‑oriented surgery in liver metastases from 
gastric cancer? World J Clin Oncol. 2020;11:477–94.

 40. Zacherl J, Zacherl M, Scheuba C, Steininger R, Wenzl E, Mühlbacher F, 
et al. Analysis of hepatic resection of metastasis originating from gastric 
adenocarcinoma. J Gastrointest Surg. 2002;6:682–9.

 41. Peng L, Yu K, Li Y, Xiao W. Gastric metastasis of recurrent hepatocel‑
lular carcinoma: A case report and literature review. J Cancer Res Ther. 
2018;14(Supplement):S1230–2.

 42. Araújo GS, Lima LHC, Schneider S, Leal TP, da Silva APC, Vaz de Melo POS, 
et al. Integrating, summarizing and visualizing GWAS‑hits and human 



Page 10 of 10Cavalcante et al. BMC Genomic Data           (2022) 23:16 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

diversity with DANCE (Disease‑ANCEstry networks). Bioinformatics. 
2016;32:1247–9.

 43. Goh K‑I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A‑L. The human 
disease network. Proc Natl Acad Sci USA. 2007;104:8685–90.

 44. Sanchez‑Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. 
Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell. 
2018;173:321‑337.e10.

 45. Reback J, McKinney W, Mendel B, Van den Bossche J, Augspurger T, Cloud 
P, et al. pandas‑dev/pandas: Pandas 1.0.3. Zenodo; 2020. https:// doi. org/ 
10. 5281/ zenodo. 37152 32.

 46. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science 
Engineering. 2007;9:90–5.

 47. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline 
DC, et al. mwaskom/seaborn: v0.8.1 (September 2017). Zenodo; 2017. 
https:// doi. org/ 10. 5281/ zenodo. 883859.

 48. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau 
D, et al. SciPy 1.0: fundamental algorithms for scientific computing in 
Python. Nat Methods. 2020;17:261–72.

 49. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Gar‑
rison EP, Kang HM, et al. A global reference for human genetic variation. 
Nature. 2015;526:68–74.

 50. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone 
C, et al. The NHGRI‑EBI GWAS Catalog of published genome‑wide associa‑
tion studies, targeted arrays and summary statistics 2019. Nucleic Acids 
Res. 2019;47:D1005–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.5281/zenodo.3715232
https://doi.org/10.5281/zenodo.3715232
https://doi.org/10.5281/zenodo.883859

	Mitochondria in tumour progression: a network of mtDNA variants in different types of cancer
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	General analysis of the merged datasets
	Shared mtDNA variants and their potential impact
	Different approaches in cancer-related SNP networks

	Discussion
	Conclusions
	Methods
	Data Collection and Characterization
	Data Analyses
	The mtDNA mutation-cancer network
	Nuclear SNP-Disease Network

	Acknowledgements
	References


