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Abstract 

Background: Breast cancer is one of the most commonly diagnosed cancers. It is associated with DNA methylation, 
an epigenetic event with a methyl group added to a cytosine paired with a guanine, i.e., a CG site. The methylation 
levels of different genes in a genome are correlated in certain ways that affect gene functions. This correlation pat-
tern is known as co-methylation. It is still not clear how different genes co-methylate in the whole genome of breast 
cancer samples. Previous studies are conducted using relatively small datasets (Illumina 27K data). In this study, we 
analyze much larger datasets (Illumina 450K data).

Results: Our key findings are summarized below. First, normal samples have more highly correlated, or co-methyl-
ated, CG pairs than tumor samples. Both tumor and normal samples have more than 93% positive co-methylation, but 
normal samples have significantly more negatively correlated CG sites than tumor samples (6.6% vs. 2.8%). Second, 
both tumor and normal samples have about 94% of co-methylated CG pairs on different chromosomes, but normal 
samples have 470 million more CG pairs. Highly co-methylated pairs on the same chromosome tend to be close to 
each other. Third, a small proportion of CG sites’ co-methylation patterns change dramatically from normal to tumor. 
The percentage of differentially methylated (DM) sites among them is larger than the overall DM rate. Fourth, certain 
CG sites are highly correlated with many CG sites. The top 100 of such super-connector CG sites in tumor and normal 
samples have no overlaps. Fifth, both highly changing sites and super-connector sites’ locations are significantly differ-
ent from the genome-wide CG sites’ locations. Sixth, chromosome X co-methylation patterns are very different from 
other chromosomes. Finally, the network analyses of genes associated with several sets of co-methylated CG sites 
identified above show that tumor and normal samples have different patterns.

Conclusions: Our findings will provide researchers with a new understanding of co-methylation patterns in breast 
cancer. Our ability to thoroughly analyze co-methylation of large datasets will allow researchers to study relationships 
and associations between different genes in breast cancer.
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Introduction
Breast cancer is both the second most commonly diag-
nosed form of cancer and the second leading cause of 
cancer-related death among US women [1]. Millions of 
women in the US have a history of breast cancer, and 
about one eighth of women are diagnosed with breast 

cancer at some point in their lives. Breast cancer has 
been associated with numerous inherited and environ-
mental risk factors [2]. BRCA1 and BRCA2 are two of 
the most well-known genes whose mutations are linked 
with an increased risk of breast cancer. Breast cancer can 
also develop due to somatic genetic changes sparked by 
a wide variety of external factors such as smoking, radia-
tion exposure, obesity, and alcohol consumption [2].

In addition to genetic changes, many publications have 
shown critical links between epigenetic changes and 
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cancer development [3–5]. Epigenetics is defined as the 
study of heritable changes that affect gene expression 
without changing the actual DNA sequence [6]. A typi-
cal example of an epigenetic event is DNA methylation, 
which occurs when a methyl group (−CH3) is covalently 
added to a cytosine base in the dinucleotide 5′-CG-3′ [7]. 
A CG or CpG site refers to a cytosine base linked to a 
guanine base by a phosphate bond. A CpG island is usu-
ally defined as a chromosome region that is more than 
200 base pairs long and has an average of > 50% CG sites 
in addition to an observed-to-expected CG site ratio of 
> 0.6 [8]. For the Illumina methylation array data, CpG 
islands are defined as regions greater than 500 base pairs 
(bps) with at least 55% GC content and the expected/
observed CpG ratio greater than 0.65. CpG shores are 
about 2000 bps from islands; CpG shelves are about 
4000 bps from islands [9].

Methylation patterns are known to influence gene 
functions in various ways; for example, methylation can 
lead to increased oncogenic cell growth, genomic insta-
bility, and cytosine to thymine transition mutations that 
prevent the expression of tumor suppressor genes [3, 7, 
10]. In particular, changes in DNA methylation patterns 
have also been specifically linked with breast cancer 
development [5, 11, 12]. Co-methylation is defined as the 
similarity or the strong correlation of methylation signals 
between CG sites. In general, there are two main types 
of co-methylation: within-sample (WS) co-methylation 
and between-sample (BS) co-methylation [13, 14]. WS 
co-methylation refers to methylation patterns between 
consecutive or nearby sites in one chromosome region. 
BS co-methylation refers to the methylation similarity or 
correlation of CG sites (or genes) across various samples 
and in different genomic regions. Note, in this paper, we 
study BS co-methylation. To simplify our writing, we use 
co-methylation in the rest of this paper.

The previous study by Akulenko and Helms has dem-
onstrated a high functional correlation between co-meth-
ylating genes in breast cancer samples, which suggests 
that co-methylation could help point to functional simi-
larities between unknown genes in breast cancer [11]. 
Zhang and Huang have investigated co-methylation pat-
terns in multiple cancers and their potential usefulness 
as biomarkers [15]. However, these previous studies are 
conducted on relatively small datasets of Illumina Human 
Methylation 27K array data. Analyses based on small 
datasets cannot show a complete picture of how specific 
DNA methylation changes affect the functions and inter-
actions of genes. In addition, although some pan-cancer 
co-methylation analyses have been done by identifying 
common co-methylation clusters among multiple can-
cers [15, 16], no thorough research has been done for 
breast cancer co-methylation patterns yet.

In order to more thoroughly investigate co-methylation 
patterns in breast cancer, we will conduct a comprehen-
sive co-methylation analysis of breast cancer methylation 
datasets consisting of 485,577 CG sites. We will focus 
on overall methylation patterns with relation to physi-
cal distance, sign (i.e., positive or negative correlations), 
and number of high correlations in normal and tumor 
datasets. We will also investigate specific CG sites whose 
co-methylation patterns change significantly between 
normal and tumor samples. Due to the large data size, 
the analysis is computationally challenging. However, 
our ability to analyze datasets of this size can provide 
researchers with a new and improved understanding of 
co-methylation patterns in breast cancer. Furthermore, 
new findings will allow researchers to establish relation-
ships and associations between different genes in the 
future.

The novelty of our study lies in the following aspects. 
First, to the best of our knowledge, our paper is the first 
one that thoroughly analyzes and compares the negative 
co-methylation patterns in both tumor and matched nor-
mal samples. Second, our study thoroughly investigates 
the CG pairs whose co-methylation patterns change from 
normal to tumor cells by addressing specific questions 
listed in the Methods section. Third, we show that chro-
mosome X (ChrX) co-methylation patterns are different 
from those of the autosomes in a number of important 
ways.

Methods
In order to conduct the co-methylation study, we use 
publicly available data of 53 breast cancer patients that 
are alive from The Cancer Genome Atlas (TCGA). We 
download the Illumina human methylation 450K array 
data for 53 primary tumors and adjacent solid tissue nor-
mal samples. Each 450K dataset consists of the meth-
ylation signals (i.e., beta values) of 485,577 CG sites or 
probes. Next, we will summarize the three key analysis 
steps.

Step 1: preprocessing data
We filter the available data based on the following 
criteria:

1) Remove 8233 probes/sites that have the same start 
and end positions.

2) Remove 397 chromosome Y CG sites because all 
samples are female.

3) Remove 85,468 CG sites with missing data (i.e., NA) 
in all 53 samples (i.e., in both tumor and normal sam-
ples) with 391,479 CG sites left.

4) Remove CG sites with 1 outlier that is outside of 3 
times the interquartile range (IQR).
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5) Remove the CG sites whose maximum and mini-
mum methylation level differences are less than 0.05.

6) Only keep the CG sites with methylation signals in at 
least 80% of the samples (i.e., with ≥43 observations 
in both tumor and normal sample).

7) Remove 21 CG sites with duplicate chromosome 
positions.

After filtering based on the first two criteria, we have 
476,947 CG sites left. After filtering based on all the 
above criteria, there are 272,990 (273K) CG sites left 
for downstream analysis. Note that the fourth criterion 
is used to remove the impact of outliers on co-meth-
ylation analysis. The fifth criterion is to ensure that 
there is a certain level of methylation variation among 
the selected CG sites while still keeping a reasonably 
large number of CG sites for further analysis.

Step 2: calculating correlation coefficients for the Illumina 
273K data
We study co-methylation patterns by analyzing the 
Pearson correlation coefficients between any two dis-
tinct CG sites based on their methylation levels. A cor-
relation coefficient of 1 or close to 1 would mean that 
the two CG sites are highly positively related; CG sites 
with a correlation coefficient of − 1 or close to − 1 are 
highly negatively related. This correlation calculation 
generates a large 272,990 by 272,990 matrix of correla-
tion coefficients. However, R’s relatively limited stor-
age capacity is exceeded by the size of a 272,990 by 
272,990 correlation matrix file. Since the correlation 
matrix has to be stored in R in order to perform fur-
ther analyses, we overcome the challenge of R’s limited 
storage using a divide and conquer strategy. We gener-
ate the correlation matrix in separate blocks in order 
to prevent the storage issue when the files are being 
generated. That is, we generate 273 files; each of them 
contains 1000 rows and 272,990 columns of correla-
tion coefficients. We also truncate all the correlation 
coefficients to 4 decimal places in order to further save 
space. By dividing up the correlation matrix and trun-
cating the correlation coefficients, we overcome the 
issue of R’s limited storage.

Step 3: identifying co‑methylation patterns using 
correlation analysis
We further analyze co-methylation patterns using the 
correlation coefficient between each pair of CG sites. We 
investigate the co-methylation patterns in both tumor 
and normal datasets and then compare them. When 
investigating the co-methylation patterns, we focus on 
addressing the following seven questions: (1) For each 
CG site, how many CG sites are highly correlated with 
it, and what is the distribution of these counts? (2) For 
those highly correlated CG sites located on the same 
chromosome, how far away are they from each other? 
That is, what is the distance distribution for co-methyl-
ated CG sites on the same chromosome? (3) What are 
the signs (positive or negative) of these high correlations? 
Are there any differences between normal and tumor 
samples? (4) Are there pairs of CG sites that have a large 
change in correlation between normal and tumor? If so, 
do they possess special qualities not seen in the overall 
datasets? (5) What patterns are present in these highly 
changing CG sites that are also differentially methyl-
ated? (6) Are there specific genes that are more closely 
related to these highly changing CG sites? If so, what are 
they, and what interactions do they have? (7) What genes 
are associated with the super-connector CG sites (sites 
highly correlated with a large number of other sites), and 
what interactions do these genes have?

Results
Overall co‑methylation patterns
We determine co-methylated CG pairs to be those with 
a correlation coefficient greater than or equal to 0.8. This 
cutoff is used in a previous publication [11]. There are 
C
272990

2
 = 37,261,633,555 possible pairs in both tumor 

and normal data, of which 298,194,565 in tumor and 
794,262,245 in normal are co-methylated (i.e., highly cor-
related based on the 0.8 cutoff value). These give propor-
tions of 0.80 and 2.13% in tumor and normal respectively, 
such that normal samples have roughly 2.7 times the high 
correlations in tumor samples, see Table 1.

For all C272990

2
 possible pairs, Table  2 shows the sum-

mary of the number of CG sites that each CG site is highly 
correlated with. The distributions are extremely skewed 
to the right, with most sites highly correlated with a few 
CG sites and a small number of sites correlated with a lot 

Table 1 CG pairs with a high correlation level

Total CG Sites Total CG Pairs Pairs with |Correlation| ≥ 0.8 Proportion with 
|Correlation| ≥ 0.8

Normal 272,990 37,261,633,555 794,262,245 2.13%

Tumor 272,990 37,261,633,555 298,194,565 0.80%
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of CG sites. Note that the numbers for normal samples 
are generally higher than the numbers for tumor samples. 
Furthermore, Fig.  1A shows that the tumor dataset has 
more CG sites with a number of correlations under 100 
compared to the normal dataset. The normal dataset has 
more in the 101 to 20,000 range. After 30,000, the tumor 
dataset drops to 0 (as shown in Table 2, the maximum in 
the tumor dataset is 27,996 correlations), so the normal 
dataset has more correlations in that range. A bar graph 
with more groups can be seen in the Supplemental Fig. 1 
in the Additional file 1.

Figure 1B is a scatterplot that compares the number of 
high correlations each CG site has in the tumor data and 
the normal data. The blue line is for scale only; it has a 
slope of 1. As we see, there is a dark line along the x-axis, 
which corresponds to a large number of CG sites hav-
ing few highly correlated partners in tumor but many 
such partners in normal. This pattern also exists along 
the y-axis, though to a much lesser extent. In addition, 
there is a large clump in the top right-hand corner, indi-
cating that many CG sites have high correlations with a 
lot of sites in both normal and tumor data. We also note 

that the plot has a surprisingly well-defined border; the 
number of points appears to drop significantly at around 
x = 42,000 and y = 27,000, which are the rough maximum 
number of CG sites a specific CG site can highly correlate 
with in normal and tumor respectively.

Co‑methylation signs and chromosome patterns
We further examine the overall correlation patterns based 
on if the two CG sites in each pair are on the same or dif-
ferent chromosomes and if the correlation is positive or 
negative. The overall statistics are in Table 3. We see that 
the vast majority of CG pairs are on different chromo-
somes (about 94% for both tumor and normal) and are 
positively correlated (93.4% for normal and 97.19% for 
tumor). Note that there are two striking patterns. First, 
although the percentages in normal and tumor are simi-
lar, the number of pairs can be dramatically different. For 
example, for the pairs on the same chromosome, there 
are 45.2 million in the normal dataset and 17.5 million in 
the tumor dataset. That is, the number of normal pairs 
is about 2.5 times the number of tumor pairs. Second, 
for the pairs with negative correlations, normal samples 

Table 2 Summary for the number of CG sites each CG site is highly correlated with

Q1 and Q3 mean  25th and  75th percentiles respectively

Min Q1 Median Mean Q3 Max

Normal 0 0 84 5819 4375 42,787

Tumor 0 0 3 2185 50 27,996

Fig. 1 Trends regarding highly correlated CG pairs in normal and tumor data. A shows a general trend of the number of CG sites that each CG site is 
correlated with. The first two bars show that less than 30% of CG sites in the normal data are not highly correlated with any other CG sites, but more 
than 30% of CG sites in the tumor data are not highly correlated with other CG sites. B is a scatterplot comparing tumor and normal correlations. For 
B, the x-axis represents the number of CG sites a specific CG site is highly correlated with in the normal data, and the y-axis represents the number 
of CG sites a specific CG site is highly correlated with in the tumor data
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have more negative pairs than tumor samples (6.6% for 
normal vs. 2.81% for tumor), and the two-proportion test 
p-value is < 2.2 ×  10− 16, which shows that tumor and 
normal datasets are significantly different. For the pairs 
with positive correlations, tumor samples seem to have a 
relatively larger percentage (93.4% for normal and 97.19% 
for tumor), but the total number of positive pairs is much 
less than the number in the normal data (741.9 million 
for normal and 289.8 million for tumor).

For the highly correlated pairs that are on the same chro-
mosome, we examine the distribution of the distances 
between the CG sites in each pair in terms of base pairs 
(see Fig. 2). Due to the fact that there are almost three times 

as many total normal pairs as there are tumor pairs, every 
interval of ten million base pairs has more normal pairs 
than tumor pairs. The tumor and normal counts for these 
intervals are significantly different with p-value = 8.895 × 
 10− 5. However, the distribution of distances between co-
methylating CG sites is relatively similar. We find an inverse 
association between co-methylation and genomic distance; 
that is, co-methylation is more likely to occur between CG 
pairs that are located close to each other.

A further analysis shows that the median distance among 
all pairs on the same chromosome is 39,617,206 for tumor 
and 41,737,711 for normal, which is about a 2 million base 
difference (see Table  4). We perform t-tests on the dis-
tances between highly correlated CG sites for each chro-
mosome to compare tumor samples with normal samples. 
Test results show that there is a significant difference (with 
extremely small p-values close to 0) for all chromosomes, 
though this finding is likely due to very large distances 
and a large number of sites (see Supplemental Table 1 in 
the Additional file 1). We therefore also examine distances 
between pairs for each single chromosome using side-by-
side boxplots for tumor and normal data. The vast majority 
of chromosomes exhibit distance patterns similar to that 
of the overall data. That is, although the mean or median 
differences are relatively large, the boxplots do not clearly 
illustrate this difference because there is a large range as 
seen in the whole genome data. However, ChrX exhib-
its a significantly different pattern, where the median dis-
tance between tumor CG pairs is much smaller than the 
median distance between normal CG pairs, meaning that 
the tumor co-methylated CG pairs are concentrated more 
closely together than the normal co-methylated CG pairs. 
The overall shape of the histograms of distances between 
correlated CG site pairs on the same chromosome appears 
to be mostly the same between normal and tumor data, 
with only the ChrX distances being notably different. Later, 
we further study the co-methylation patterns on ChrX sep-
arately, and the results are summarized in the subsection 
titled “Chromosome X.”

We also plot the number of CG pairs on the same or dif-
ferent chromosomes, see the top two plots of Supplemen-
tal Fig. 2 in the Additional file 1. In these figures, the dots 
appear to form lines, suggesting that a lot of the CG sites 
have the same ratio of same to different chromosome cor-
relations. We also see that the slope of the lines is much less 
than one, which is expected as the ratio of same to different 

Table 3 Co-methylated CG pairs on the same/different 
chromosomes and with positive/negative correlations

Total Pairs Pairs on
Same Chr.

Pairs on
Diff. Chr.

Negative
Pairs

Positive
Pairs

Normal 794,262,245 45,249,327
(5.70%)

749,012,918
(94.30%)

52,400,697
(6.60%)

741,861,548
(93.40%)

Tumor 298,194,565 17,490,793
(5.87%)

280,703,772
(94.13%)

8,391,729
(2.81%)

289,802,836
(97.19%)

Fig. 2 Distances between co-methylated CG pairs on the same 
chromosome

Table 4 Summary of the distances between co-methylated CG pairs on the same chromosome

Min Q1 Median Mean Q3 Max

Tumor 2 14,111,897 39,617,206 54,455,914 80,313,554 248,046,750

Normal 2 15,498,757 41,737,711 57,065,415 84,514,828 248,094,980
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chromosome correlations is very low. In order to see the 
pattern clearly, we plot  log2((diff + 1)/(same + 1)) as shown 
in Fig.  3A, where “diff” means the number of highly cor-
related CG partners on different chromosomes and “same” 
means the number of CG partners on the same chromo-
some. The additional 1 added to each of the numbers (i.e., 
“diff+ 1” and “same+ 1”) is to account for CG sites that are 
highly correlated with no other CG sites. This is to avoid 
calculating  log2(0). For the tumor dataset, we can see that 
the median value is at 0, while in the normal dataset, the 
median is greater than 0. This indicates that in the tumor 
dataset, the numbers of same and different chromosome 
pairs are more likely to be equal to each other, while in the 
normal dataset, there tends to be more CG pairs that are 
on different chromosomes. The tumor dataset also has 
a noticeably larger number of outliers than the normal 
dataset, indicating more heterogeneity within the tumor 
dataset.

As for the positive/negative correlation patterns, there 
appear to be a lot of CG sites with a high number of nega-
tive correlations or positive correlations in either normal 
or tumor, but not both, as shown in Supplemental Fig. 2 
in the Additional file 1 bottom plots’ horizontal and verti-
cal axes. In the normal graph, there is also a fairly large 
clump of points with a significant number of both nega-
tive and positive correlations. In addition, we also plot 
 log2(number of positive correlations + 1) and  log2(number 
of negative correlations + 1) for both the tumor and nor-
mal data in Fig. 3B and C. The additional 1 added to each 
of the numbers is to account for CG sites that are highly 
correlated with no other CG sites. This is to avoid calcu-
lating  log2(0). For the negative correlations, the tumor 

dataset has a much larger number of outliers, which again 
indicates more heterogeneity within the tumor dataset. 
When looking at the positive correlations, there are also 
more outliers in the tumor dataset than in the normal 
dataset. In the positive correlation boxplots, the median 
of the normal dataset is also noticeably higher than the 
median of the tumor dataset. This difference suggests 
that the CG sites in the normal dataset tend to form more 
positive correlations than the sites in the tumor dataset. 
Finally, paired t-tests are conducted for data shown in 
Fig.  3A, B, and C to compare tumor and normal sam-
ples. Each paired t-test yields an extremely small p-value 
of almost 0, which shows the differences are statistically 
significant.

We find that the percentage of negative correlations is 
significantly different between normal (6.6%) and tumor 
(2.8%) as shown in Table 3. We then identify the follow-
ing CG sites: A. CG sites that only have negative corre-
lations with other CG sites; B. CG sites that have more 
negative than positive correlations with other sites. We 
identify these two lists of CG sites in normal and tumor 
data separately and compare them; see the two top Venn 
diagrams in Fig.  4, i.e., A and B. Figure  4A shows that 
there are 621 CG sites in the normal dataset that only 
have negative correlations, and there are 665 CG sites in 
the tumor dataset that only have negative correlations. 
There are 10 CG sites out of > 600 CG sites that are over-
lapped between the tumor and normal. This finding tells 
us that different sets of CG sites in the tumor and nor-
mal datasets play certain roles by negatively correlating 
with other CG sites or genes. Figure 4B shows that there 
are 4391 CG sites in the normal and 7363 CG sites in the 

Fig. 3 Boxplots of co-methylation signs and chromosome patterns. A Boxplot of log2
(

diff+1
same+1

)

 for each CG site in the tumor and normal datasets. B 

Boxplot of the number of negatively correlated CG sites. C Boxplot of the number of positively correlated CG sites. Note,  log2(negative 
correlations+1) and  log2(positive correlations+1) are used for B and C 
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tumor that have more negative correlations than positive 
correlations. There are 1612 CG sites that overlap. Unlike 
the data shown in Fig. 4A, there seems to be a larger dif-
ference between the normal and tumor dataset when 
looking at the number of CG sites that have more nega-
tive than positive correlations.

We also compare positive correlations between the 
normal (93.40%) and tumor (97.19%) datasets. Figure 4C 
shows that there are 112,895 CG sites in the tumor data-
set that only have positive correlations and that there 
are 76,202 CG sites in the normal dataset that only have 
positive correlations. There are 39,368 CG sites that are 
overlapped between the tumor and normal data. These 
overlapping CG sites make up 51.66% of the CG sites 
that only have positive correlations in the normal data-
set and 34.87% of the CG sites that only have positive 
correlations in the tumor dataset. This is unlike the data 
shown in Fig. 4A, which shows a much smaller percent-
age of overlapping CG sites that only have negative cor-
relations. Figure  4D shows that there are 173,075 CG 
sites in the tumor dataset that have more positive than 
negative correlations, and there are 194,129 CG sites in 

the normal dataset that have more positive than negative 
correlations. There are 135,948 overlapping CG sites. 
Finally, for each Venn diagram in Fig.  4, we compare 
the proportion of CG sites in tumor-only with the ones 
in normal-only data. The proportion-test p-values for 
Fig. 4B, C, and D are all extremely small (p-value < 2.2 × 
 10− 16). That is, there are significantly different propor-
tions of CG sites that function in certain ways in tumor-
only or normal-only cells. In addition to the proportion 
difference, all four Venn diagrams show different sets of 
CG sites that function differently in either tumor or nor-
mal samples.

Highly changing CG pairs
To further investigate the relationship between the tumor 
and normal samples, we examine how the correlation 
coefficient of each CG pair changes by comparing the 
normal with the tumor samples. Following the example 
of a previous publication [17], we split the correlation 
coefficient values, all between − 1 and 1, into 8 intervals: 
[− 1, − 0.75), [− 0.75, − 0.50), [− 0.50, − 0.25), [− 0.25,0), 
[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1). The number of 

Fig. 4 Detailed analysis of positive and negative co-methylation patterns. A Venn diagram of the number of CG sites that only have negative 
correlations. B Venn diagram of the number of CG sites that have more negative correlations than positive correlations. C Venn diagram of the 
number of CG sites that only have positive correlations. D Venn diagram of the number of CG sites that have more positive correlations than 
negative correlations
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CG pairs that fall within certain intervals in the tumor 
and normal datasets are recorded in Table 5.

The sum of all the cells in the table is 272,990 × 272,899 
/ 2 = 37,249,349,005. The percentages refer to the num-
ber of pairs in the cell out of the total number of pairs 
in the row. For example, the 8.53% in the top-left-most 
cell means that 9,047,541 out of 106,055,622 CG pairs 
(i.e., 8.53%) have a correlation within [− 1, − 0.75) in both 
tumor and normal datasets. Most of the CG pair correla-
tion values do not change much between the normal and 
the tumor dataset, especially when the correlation value 
in the normal dataset is in the range [− 0.5, 0.5]. The larg-
est CG percentages for each row, those being 20-50%, are 
either found to have normal and tumor correlation values 
that are within the same range or values that are sepa-
rated by 1-2 intervals. The percentages that are > 20% are 
in bold.

There are 3569 highly changing CG pairs that cross 7 
intervals. Among these CG pairs, 2398 of them change 
from very high negative correlations (i.e., [− 1.0, − 0.75)) 
in the normal data to very high positive correlations (i.e., 
[0.75, 1.0]) in the tumor data, and 1171 CG pairs change 
from very high positive correlations ([0.75, 1.0]) in the 
normal data to very high negative correlations ([− 1.0, 
− 0.75)) in the tumor data. Further examination of these 
3569 CG pairs reveals that there are 1443 unique CG 
sites that are involved in the negative to positive changes 
and 822 unique CG sites that are involved in the positive 
to negative changes. The union of these two sets has only 
1880 unique CG sites, so there is a considerable overlap; 
that is, 385 CG sites are involved in the changes in both 
directions. We then separate the 1880 unique CG sites 
involved in the highly changing CG pairs into three dif-
ferent groups as shown in Table 6. 385 CG sites that are 

involved in both the positive to negative and negative to 
positive changes form the “both.direction” group. 437 
CG sites that are only involved in the positive to nega-
tive changes form the “uniq.pos2neg” group. Lastly, 1085 
CG sites that are only involved in the negative to positive 
changes form the “uniq.neg2pos” group. We will study 
the DM patterns of these CG sites in the next section.

Differential methylation
Next, we investigate whether there is any relationship 
between co-methylation and differential methylation. In 
particular, we study how many of the CG sites sorted into 
the three groups mentioned previously are DM, mean-
ing there is a significant difference between their nor-
mal and tumor methylation levels. We perform paired 
t-tests on the 53 methylation levels between normal and 
tumor for all 272,990 CG sites. To be considered a DM 
site, the p-value of the t-test must be < 0.05, and the abso-
lute mean difference value must be > 0.2. Information on 
the number of CG sites involved in the co-methylation 
changes and the number of DM CG sites can be found 
in the last two columns of Table 6. Among all the highly-
changing CG sites, 9.55-12.99% are DM sites. These 
percentages are larger than the overall DM rate, which 

Table 5 The number of CG pairs whose correlation coefficients fall within certain intervals

Tumor
[− 1, − 0.75)

Tumor
[− 0.75, − 0.50)

Tumor
[− 0.50, − 0.25)

Tumor
[− 0.25, 0)

Tumor
[0, 0.25)

Tumor
[0.25, 0.50)

Tumor
[0.50, 0.75)

Tumor
[0.75, 1)

Normal
[−1, −0.75)

9,047,541
(8.530940%)

13,685,670
(12.904238%)

21,792,226
(20.547922%)

34,659,212
(32.680221%)

22,030,844
(20.772915%)

4,588,346
(4.326358%)

249,385
(0.235145%)

2398
(0.002261%)

Normal
[−0.75, −0.50)

4,532,553
(0.483943%)

43,143,743
(4.606482%)

139,239,351
(14.866663%)

343,557,340
(36.681809%)

325,165,891
(34.718144%)

76,117,608
(8.127120%)

4,773,392
(0.509658%)

57,889
(0.006181%)

Normal
[−0.50, −0.25)

950,340
(0.026118%)

30,082,357
(0.826755%)

321,883,396
(8.846337%)

1,289,397,068
(35.436564%)

1,551,479,465
(42.639387%)

419,567,332
(11.530990%)

24,952,455
(0.685770%)

293,958
(0.008079%)

Normal
[−0.25, 0)

392,148
(0.004785%)

17,342,879
(0.211636%)

385,387,947
(4.702910%)

2,635,151,893
(32.156900%)

3,855,226,940
(47.045542%)

1,221,099,246
(14.901140%)

79,112,772
(0.965417%)

956,285
(0.011670%)

Normal
[0, 0.25)

198,005
(0.001766%)

11,092,196
(0.098906%)

312,990,583
(2.790851%)

2,905,279,677
(25.905581%)

5,662,488,508
(50.490855%)

2,156,699,767
(19.230700%)

163,940,452
(1.461812%)

2,190,125
(0.019529%)

Normal
[0.25, 0.50)

70,324
(0.000822%)

4,876,128
(0.056974%)

150,373,427
(1.756992%)

1,709,044,540
(19.968805%)

4,212,522,101
(49.219918%)

2,235,224,229
(26.116789%)

240,956,009
(2.815376%)

5,505,226
(0.064324%)

Normal
[0.50, 0.75)

16,019
(0.000457%)

1,236,027
(0.035233%)

30,003,186
(0.855234%)

451,563,452
(12.871708%)

1,493,350,206
(42.567591%)

1,177,953,830
(33.577292%)

304,867,905
(8.690187%)

49,195,266
(1.402299%)

Normal
[0.75, 1)

1171
(0.000106%)

101,571
(0.009200%)

2,299,244
(0.208250%)

36,610,029
(3.315896%)

223,487,199
(20.242003%)

303,425,075
(27.482251%)

212,705,866
(19.265501%)

325,446,342
(29.476793%)

Table 6 DM Statuses of CG sites involved in co-methylation 
changes between normal and tumor data

#CG Sites #DM %DM

both.direction 385 50 12.99%

uniq.pos2neg 437 47 10.76%

uniq.neg2pos 1058 101 9.55%

All 272,990 23,361 8.56%
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is 8.56%. The CG sites highly changed in the both.direc-
tion group have a very large difference compared with the 
average DM rate (12.99% vs. 8.56%). We also look at the 
number of DM CG sites by chromosome (See Supple-
mental Fig. 3 and Supplemental Table 2 in the Additional 
file  1). For Chr1 to Chr22, the percentages of DM CG 
sites fall within the 5.91-11.75% range. ChrX, however, 
only has 2.22% DM sites, marking another way in which 
ChrX differs from the other chromosomes.

In addition to examining the CG sites whose correla-
tions switch from positive to negative and vice versa, we 
also study the relationship between DM CG sites and the 
number of CG sites they are highly correlated with, see 
Supplemental Table 3 in the Additional file 1 and Fig. 5. 
Supplemental Table 3 shows that among all the 272,990 
CG sites, 23,361 (8.56%) are DM. We see that being DM 
is somewhat associated with the pattern of the number of 
high correlations. For example, for Tumor (0.2) (that is, 
the group with 0.2 as the mean difference cutoff value), 
if being DM is independent from the number of correla-
tions, we would expect each category in the Tumor (0.2) 
row to be about 8.56% of their respective categories in the 

Tumor (all) row. However, some categories (e.g., 5 k-9999 
and 10 k+) are much lower than expected.

To view the patterns in Supplemental Table  3 in the 
Additional file  1 clearly, we plot the data presented in 
this table in Fig. 5. For each of the mean-difference values 
(0.2, 0.3, 0.4), we plot the number of normal and tumor 
correlations for each of the intervals in Supplemental 
Table 3. The number of tumor correlations seems to spike 
in the 1-99 interval for all plots, and the number drasti-
cally drops for the intervals beyond 1-99. This change is 
not that apparent in the normal data. When comparing 
the tumor data with the normal data in the 1-99 inter-
val, we also see the tumor data and normal data have the 
largest percentage difference. For example, in the 1-99 
category, that is 62.26% (tumor) vs. 37.51% (normal) 
when using DM sites selected without a cutoff, as shown 
in Supplemental Table 3 in the Additional file 1. To com-
pare the numbers of highly correlated sites between the 
normal and tumor datasets as shown in Fig.  5, we con-
duct a Wilcox rank sum test using the absolute difference 
between the normal and tumor sites in each bin (0, 1-99, 
100-499, 500-999, 1000-4999, 5000-9999, 10,000+). We 

Fig. 5 Differentially methylated CG sites for each mean difference value. The above plots are for different mean difference cutoff values: 0 (no DM 
selection), 0.2, 0.3, and 0.4
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get significant test results with small p-values: 0.0078 
(for Fig. 5 top left plot), 0.0111 (for Fig. 5 top right plot), 
0.0078 (for Fig. 5 bottom left plot), and 0.02953 (for Fig. 5 
bottom right plot).

Locations of CG sites
The locations of CG sites are important. Next, we con-
duct analysis on the locations of different sets of CG 
sites. There are six location categories: Open_Sea, 
Island, N_Shelf, N_Shore, S_Shelf, and S_Shore. These 
correspond to not being associated with a CpG island 
(i.e., Open_Sea), being on a CpG island, being on a 
north shelf, being on a north shore, being on a south 
shelf, and being on a south shore of a CpG island 
respectively. As for the locations of the original 476,947 
CG sites and our selected 272,990 sites, their distri-
butions are shown in Table  7 columns 2 and 3. As we 
see, the largest category is Open_Sea (about 35%), fol-
lowed by CpG island (about 30%). North and South 
regions are around the same, with shore being about 
2.5 times the value of shelf. We also conduct this anal-
ysis on the highly changing CG site datasets (both.
direction, uniq.pos2neg, uniq.neg2pos) as shown in 
Table  7 columns 4-6. The majority of highly chang-
ing sites are mainly in the Open_Sea (40.3 - 55%) and 
Islands (11.6 -26.1%). The Chi-square test shows that 
there is a significant association between the types of 
CG sites (both.direction, uniq.neg2pos, uniq.pos2neg) 
and the location of these CG sites. For example, when 
comparing the uniq.neg2pos and uniq.pos2neg groups, 
we can see that the locations of these two groups are 
different. The uniq.neg2pos has a larger percentage of 
CG sites in the Open_Sea than the uniq.pos2neg group 
(55% vs. 40.3%); it has much smaller percentage of CG 
sites in the Island than the uniq.pos2neg group (11.6% 
vs. 26.1%). The Chi-squared test of comparing these 

groups gives a test statistic of 59.17, with a degree free-
dom = 5 and a p-value = 1.804 ×  10− 11.

The first column is the location. The second column 
is for all 476,947 CG sites. The third column is for the 
272,990 CG sites selected for our co-methylation anal-
ysis. The fourth to sixth column are for three types of 
highly changing sites. The last two columns are for 
super-connector CG sites that are highly co-methylated 
with other sites.

In addition, we also obtain the top 100 super-con-
nector CG sites in both normal and tumor datasets and 
analyze their locations as shown in Table 7 columns 7 
and 8. The majority of these super-connector sites are 
on islands (60% for normal, 70% for tumor) or shores 
(36% for normal, 27% for tumor). We then compare 
the distribution of the top 100 super-connector CG 
sites’ locations in each dataset with the overall distri-
bution of all 272,990 CG sites. Since some of the cells 
have 0 CG sites, we compare specific cells with two-
sample tests for equality of proportions. For example, 
doing this for the Open_Sea category between the 
overall data and normal top 100 super-connector gives 
a p-value of 7.17 ×  10− 11 (35.7% vs. 4.0%), and for 
the Island category, it gives a p-value of 1.14 ×  10− 10 
(30% vs. 60.0%). Furthermore, the locations of super-
connector CG sites are also very different from the 
locations of highly changing sites. For example, for the 
Open_Sea region or category, 40.3 - 55% of the highly 
changing sites are there, but only 2-4% of the super-
connector sites are there. As for the Island region, only 
11.6-26.1% of the highly changing sites are there, but 
60-70% of the super-connector sites are there. In sum-
mary, highly changing sites and super-connector sites 
have significantly different locations from each other 
and from the locations of the CG sites in the whole 
Illumina 450K dataset as well.

Table 7 The locations of different sets of CG sites

All Filtered both.direction uniq.neg2pos uniq.pos2neg Normal Top 100 Tumor Top 100

Open_Sea 170,901
(35.8%)

97,551
(35.7%)

183
(47.5%)

582
(55.0%)

176
(40.3%)

4
(4%)

2
(2%)

Island 148,332
(31.1%)

81,789
(30.0%)

76
(19.7%)

123
(11.6%)

114
(26.1%)

60
(60%)

70
(70%)

N_Shelf 23,109
(4.8%)

11,906
(4.4%)

17
(4.4%)

51
(4.8%)

17
(3.9%)

0
(0%)

0
(0%)

N_Shore 58,427
(12.3%)

36,421
(13.3%)

43
(11.2%)

124
(11.7%)

59
(13.5%)

16
(16%)

15
(15%)

S_Shelf 22,788
(4.8%)

11,667
(4.3%)

14
(3.6%)

54
(5.1%)

13
(3.0%)

0
(0%)

1
(1%)

S_Shore 53,390
(11.2%)

33,656
(12.3%)

52
(13.5%)

124
(11.7%)

58
(13.3%)

20
(20%)

12
(12%)

Total 476,947
(100%)

272,990
(100%)

385
(100%)

1058
(100%)

437
(100%)

100
(100%)

100
(100%)
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Induced network modules
We study the relationship of the genes associated with CG 
sites listed in Table 7 using the software ConsensusPathDB 
(CPDB) [18–20]. We will first discuss the both.direction.
DM, uniq.pos2neg.DM, and uniq.neg2pos.DM  sets, which 
are the sets that consist of 50, 47, and 101 CG sites, respec-
tively. The 50 sites in both.direction.DM  are mapped to 45 

distinct gene symbols, which are then plugged into CPDB, 
resulting in the network graph in Fig. 6. Note, the legend 
in the bottom of this figure is also for other CPDB figures 
(Figs. 7, 8, 9, 10). To avoid redundancy and save space, we 
do not include this legend in the other figures.

In Fig.  6, the RPTOR, CSF1R, and AGO2 genes are 
of particular interest. They are hub genes with the most 

Fig. 6 CPDB network modules for genes in the both.direction.DM  group. The squares represent genes and the lines represent interactions. Squares 
with black names are those in our original dataset, while squares with pink names are intermediates added by the CPDB. See the legend at the 
bottom of this figure for detailed description. Only protein interactions and gene regulation interactions are considered
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interactions. RPTOR (Regulatory Associated Protein Of 
MTOR Complex 1) is a protein associated with tuber-
ous sclerosis 1 and tuberous sclerosis. CSF1R is associ-
ated with leukoencephalopathy, hereditary diffuse, with 
spheroids and brain abnormalities, neurodegeneration, 
and dysosteosclerosis. AGO2 is associated with Lessel-
Kreienkamp Syndrome and colorectal cancer. The 47 sites 
in the uniq.pos2neg.DM  set are mapped to 47 gene sym-
bols, see Fig.  7. In this figure, CUX1 and KRT8 are hub 
genes. Aberrant expression of KRT8 is associated with 
multiple tumor progression and metastasis; so is CUX1 
[21]. Finally, the uniq.neg2pos.DM  set consists of 101 CG 
sites that are mapped to 107 gene symbols, see Fig. 8. In 
this figure, MCM7, HDAC4, BIRC5, BIRC6, G3BP1, and 

CUX1 appear to have the most connections. These par-
ticular genes are interesting. BIRC6 is involved in regulat-
ing apoptosis and p53. Both BIRC5 and BIRC6 have been 
linked to cancer in other publications [22–28]. MCM7 has 
been linked to prostate cancer in particular and esopha-
geal squamous cell carcinomas [29, 30]. HDAC4 is also 
related to cancer [31], as is G3BP1 [32]. As seen in the 
Fig. 6 image legend, most interactions are protein-protein 
interactions, with some gene interaction submodules, 
such as CSF1R, FOXP1, PAX5, ETS, and MYB in Fig. 6. 
Most entities are protein (cyan), with a few genes (indigo), 
protein complexes (greenish blue), and RNAs (orange).

We next examine those CG sites that are co-methylated 
with a very large number of other CG sites. We extract 

Fig. 7 CPDB network modules for genes in the uniq.pos2neg.DM  group. The squares represent genes and the lines represent interactions. Squares 
with black names are those in our original dataset, while squares with pink names are intermediates added by the CPDB. See the legend at the 
bottom of Fig. 6 for detailed description. Only protein interactions and gene regulation interactions are considered
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the top 100 CG sites that are co-methylated with the most 
other CG sites in the tumor data as well as the 100 CG sites 
that are co-methylated with the most other CG sites in the 
normal data. There is no overlap between these two sets of 
CG sites. We then find the genes associated with these sets 
of CG sites separately and perform the induced network 
module analysis on these two gene lists, see Figs. 9 and 10.

In the tumor “top100” list (Fig. 9), TAF1 and HNF4A 
are the main hub genes. In the normal “top100” list 
(Fig.  10), TAF1, MAX, and MYC genes are the most 
significant hub genes. Therefore, TAF1 is a hub gene in 
both the normal and tumor lists, while HNF4A, MAX, 
and MYC are not. TAF1 (TATA-Box Binding Protein 
Associated Factor 1) is associated with X-linked intel-
lectual disabilities and X-linked dystonia [33]. TAF1 
also phosphorylates p53 on Thr55 [34]. HNF4A (Hepat-
ocyte Nuclear Factor 4 Alpha) is associated with Type 1 
Maturity-Onset Diabetes of the Young [35]. HNF4A is 

also a potential marker for distinguishing between pri-
mary gastric cancer and metastatic breast cancer [36]. 
MYC is a proto-oncogene involved in cell cycle progres-
sion and apoptosis; amplification of MYC is observed 
in numerous human cancers, including breast cancer 
[37–40]. MAX is the associated factor X of MYC (MAX 
and MYC together form a protein complex that is a 
transcriptional activator) and is associated with pheo-
chromocytoma [33]. Note that all of these hub genes are 
all proteins and also are all intermediate nodes, mean-
ing they are added by the CPDB and are not part of the 
original input gene lists. It is likely that there are cer-
tain genetic or epigenetic changes on such hub genes. 
These changes may affect the genes in our co-methyla-
tion lists, and the majority of their connections are gene 
regulatory interactions (see light blue lines).

In addition to looking at the highly changing CG sites 
and highly correlated CG sites, we also investigate the 

Fig. 8 CPDB network modules for genes in the uniq.neg2pos.DM  group. The squares represent genes and the lines represent interactions. Squares 
with black names are those in our original dataset, while squares with pink names are intermediates added by the CPDB. See the legend at the 
bottom of Fig. 6 for detailed description. Only protein interactions and gene regulation interactions are considered
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419 differentially methylated sites in the tumor and nor-
mal dataset separately. These 419 sites are selected using 
p-value < 0.05 and mean difference > 0.4. Among these 
419 DM sites, we then focus on the CG sites highly cor-
related with at least 1 other CG site that are only in either 
normal or tumor data. There are 109 and 29 such CG sites 
in normal and tumor data respectively. We then conduct 
the network analysis using the CPDB; see Supplemental 
Fig. 4 for normal and Supplement Fig. 5 for tumor in the 
Additional file  1. These two figures show that there are 
far more connected genes present in the normal dataset, 

while the genes associated with the tumor dataset do not 
show many connections. In the normal dataset, the genes 
PCDHGA5, PCDHGB4, NKX2-1, SKI, RUNX1, sabp4_
human, and RARA seem to be the major hub genes. 
PCDHGA5 is a protein coding gene associated with 
Wolf-Hirschhorn Syndrome, which is caused by the dele-
tion of a region of chromosome 4. In regards to endo-
metrial cancer, it is also identified as a deregulated gene 
with different methylation patterns [41]. PCDHGB4 is 
also a protein coding gene that is identified as a potential 
passenger gene in a study related to endometrial cancer, 

Fig. 9 CPDB network modules for genes associated with tumor top 100 highly co-methylated sites. The squares represent genes and the lines 
represent interactions. Squares with black names are those in our original dataset, while squares with pink names are intermediates added by the 
CPDB. See the legend at the bottom of Fig. 6 for detailed description. Protein interactions, gene interactions, and gene regulation interactions are 
considered
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and novel mutations of the gene are only found in tumor 
samples [42]. NKX2-1 is found to be inversely associated 
with p53 and KRAS mutations [43]. SKI is found to be 
a negative prognostic marker in the early stages of colo-
rectal cancer [44]. RUNX1 is thought to have a role in 
breast cancer and endometrial cancer, and reduced lev-
els of it creates an environment which supports tumor 
growth [45]. When overexpressed, RARA is found to be 
associated with worse survival rates in colorectal cancer 
patients [46]. The tumor dataset does not have any nota-
ble hub genes. In the normal dataset, the majority of the 
interactions are protein interactions, which are repre-
sented by the orange lines. In the tumor dataset, all of the 
interactions are protein interactions. Additionally, most 
of the hub genes exist in the network as proteins.

Chromosome X
In the previous section, when we study the overall co-
methylation pattern regarding the distance between 
highly correlated CG sites, we find that ChrX has an out-
standing pattern when comparing normal with tumor 

(see Fig.  11A and Supplemental Fig.  6). That is, the 
median distance between tumor pairs is much smaller 
than the median distance between normal pairs, mean-
ing that the tumor pairs are concentrated more closely 
together than the normal pairs. Due to this finding, we 
further examine the highly correlated pairs located on 
ChrX. The ChrX tumor dataset has a much greater per-
centage of co-methylated sites located very close together 
than the ChrX normal dataset: 44.7% of tumor pairs are 
located within 10 million bp of each other compared to 
only 17.3% of normal pairs, see the horizontal line in 
Fig. 11A. This is a statistically significant difference with 
the two-proportion test p-value < 2.2 ×  10− 16. Further-
more, as shown in Table 8, while the maximum absolute 
distances for the ChrX normal pairs and tumor pairs are 
very similar, the tumor pairs are concentrated at very 
close distances to each other, so the median distance 
between highly correlating sites is about three times 
larger in the normal data than in the tumor data—that is, 
46,352,309 bp (for normal) vs. 15,134,665 bp (for tumor). 
Note that the ChrX pattern shown in Fig.  11B is very 

Fig. 10 CPDB network modules for genes associated with normal top 100 highly co-methylated sites. The squares represent genes and the lines 
represent interactions. Squares with black names are those in our original dataset, while squares with pink names are intermediates added by the 
CPDB. See the legend at the bottom of Fig. 6 for detailed description. Protein interactions, gene interactions, and gene regulation interactions are 
considered
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different from the overall pattern of the whole genome as 
shown in Fig. 2.

For each CG site on ChrX, we also examine the num-
ber of CG sites that this site is highly correlated with in 
the tumor and normal data separately, see Fig. 11C. This 
figure shows that over 50% of ChrX sites do not highly 
co-methylate with any other CG sites, with the normal 
data having a slightly higher proportion of such sites than 
tumor. This proportion is much lower in the full dataset, 
with around 35% for tumor and an even smaller propor-
tion, about 26%, for normal, as shown in Fig. 1A. How-
ever, in both the ChrX data and full data, we observe that 
there is a considerably higher proportion of tumor sites 
than normal sites that are highly correlated with 1 to 100 
other CG sites, and a higher proportion of normal sites 
than tumor sites that are highly correlated with more 
than 100 other sites. Note, the exception to this observa-
tion is in the 20,001-30,000 range as illustrated in Fig. 1, 
with more tumor CG sites than normal CG sites fall-
ing into this category, though this is not the case for the 
ChrX-only data. In summary, we find that the co-meth-
ylation patterns in ChrX are very different from those of 
the autosomes or the whole genome.

Finally, we also investigate the top 100 ChrX super-
connector CG sites that are highly co-methylated with 

other sites to see their impact on breast cancer develop-
ment. After creating separate lists of genes associated 
with these ChrX super-connector CG sites in tumor data 
and normal data, we perform the CPDB induced network 
module analysis for these lists (see Figs.  12 and 13). In 
the tumor gene list, we identify the key hub genes AR, 
RPL10, and RPS4X in Fig. 12. In the normal gene list, we 
likewise identify RPL10 along with HSD17B10, OFD1, 
and IKBKG as key hub genes in Fig. 13.

Next, we demonstrate the findings related to hub 
genes in tumor data as shown in Fig.  12. AR is the 
androgen receptor gene and is expressed in the major-
ity of primary breast tumors [47]. Lehmann et al. even 
identify luminal androgen receptor (LAR) as a subtype 
of triple negative breast cancer [48]. RPL10 is a protein 
coding gene associated with X-linked developmental 
disorders. Interestingly, Fang and Zhang find RPL10 to 
be a hub gene and potential biomarker for breast can-
cer [49]. RPS4X is a ribosomal protein that has been 
studied as a potential prognostic marker for ovarian 
cancer, with low levels of the gene associated with poor 
survival [50].

Below are the findings related to hub genes in normal 
data shown in Fig.  13. HSD17B10 is identified as a key 
molecule involved in cell proliferation and death [51]. 

Fig. 11 ChrX co-methylation patterns. A Boxplots of the distances between correlated pairs on ChrX. B Bar plots of the distances between 
correlated pairs on ChrX. C The proportion of ChrX CG sites highly correlated with a certain range of other sites

Table 8 Summary of absolute distances between co-methylated CG pairs on ChrX

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

ChrX Tumor 2 1,382,456 15,134,665 27,195,461.17 37,411,823 151,495,608

ChrX Normal 2 17,983,484.25 46,352,309 52,772,051.89 85,721,278.75 152,125,211
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Notably, its expression is enhanced in the presence of 
fulvestrant, a method of ER+ advanced breast cancer 
treatment, suggesting an important role of this gene in 
fulvestrant resistance. IKBKG is significantly upregulated 
in inflammatory breast cancer (IBC) tumor samples in 
comparison to regular breast cancer tumor samples (non 
IBC), and it is more down-regulated in IBC metastases in 
comparison to that of non IBC [52]. OFD1, a gene under-
lying oral-facial-digital syndrome 1, controls the length 
of centrioles [53]. Tang et al. find that a lack of OFD1 at 
centriolar satellites facilitates cilia formation in trans-
formed breast cancer MCF7 cells, which normally does 
not contain cilia [54]. This finding suggests that OFD1 
depletion at centriolar satellites provides a promising way 
to promote ciliogenesis in mammalian cells.

Comparing with other related studies
Next, we compare our study with the two most relevant 
co-methylation studies. One is for breast cancer [11] 
and another is for colon cancer [55], see Table  9. The 
first several rows of this table show how the three stud-
ies are similar or different regarding tissue/cancer type, 

data size, analysis unit, tumor/normal sample used and 
so on. One key similarity of these three studies is that we 
all analyze the relationship between co-methylation and 
genetic distance. We all find a weak negative correlation 
between the co-methylation and genomic distance for 
CG pairs on the same chromosome. As for the tumor and 
normal samples, Akulenko and Helms do not separate 
them in their analysis, so no comparison is done [11]. 
Mallona et al. compare tumor and normal data and find 
that they have different co-methylation patterns although 
their analysis and our study are conducted from differ-
ent perspectives and with different approaches [55]. In 
addition, we conduct analyses in five additional aspects 
that Akulenko and Helms do not do: negative correlation, 
number of high correlation partners (or co-methylation 
degree), ChrX co-methylation, highly changing sites, and 
relationships with DM sites. Furthermore, Akulenko and 
Helms report 74 out of 187 co-methylated gene pairs on 
the same chromosome [11]; we report 45.2 million (i.e., 
5.7%) CG pairs for normal and 17.5 million (i.e., 5.87%) 
CG pairs for tumor on the same chromosome. Finally, 
Akulenko and Helms’ study is based on the Illumina 27K 

Fig. 12 CPDB network modules for genes associated with ChrX tumor data top 100 highly co-methylated sites. The squares represent genes 
and the lines represent interactions. Squares with black names are those in our original dataset, while squares with pink names are intermediates 
added by the CPDB. See the legend at the bottom of Fig. 6 for detailed description. Protein interactions, gene interactions, and gene regulation 
interactions are considered
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Fig. 13 CPDB network modules for genes associated with ChrX normal data top 100 highly co-methylated sites. The squares represent genes 
and the lines represent interactions. Squares with black names are those in our original dataset, while squares with pink names are intermediates 
added by the CPDB. See the legend at the bottom of Fig. 6 for detailed description. Protein interactions, gene interactions, and gene regulation 
interactions are considered

Table 9 Comparing three co-methylation studies

2013 study by Akulenko and 
Helms

2020 study by Mallona et al. Our study

Tissue/Cancer Breast cancer Colon cancer Breast cancer

Data type Illumina 27K (27500) Illumina 450K (485577) Illumina 450K (485577)

CGs or genes used 13,133 genes ~  300,000 CG sites 272,990 CG sites

Analysis unit Gene CG (or probe) CG (or probe)

Sample size 317 tumor and 27 adjacent normal (1) 90 tumor and 90 adjacent normal
(2) 256 tumor and 38 adjacent 
normal

53 tumor and 53 adjacent normal

Tumor vs. normal Combined Separated & compared Separated & compared

Relationship with genomic distance Yes Yes Yes

Gene or CG pairs on the same 
chromosome

74/187 gene pairs No specific result 45.2 million CG pairs for normal; 
17.5 million CG pairs for tumor

Negative correlation No Yes Yes

Number of high correlation partners No Yes Yes

ChrX co-methylation No No Yes

Highly changing sites No No Yes

Relationship with DM sites No No Yes
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data, which is about 10 times less than the data we used. 
Therefore, our findings show a bigger and clearer picture 
of co-methylation patterns as more CG sites are used.

Discussion
Our study provides thorough analyses of breast cancer 
co-methylation patterns. It is different from some avail-
able publications. First, we thoroughly compare tumors 
with matched normal samples, while some other studies 
often combine those samples together. Second, we not 
only just look at which two CG sites are co-methylated, 
but also zoom in to check the genome-wide co-meth-
ylation in detail. For example, we address the following 
questions: for each CG site, how many sites are highly 
correlated with it; what is the pattern; and how many 
pairs are positively or negatively correlated. Third, our 
analyses are conducted at the CG site level, but oth-
ers’ analyses are conducted at the gene level by taking 
the average methylation of all CG sites associated with a 
gene, which can lead to biased results. This bias is due to 
the fact that CG sites associated with a single gene (espe-
cially a long gene) may have very different methylation 
levels ranging from 0 to 1. Our fine analyses at the CG 
site level help us identify the highly changing CG sites 
that no other publications find, which we will explain in 
the next paragraph. In summary, to our best knowledge, 
our study is the first one that thoroughly investigates 
breast cancer co-methylation patterns from different per-
spectives that are not considered by previous studies.

The idea for the 8 × 8 CG pairs matrix comes from the 
paper by Tang et al. [17]. This paper features two similar 
matrices comparing Rheumatoid Arthritis and Parkin-
son’s disease though they compare gene pairs instead of 
CG pairs. The authors map  485,577 CG sites or probes 
in the Illumina Human Methylation 450K data to 21,225 
genes. If there are multiple CG sites associated with 
a gene, they calculate the average beta values of those 
sites as the methylation value of the gene. In our study, 
we choose to thoroughly analyze the co-methylation pat-
terns at the CG site level as the multiple CG sites asso-
ciated with the same gene may have totally different 
methylation levels, especially those CG sites that are far 
away from each other. For very long genes that have mul-
tiple sites, this difference is likely very large. In the whole 
genome, about 70% of genes’ lengths are larger than 
10,000 bases pairs, and 50% of genes whose lengths are 
larger than 21,000 base pairs. Using the average methyla-
tion for all CG sites associated with one gene will likely 
produce a biased methylation signal for those long genes. 
Therefore, we analyze the co-methylation patterns at the 
CG site level to see a clearer picture and get more accu-
rate results. In particular, as for identifying highly chang-
ing CG sites, we borrow the idea from Tang et al. [17]. In 

their Tables 1 and 2, there are many 0s in the left bottom 
and right top corners. That is, their analyses do not iden-
tify highly changing sites. Although this difference could 
be due to the fact that we study different tissues, we think 
the difference may be more likely due to the fact that 
their analysis is done at the gene level, while our analysis 
is conducted at the CG site level.

From our work on smaller subsets of the Illumina 450K 
data, we know that data filtering can have an impact 
on the results of the analysis as the number of CG sites 
changes with different filtering methods. We consider a 
number of different filtering criteria, including standard 
deviation (stdev) and IQR bounds and outlier counts. 
The results are summarized in Supplemental Table  4 in 
the Additional file  1. As we see, the stdev≥0.025 (the 
third column) is the only variance filtering criterion that 
leaves more than 50% of the data for both the tumor and 
the normal data. In all of the variance filtering criteria, 
a significantly greater percentage of the CG sites in the 
normal data are filtered out, which fits with the greater 
homogeneity of the normal epigenome. However, filter-
ing by outliers and filtering by missing values, i.e., NAs 
(see columns 7-9), removes about the same number of 
CG sites in both datasets. Removing all the sites with 
more than 11 NAs leaves about 82% of sites. Filtering 
outliers leaves about 78% of the data when using coef = 2 
and 83-85% of the data when using coef = 3. After careful 
consideration, we decide to use the filtering criteria in the 
Methods section to ensure that there is enough variation 
among methylation signals and that we can also have a 
reasonable number of CG sites for analysis.

There are a few interesting findings about negative cor-
relations in our analysis. There are generally fewer nega-
tive correlations than positive correlations and generally 
fewer negative correlations in tumor samples than in nor-
mal samples. Despite this, there are still a small number 
of CG sites that only have negative correlations in the 
normal and tumor datasets. A couple of previous stud-
ies discuss negative correlations in methylation, though 
not in as much detail as our study. One such study is 
the paper by Ding et  al. on co-occurrence and mutual 
exclusivity [16]. This paper uses co-occurrence for posi-
tive co-methylation and mutual exclusivity for negative 
co-methylation. The authors define the beta value > 0.3 
as methylation and < 0.3 as unmethylation. They also use 
the average beta values in the promoter region of a gene 
instead of the value for each CG site. Another study is 
the paper by Mallona et al. [55], who study negative cor-
relation (called anti-methylation by the authors) at the 
CG site level but focus more on positive correlations. To 
the best of our knowledge, our research work is the first 
study that thoroughly investigates negative co-methyla-
tion patterns by comparing tumor and normal samples.



Page 20 of 23Sun et al. BMC Genomic Data           (2022) 23:29 

In another breast cancer methylation study, Sun et  al. 
show that about 60% of CG sites are DM when using the 
paired t-test (p-value < 0.05), with the proportion for 
ChrX slightly larger than other chromosomes (see Fig. 5 
C of Sun et al. 2015) [56]. Without any multiple-test cor-
rection, it is likely that there are a large number of false 
positive sites. We find that after using both p < 0.05 and 
the mean difference > 0.2 to remove some false positive 
sites, the average DM% of all autosomes is 8.62%, but 
ChrX is only 2.22%, as shown in Supplemental Table  2 
in the Additional file  1. In addition, we also find that 
among all DM sites on almost all chromosomes, there is 
a greater percentage of hypermethylated sites than hypo-
methylated sites. The percentage differences on some 
chromosomes, such as Chr4 and Chr5, are even around 
30-40%. Only ChrX and Chr8 have a larger percentage 
of hypomethylated DM sites. However, our DM analy-
sis is only based on 273K out of the total 28 ~ 29 million 
CG sites in the whole genome (that is, only about 1% of 
them). It is worth conducting more research using the 
whole genome bisulfite sequencing data.

In this paper, we find that some ChrX co-methylation 
patterns are different from the ones in the other chro-
mosomes. We show that on ChrX, co-methylated tumor 
CG pairs tend to be located much closer together than 
co-methylated normal pairs, with a significantly larger 
number of tumor CG pairs located within 10 million bp 
of each other than normal pairs. In the full dataset and 
in the other individual chromosomes, the distribution of 
the distances does not change as much from normal to 
tumor. We also observe a larger percentage of ChrX sites 
that do not co-methylate with any other sites than the 
percentage of such sites in the full dataset. These results 
add to the existing literature regarding the importance 
of epigenetic changes in ChrX. As discussed previously, 
Sun et  al. also analyze Illumina 450K methylation data 
and a similar filtered number (9653) of ChrX CG sites 
[56]. They find that DM patterns for ChrX are different 
from the other chromosomes. They also find cell lines 
without ChrX loss to be more active in gene expression 
[56]. Chaligné et al. demonstrate the epigenetic instabil-
ity of the inactive X chromosome (Xi) and propose that 
the Xi could be used as an epigenetic biomarker at the 
molecular and cytological levels in cancer [57]. Thakur 
et al. investigate the role of X-linked genes in breast can-
cer and find that these genes are important for main-
taining chromatin structure, chromosome segregation, 
and translational control. They suggest that changes in 
the expression of X-linked genes can lead to increased 
genetic instability and tumor cell growth [58]. In another 
publication, Thakur et  al. show that high expression of 
X-linked gene RbAp46 is likely to play a role in the devel-
opment or progression of human breast cancer [59]. 

Furthermore, the most recent publication by Cui et  al 
show that the simultaneous activation and repression 
of the X-linked endogenous gene FOXP3 may provide 
a potential therapeutic option for female breast cancer 
[60]. Based on our and others’ results, ChrX should be 
studied more thoroughly in regard to its epigenetic pat-
terns in relation to breast cancer.

As we explain in the Introduction section, we are stud-
ying BS co-methylation. For the highly co-methylated CG 
sites in the same chromosome, their distances are much 
larger than the distances reported in our previous WS co-
methylation studies [13, 14]. One main reason is that our 
WS co-methylation studies are conducted using DNA 
methylation sequencing datasets that have better reso-
lutions than the Illumina 450K data. That is, many more 
CG sites’ methylation signals are available and the dis-
tance between two consecutive CG sites can be less than 
10 bps in the methylation sequencing data. However, for 
the Illumina 450K data, the median distance between any 
two consecutive CG sites on most chromosomes is about 
400 ~ 700 bases. The average distance is much larger than 
the median distance as the distance distribution is very 
right skewed. These large median and mean distances 
explain why we find a relatively large distance for co-
methylated CG sites that are on the same chromosome.

Co-methylation patterns may be closely associated 
with breast cancer development. This association could 
be due to the complex regulatory role that methylation 
plays in gene expression. That is, methylation patterns of 
different genes can have both positive and negative cor-
relations with gene expressions as shown in our previous 
study [61]. Through co-methylation, genes may work as 
a network (i.e., “in a team”), having an obvious or subtle 
impact on other individual genes or networks of multi-
ple genes. Many of the hub genes that we identified with 
the network analysis (Figs.  7, 8, 9, 10) are involved in 
cell growth, tumor suppression, or have been otherwise 
linked to cancer development. The genetic or epigenetic 
changes of such hub genes may play an important regula-
tory role on other genes in their networks as their con-
nections are mainly gene regulatory interactions (see the 
light blue lines in Figs. 9 and 10).

Breast cancer patients often have different positive (+) 
or negative (−) statuses for the Estrogen Receptor (ER), 
Progesterone Receptor (PR), Human Epidermal Growth 
Factor receptor 2 (HER2), which are used to define breast 
cancer subtypes. Breast cancer diagnosis and treatment 
methods are related to these hormone receptor statuses 
and tumor subtypes. There can be some variations for 
the definition of tumor subtypes [62, 63]. For the sake of 
convenience, we use the following definition based on 
the available ER, PR, and HER2 information in our data: 
Luminal A (ER+ and/or PR+, HER2-), Luminal B (ER+ 
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and/or PR+, HER2+), triple-negative (ER- and PR- and 
HER2-), and HER2-enriched (ER- and PR- and HER2+). 
We find that the numbers of different tumor subtypes 
are 23 Luminal A, 5 Luminal B, 4 Triple Negative, and 2 
HER2-enriched. 19 (out of 53) samples’ subtypes cannot 
be determined due to the lack of information or data. 
Because the sample sizes for the Triple Negative (only 4) 
and HER2-enriched (only 2) are too small, and more than 
1/3 of samples’ subtypes are not available, the methylation 
analysis based on the tumor subtypes of our data will not 
represent the population patterns. Therefore, we do not 
show any methylation analysis based on tumor subtypes.

DNA methylation and histone acetylation are closely 
related to each other [64]. On the one hand, histone 
modifications (acetylation and methylation) and nucleo-
some positioning can determine DNA methylation pat-
terns [65]. On the other hand, DNA methylation also 
recruits methyl-CpG binding proteins that affect chro-
matin structure through the activity of histone deacety-
lase complexes (HDACs) [66]. With this mechanical 
dependence, DNA methylation and histone acetylation 
play key roles in regulating gene expression, and thus 
affecting cancer development [67, 68]. For example, Lee 
et  al show that the acetylation of the oncogenic tran-
scription factor STAT3 is crucial for the promoter region 
methylation of several tumor suppressor genes [69]. This 
process partially explains abnormal gene silencing in can-
cer. Lee et  al also show that the reduction of acetylated 
STAT3 leads to the demethylation and activation of the 
estrogen receptor-α gene in triple-negative breast cancer 
cells. This STAT3 gene is just one typical example. The 
complex relationship between DNA methylation and 
acetylation remains to be investigated for other genes in 
the whole genome. Further studies will provide valuable 
information for cancer diagnosis and treatment.

Conclusion
In this article, we have analyzed Illumina 450K meth-
ylation data to study co-methylation patterns in breast 
cancer. From these analyses, we find that the majority of 
highly correlated CG pairs are located at different chro-
mosomes. Only a small percentage (5 - 6%) of them are 
on the same chromosome. The highly co-methylated CG 
sites that are on the same chromosome tend to be located 
relatively close to each other. In general, the normal data-
set has more highly correlated pairs than the tumor data-
set, but overall distributions (i.e., the distance-histogram 
shapes) appear to be the same. We also find some pairs of 
CG sites whose correlations change highly between nor-
mal and tumor samples. The CG sites involved in these 
pairs tend to possess characteristics different from the 
other sites. For example, they are more likely to be dif-
ferentially methylated. We also find that normal samples 

have a larger proportion of negatively correlated CG 
pairs than tumor samples. The super-connector CG sites 
in tumor and normal samples function differently. The 
locations of highly changing CG sites and super-connec-
tor CG sites are significantly different from each other. 
They are also different from the overall distribution of all 
CG sites in the Illumina 450K data. The network analyses 
for genes with specific co-methylation patterns also show 
that tumor and normal samples have different gene/pro-
tein interactions. These genes in tumor and normal sam-
ples are associated with different genetic pathways and 
networks. As stated before, studying co-methylation pat-
terns by comparing tumor samples with matched normal 
samples can help establish relationships between differ-
ent genes. It can also serve as an indicator to discover 
new genes that should be monitored more carefully for 
breast cancer. Understanding the specific co-methylation 
patterns of genes involved in certain diseases can ulti-
mately lead to better treatment plans for the patients 
affected by the disease. These genes can also be used in 
patient stratification and gene therapy.
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