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Abstract 

Background: The application of cell-specific construction of transcription regulatory networks (TRNs) to identify their 
master regulators (MRs) in EMP2 induced vascular proliferation disorders has been largely unexplored.

Methods: Different expression gene (DEGs) analyses was processed with DESeq2 R package, for public RNA-seq 
transcriptome data of EMP2-treated hRPECs versus vector control (VC) or wild type (WT) hRPECs. Virtual Inference of 
protein activity by Enriched Regulon analysis (VIPER) was used for inferring regulator activity and ARACNE algorithm 
was conducted to construct TRNs and identify some MRs with DEGs from comparisons.

Results: Functional analysis of DEGs and the module analysis of TRNs demonstrated that over-expressed EMP2 leads 
to a significant induction in the activity of regulators next to transcription factors and other genes implicated in vascu-
lature development, cell proliferation, and protein kinase B signaling, whereas regulators near several genes of platelet 
activation vascular proliferation were repressed. Among these, PDGFA, ALDH1L2, BA1AP3, ANGPT1 and ST3GAL5 were 
found differentially expressed and significantly activitve in EMP2-over-expressed hRPECs versus vector control under 
hypoxia and may thus identified as MRs for EMP2-induced lesion under hypoxia.

Conclusions: MRs obtained in this study might serve as potential biomarkers for EMP2 induced lesion under hypoxia, 
illustrating gene expression landscapes which might be specific for diabetic retinopathy and might provide improved 
understanding of the disease.
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Background
Pathologic retinal neovascularization [1] is a potentially 
blinding consequence seen in many common diseases 
including diabetic retinopathy [2], retinopathy of prema-
turity [3], retinal vascular occlusive diseases [4], and neo-
vascular age-related macular degeneration (AMD) [5–7] 

among others. Epithelial membrane protein 2 (EMP2) 
has been shown to reasonably modulate activity through 
neovascularization network in the retinal pigment epi-
thelial cell line ARPE-19 [8, 9] which is reported to be 
important factors in progress of DR. To date, several 
studies have applied this approach to compare transcrip-
tomes in vascular proliferation process within various 
cell types in humans [10, 11], mice [12]. However, to the 
best of our knowledge, there has been no genome-wide 
gene expression profiling study specifically comparing 
the transcriptom within EMP2-treated hRPECs.
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Gene expression profiling by RNA sequencing (RNA-Seq) 
provides an opportunity to better understand the underly-
ing mechanisms of vascular proliferation. Therefore, given 
the large number of genes potentially involved, it has been 
challenging to identify which are the core set of genes that 
play major roles in the pathways or networks. It becomes 
even more challenging if the recent hypothesis of omnigenic 
model is true for DR. Thus, it is imperative to identify dis-
ease-relevant core gene networks, and possibly the network 
master regulators (MRs), which, if exist, are more likely to 
be targeted for therapeutic interventions [13, 14]. The term 
MR were defined for transcription factors (TFs) and genes 
inflicting regulatory effects on their targets [15].

ARACNe is an unbiased algorithm that infers direct 
transcriptional interactions based on the mutual infor-
mation between each transcriptional regulator and its 
potential targets [16–18]. Transcriptional regulatory net-
works (TRNs) conducted by ARACNe summarize the 
connections between transcription factors and the genes 
that they regulate, known as their “target genes” [19], in 
which case, almost all of the genes expressed in a disease-
relevant cell type may confer risk for the disease through 
widespread network interactions with a core set of mas-
ter regulators (MRs) [9]. With the constructed regula-
tory networks, MRs could be identified by computing the 
activity of each regulator (i.e., TFs, TGs, and DEGs) with 
the R package of VIPER (GitHub commit 0170c27).

Hence, in this study we compared EMP2-treated 
hRPECs and health control hRPECs at the transcrip-
tome level using RNA-Seq analysis and core gene 
networks construction technology to identify the 
determinant MRs as well as the potential underlying 
pathyway which regulatoring vascular proliferation in 
hRPECs (Figure S1).

Results
All samples had high-quality RNA-seq reads with an 
average of 96% reads per sample. Reads with mapping 
quality score (MAPQ) < 10 or those with > 5 mismatches 
in 100 bp aligned region were discarded (Fig. 1A-B).

Differential Expression of DEGs and functional enrichment 
analysis of EMP2‑treated comparisons
After low-level processing of 24 EMP2-treated samples 
and control samples (Fig. 1A-B), we performed differen-
tial expression analysis for each treated group compar-
ing with control samples. According to the PCA plot 
(Fig. 1A), we compared EMP2-OE hRPECs with VC and 
EMP2-KD hRPECs with WT group. Totally we identified 
1239 DEGs in all comparisons of EMP2-treated hRPECs 
versus VC or WT (Table S1). Figure 2A and B were Venn 
diagram of DEGs in comparisons under hypoxia and nor-
moxia, respectively (Fig.  2A-B). Figure  2C-D showed up 
regulated or down regulated DEGs in comparisons under 

Fig. 1 PCA and box plot of all samples. PCA scatter plot and box plot of all 24 RNA-seq samples, which were obtained based on Hisat2. PCA and 
box plot graphics illustrate variance of gene expression data of each sample. The percentages on each axis represent the percentages of variation 
explained by the principal components. Cutoff value was absolute log2FC > 1 and P value < 0.05. A PCA plot of RNA-Seq mapped reads of each 
sample. B Box plot of the log2 normalized expression values. PCA, Principal Component Analysis
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hypoxia and normoxia, respectively (Fig. 2C-D). Then we 
performed functional enrichment analysis and found that 
DEGs of EMP2-OE hRPECs vs VC under hypoxia com-
monly enriched in positive regulation of cell proliferation, 
vasculature development, protein kinase B signaling, and 
negative regulation of platelet activation, and enriched in 
metabolism and folate biosynthesis pathway(Figure S2A-
S2B), which did not show in either EMP2-OE hRPECs 
vs VC under normoxia, or in EMP2-KD hRPECs vs WT 
under hypoxia or normoxia (Figs. 3 and 4).

Transcriptome regulatory network (TRN) construction 
of comparisons of EMP2 treated hRPECs with control
ARACNe was run independently on the four comparisons 
datasets of DEGs using a conservative mutual information 

threshold (p ≤ 1.0 × 10–9, i.e., p ≤ 0.05 Bonferroni cor-
rected for all candidate interactions). This resulted in highly 
robust TRNs of transcriptional factors (TFs) and poten-
tial target genes (TGs). To further elucidate the regulation 
and interaction relationship, TRNs were visualized using 
Cytoscape 3.7.1. In TRNs, a node is either a TG or a TF, 
an edge is a TF-TF, TF-TG or TG-TG relationship. Totally, 
199,093 interactions were counted between 974 TFs and 
their inferred TGs among four comparisons (Fig.  6A-B, 
Tables S3-S6).

Regulator activity inference and master regulators (MRs) 
identification
To further analyze the activity of identified regulators (i.e., 
DEGs, TFs and TGs), then inferred top MRs, the R package 
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Fig. 2 Identification of differential expressed genes (DEGs) in EMP2-regulated RPE cells. Differentially Expressed Genes (DEGs) Enrichment Venn 
Diagram and its bar graph. Venn diagrams were created using the web-based tool http:// bioin forma tics. psb. ugent. be/ webto ols/ Venn/. Identifying 
DEGs and up- and down- regulated DEGs terms in deferentially expressed sequences and regulated situation in treated groups vs control groups. 
DESeq2 R package was used in different expression gene counting. Cutoff value was absolute log2FC > 1 and P value < 0.05. A DEGs in four 
comparisons under hypoxic condition, B DEGs in four comparisons under normoxic condition, C‑D Up- and down- regulated DEGs in comparisons 
under hypoxic and normoxic condition, respectively. Colors display the expression levels of each DEGs, as pink and purple indicate down- and 
up-regulated genes in treated group comparing with control group, respectively. DEGs: differentially expressed genes, kd_vc: EMP2-knocked down 
hRPECs vs vector control hRPECs, kd_wt: EMP2-knocked-down hRPECs vs wild type hRPECs, oe_vc: EMP2-over expressed hRPECs vs vector control 
hRPECs, oe_wt: EMP2-over expressed hRPECs vs wild type hRPECs 
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of VIPER was used to compute the activity of each regu-
lator with the constructed regulatory networks. Of these, 
1395 regulators were identified as high activity and their 
differential expression among four groups under hypoxia 
were compared by using Venn diagram (Table S2, Fig. 5). 
In present study, TRNs modules for comparisons of EMP2-
treated hRPECs versus VC or WT hRPECs depicted MRs 
with high intramodular connectivity, i.e., genes most con-
nected with all other genes within the module. Thus, we 
got PDGFA, ALDH1L2, BA1AP3, ANGPT1 and ST3GAL5 
as MRs in the TRN of hypoxia EMP2-OE vs VC hRPECs 
(Fig. 6A, Table S3), PRSS33 as a MR in the TRN of hypoxia 
KD vs WT hRPECs (Fig. 6B, Table S4),

Discussion
Since early 2010s, RNA-sequencing (RNAseq) has been 
used to profile transcriptome of retinal neovasculari-
zation disease. Differential expression genes (DEGs) 
analysis can straightforwardly analyze a gene expres-
sion dataset. Through DEGs analysis, a set of highly 

up-regulated and down-regulated genes can be identi-
fied by comparing two groups of samples (e.g., hypoxia 
vs. normoxia). However, gene expression is highly 
dynamic, and the expression quantification may depend 
on the techniques (e.g., different platforms of microar-
ray, or RNAseq), making the cross-dataset comparison 
difficult. The activities of regulators cannot be directly 
measured by microarray or RNA-seq because these 
techniques only measure RNA expression level and do 
not consider gene activity changes by post-translational 
modifications. Fortunately, activity of regulators can be 
inferred by its regulons through VIPER, by taking RNA 
data and a context-specific gene regulatory network 
(interactome) as inputs [20–22].

In present study, transcriptome analysis of EMP2-over-
expressed and knocked down hRPECs under hypoxia or 
normoxia elucidated eight sets of DEGs which were then 
used to construct TRNs along with variant analysis. TRNs 
analyses attempted to simplify the interactions of activity of 
regulators and emphasized their role in EMP2-treated RPE 
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Fig. 3 DEGs GO analysis in EMP2-regulated RPE cells. Bar graph of Gene Ontology (GO) enrichment analysis of DEGs. GO enrichment analysis terms 
in significant DEGs for treated group vs control. (p < 0.01, FDR q < 0.05, overlap cutoff > 0.5) (A) DEGs Go analysis under hypoxic condition, (B) DEGs 
Go analysis under normoxic condition
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cells, then illustrated top MRs. MRs are often obscured 
in standard differential expression analyses (such as those 
including environmental stressors) and indeed many of 
MRs identified in our network analysis were not significant 
in the DEGs analysis, highlighting the strength of the net-
work approach (Fig. 5).

Platelet derived growth factor (PDGF) is one of the lead-
ing vascular proliferation risk genes identified by GWAS 
[40]. However, the molecular mechanism underlying the 
genetic association remains elusive. Here, we have shown 
computationally that PDGFA is one of the top MRs of vas-
cular proliferation factors in hRPECs under hypoxia. By 
examining the PDGFA-perturbed gene networks in EMP2- 
over-expressed hRPECs, we found that PDGFA-altered 
genes in hRPECs are more enriched for gene pathways that 
are related to proliferation and migration activities. PDGF 
families were proved to induce the proliferation and migra-
tion effects on RPE cells in proliferative retinopathy (PVR), 
and has been reported to participate in pericyte regulated 
vascular proliferation, vessel stabilization, and contribute 
to the formation of both the blood–brain and blood-retina 
barriers by regulating pericyte-endothelial cell communi-
cation [23–26]. Furthermore, we have shown that PDGFA-
altered genes in EMP2-over-expressed hRPECs under 
hypoxia are more enriched for credible inflammation, 
oxidative stress, apoptosis GWAS risk genes [27]. Besides, 
we inferred that when EMP2 was over expressed under 
hypoxia, PDGFA was upregulated and enhanced the inter-
actions with other genes. Thus, multiple lines of evidence 

from our study suggest that the PDGFA gene network 
expression activity in the early stages of vascular prolifera-
tion may be very important for pathogenesis.

Although our computationally identification of MR has 
focused on PDGFA, other MRs that we identified here sug-
gest that additional gene networks are relevant to vascular 
proliferation. The identified MRs contain many of the TFs 
previously reported in the literature that may potentially 
be involved in the vascular proliferation pathogenesis of 
DR, such as ALDH1L2, BA1AP3, ANGPT1 and ST3GAL5. 
ALDH1L2 (Aldehyde Dehydrogenase 1 Family Member 
L2) is a protein coding gene which functions as mitochon-
drial folate enzyme [28], the maintenance of mitochondrial 
integrity and energy balance of the cell [29]. The related 
pathways of LDH1L2 are one carbon pool by folate and 
metabolism of water-soluble vitamins and cofactors (Fig-
ure S2). ALDH1L2 has been previously proven to have cor-
relation with EMP2 in breast cancer cells [30]. but it was 
the first time to be identified in EMP2-treated hRPECs. 
We also noticed that PDGFA connected with ALDH1L2 
by PLSCR4. In this way, PDGFA may mediate accelerated 
ATP-independent bidirectional trans-bilayer migration of 
phospholipids upon binding calcium ions, and it will result 
in a loss of phospholipid asymmetry in the plasma mem-
brane. This process may play a central role in the initia-
tion of fibrin clot formation, in the activation of mast cells 
as well as in the recognition of apoptotic and injured cells 
by the reticuloendothelial system. Thus, we thought that 
over-expression of EMP2 would activate PDGFA through 
ALDH1L2-PLSCR4 pathway by initializing fibrin clot and 
recognizing apoptosis.

We also identified that BAI1 Associated Protein 3 
(BAIAP3) had correlation with MMP16 [31]. BAIAP3, 
functioning in endosome to Golgi retrograde transport, 
may regulate behavior and food intake by controlling cal-
cium-stimulated exocytosis of neurotransmitters includ-
ing NPY and serotonin and hormones like insulin. Such 
neurotransmitters have been proven to have the ability to 
degrade various components of the extracellular matrix, 
such as collagen type III and fibronectin in the pathogen-
esis of diabetic cataract [17].

This investigation was mainly based on ARACNe algo-
rithm analysis of transcriptome information of hRPECs 
treated by hypoxia and exogenous EMP2. The TRN con-
structed in this paper provided clues of interaction mech-
anism between these genes, which not only provided 
theoretical support for revealing the regulatory relation-
ship among them, but also provided candidate genes, i.e., 
up-and down-regulated pathway genes, transcriptional 
factors, and MRs, which could be studied for future SNP 
discovery work to establish association with different 
phenotype or traits of interest. We also established a sci-
entific exploration mode for exploring effective targets of 
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anti-neovascularization, which made the follow-up basic 
verification and clinical research more reliable. However, 
the results of bioinformatics analysis ultimately need to 
be verified by many experiments and combined with clin-
ical practice to carry out gene function and mechanism 
verification for substantive exploration.

Conclusions
In summary, by using a computational approach, we 
identified  PDGFA, ALDH1L2, BA1AP3, ANGPT1 and 
ST3GAL5  as MRs that likely contributed to EMP2-
induced vascular proliferation in hRPECs under hypoxia. 
Although powerful, we acknowledged the limitation of 
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our approach in identifying top MRs, because select-
ing a top MR was not purely “data-driven”; for 
instance,  PDGFA ALDH1L2, BA1AP3, ANGPT1 and 
ST3GAL5 were identified as top MRs among many other 
MRs was not only data-driven but also based on prior 
knowledge about their  association with vascular pro-
liferation. Nonetheless, our study suggested that MRs 
in vascular proliferation in EMP2 and hypoxia treated 
hRPECs could be identified by transcriptional network 
construction and that MRs such as  PDGFA  as well as 
other MRs might constitute convergent gene networks 
that confer disease risk in a spatial and temporal manner. 
Therefore, PDGFA and other identified MRs might be a 
building part of vascular proliferation architecture, which 
collectively drived DR onset and progression. Transcrip-
tional network construction in larger and more DR-rele-
vant cell types/stages, combined with empirical network 
perturbation, would further pave the way to deepen our 
understanding of the genetic contribution to the com-
plex biology of vascular proliferation during DR disease 
biology.

Methods
Data availability
The RNA-seq data profiles were obtained from the NCBI 
GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) 
GSE151610. The dataset contained 24 samples, which 
contained mRNA profiles of hRPECs panel consisting 
of EMP2-knocked-down (KD) hRPECs, EMP2-over-
expressed (OE) hRPECs, vector control (VC) hRPECs, and 
wild type (WT) hRPECs under hypoxia or normoxia. This 
project was approved by the Institutional Review Board 
of Sir Run Run Hospital, Nanjing Medical University. All 
procedures of this study complied with the protocol.

Identification of DEGs
The data set is available at the NCBI Short-Read Archive 
(SRA), under accession SRA265560. The RNA-Seq data set 
was mapped in the Homo sapiens (human) genome assem-
bly GRCh38 (hg38) by Hisat2. Feature Counts was used in 
read counts. After filtering all 0 expression genes, DESeq2 
R package was used in different expression gene counting. 
Cutoff value was absolute log2FC > 1 and P value < 0.05.

GO and KEGG pathway enrichment analysis
We performed functional enrichment analysis using 
Kyoto Encyclopedia of Genes, Genomes (KEGG) path-
way and Gene Ontology (GO) with a p value < 0.05 as 
the significance cutoff. The RichR (https:// github. com/ 
hurlab/ RichR) package was used in enrichment analysis 
(Figure S1).

Transcription regulatory network construction
Regulatory networks were constructed by ARACNe 
(Algorithm for the Reconstruction of Accurate Cellu-
lar Networks) [32–34] using significant DEGs. First, 
mutual interaction between a candidate TF(x) and 
its potential target (y) was computed by pairwise MI, 
MI(x, y), using a Gaussian kernel estimator. A thresh-
old was applied on MI based on the null hypothesis 
of statistical independence (P < 0.05, Bonferroni-cor-
rected for the number of tested pairs). Secondly, the 
constructed network was trimmed by removing indi-
rect interactions using the data processing inequal-
ity (DPI), a property of the MI. Parameters was set 
to zero DPI (Data Processing Inequality) tolerance 
and MI (Mutual Information) p-value threshold of 
10 − 8. Therefore, for each (x, y) pair, a path through 
another TF(z) was considered, and every path per-
taining to the following constraint was removed: MI 
(x, y) < min (MI (x, z),MI (z, y)). A P value thresh-
old of 1 × 10 − 8 using DPI = 0.1 (as recommended 
[35]) was used when running ARACNe. Cytoscape 
software (version: 3.8.0) was used for visualizing the 
regulatory networks.

Regulator activity inference
The VIPER algorithm had proven to be a useful tool 
for estimating regulator activity from gene expres-
sion data using enriched regulon analysis. With the 
constructed regulatory networks, we computed 
the activity of each regulator (i.e., TFs, TGs, and 
DEGs) using the R package of VIPER (GitHub com-
mit 0170c27). The output of VIPER is a list of highly 
active MRs as well as their activity scores and their 
enrichment P values. A set of regulators with sig-
nificant activity difference were defined at adjusted 
p-value < 0.01.

Statistical test
All statistical tests and plotting were performed in R 
3.5.2 (https:// www.r- proje ct. org/) unless otherwise 
mentioned.
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