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Abstract 

Background: Adipose tissues (ATs), including visceral ATs (VATs) and subcutaneous ATs (SATs), are crucial for main-
taining energy and metabolic homeostasis. SATs have been found to be closely related to obesity and obesity-
induced metabolic disease. Some studies have shown a significant association between subcutaneous fat metabo-
lism and sexes. However, the molecular mechanisms for this association are still unclear. Here, using the pig as a 
model, we investigated the systematic association between the subcutaneous fat metabolism and sexes, and identi-
fied some key sex-specific pathways and genes in the SATs from pigs.

Results: The results revealed that 134 differentially expressed genes (DEGs) were identified in female and male pigs 
from the obese group. A total of 17 coexpression modules were detected, of which six modules were significantly 
correlated with the sexes (P < 0.01). Among the significant modules, the greenyellow module (cor = 0.68, P < 9e-06) 
and green module (cor = 0.49, P < 0.003) were most significantly positively correlated with the male and female, 
respectively. Functional analysis showed that one GO term and four KEGG pathways were significantly enriched in 
the greenyellow module while six GO terms and six KEGG pathways were significantly enriched in the green module. 
Furthermore, a total of five and two key sex-specific genes were identified in the two modules, respectively. Two key 
sex-specific pathways (Ras-MAPK signaling pathway and type I interferon response) play an important role in the SATs 
of males and females, respectively.

Conclusions: The present study identified some key sex-specific pathways and genes in the SATs from pigs, which 
provided some new insights into the molecular mechanism of being involved in fat formation and immunoregulation 
between pigs of different sexes. These findings may be beneficial to breeding in the pig industry and obesity treat-
ment in medicine.
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Background
It is well known that adipose tissue (AT) is a kind of cen-
tral metabolic tissue of complex and highly metabolically 
activity, and participates in regulating systemic energy 
homeostasis [1]. AT has key roles in the pathogenesis 
of obesity and obesity-induced metabolic disease by 
secreting hormones, cytokines and adipokines involv-
ing the regulation of metabolism [2, 3]. The ATs located 
in the abdominal and thoracic cavities are called visceral 
ATs (VATs), which have been considered anatomically, 
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functionally and metabolically significantly different 
from compartmental subcutaneous ATs (SATs) [4]. It has 
been found that SATs are closely related to obesity and 
obesity-induced metabolic disease [5]. Pigs (Sus scrofa) 
are important biomedical models for studying energy 
metabolism and human diseases, such as obesity, type II 
diabetes, and cardiovascular diseases because their body 
size and physiological/anatomical features are similar to 
those of humans [6]. And it offers the possibility of in-
depth study of the transcription levels of SATs, but this is 
difficult in humans.

At present, most of the studies mainly focused on obe-
sity study for SATs using pigs as a model and identified 
some important pathways and genes related to obesity 
[7–9]. Nevertheless, little attention was paid to the gen-
der difference in obesity. In recent years, some studies 
have shown a significant association between subcuta-
neous fat metabolism and sexes [10–12]. Despite some 
progress, the molecular mechanisms of fat formation and 
metabolism in SATs involved in gender are still unclear. 
Especially, the coexpression relationship of sex-specific 
genes in SATs remains unknown.

Weighted Gene Coexpression Network Analysis 
(WGCNA) is a systematic biology method to describe 
the correlation patterns among genes across samples 
[13]. Compared with other methods, WGCNA focuses 
on the relationship between coexpression modules and 
phenotypes [14]. Using WGCNA can find the gene coex-
pression modules with higher reliability and biological 
significance, and identify “driver” genes in the modules 
[15]. Currently, WGCNA has become the most important 
way to study the coexpression relationships among genes 
and has been successfully applied in various research 
fields, such as complex diseases, including hepatocellu-
lar carcinoma [16], uveal melanoma [17], hyperlipidemia 
[18], and obesity [8, 19], and economic traits, including 
meat quality [20], hypoxic adaptation [21] and skin color 
[22], etc. Lim et al. identified functional modules and hub 
genes, which were related to a marbling trait in Hanwoo 
(Korean) cattle using WGCNA method. These hub genes 
were mainly involved in biological processes, which were 
correlated with fat or muscle formation [23]. Xing et al. 
found that four coexpression modules were significantly 
correlated with the backfat thickness in Songliao black 
and Landrace with high and low backfat using WGCNA 
method [24]. Besides, protein and protein interaction 
(PPI) networks are also viable tools to construct a gene 
coexpression network and understand cell functions 
and disease machinery [25]. Zhao et  al. identified ADI-
POQ, PPARG , LIPE, CIDEC, PLIN1, CIDEA, and FABP4 
as potential candidate genes affecting intramuscular fat 
(IMF) content in 28 purebred Duroc pigs by integrating 
the results from WGCNA and PPI methods [26].

In the present study, RNA-Seq data of abdominal sub-
cutaneous adipose tissue (ASAT) of males and females 
(crossbred F2 of Duroc × Göttingen minipig) were 
retrieved from Gene Expression Omnibus (GEO) data-
base and were systematically integrated and analyzed 
using WGCNA and PPI network analysis methods, with 
the aim to identify the significant modules closely related 
to the sexes, and further identify key sex-specific path-
ways and genes in the SATs of pigs. These findings may 
contribute to further understanding of the functions of 
porcine ATs and the mechanisms of regulating fat metab-
olism in SATs from pigs of different sexes, and provide 
some insights into the obesity treatment in medicine. 
Moreover, the identified key sex-specific genes may serve 
as potential biomarkers in pig breeding and potential tar-
gets in obesity treatment.

Results
Identification of differentially expressed genes (DEGs)
By analyzing the transcriptome sequencing data of SAT 
of females and males in three groups (Lean, intermediate 
and obese groups) using the limma package, 134 DEGs 
(|log2FC|> 1, FDR < 0.1) were detected in the SAT of 
females and males in the obese group, of which 47 genes 
were significantly up-regulated and 87 genes were sig-
nificantly down-regulated in females as compared with 
males (Fig. 1A, Table S3). However, no DEGs were identi-
fied in the lean and intermediate groups. The expression 
heatmap of all genes in the obese group was shown in 
Fig. 1B.

WGCNA and the significant module identification
The expression matrix containing 5000 genes was used 
to reconstruct the gene coexpression network by the 
WGCNA method. A Pearson correlation matrix among 
genes was converted into a strengthened adjacency 
matrix by power β = 5 based on the scale-free topology 
criterion with R2 = 0.9 (Fig. 2A). The topological overlap 
measure (TOM) of each gene pair was calculated. Sev-
enteen gene coexpression modules were identified by an 
average linkage hierarchical clustering according to the 
TOM-based dissimilarity (1-TOM) (Fig. 2B). There were 
large differences in the number of genes among the mod-
ules. The lightcyan module with the minimum number 
contained 137 transcripts, while the turquoise module 
with the maximum number contained 855 transcripts 
(Table S2).

Correlation analysis between module eigengene (ME) 
and the sexes showed that six modules were significantly 
correlated with the sexes (P < 0.01). The modules of sig-
nificantly positively correlated with the male were the 
greenyellow module (cor = 0.68 and P = 9e-06) and the 
purple module (cor = 0.53 and P = 0.001). The modules 
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of significantly positively correlated with the female 
were the green module (cor = 0.49 and P = 0.003), the 
pink module (cor = 0.45 and P = 0.008), the midnight-
blue module (cor = 0.42 and P = 0.01), and the turquoise 
module (cor = 0.42 and P = 0.01) (Fig. 2C). The eigengene 
adjacency heatmap depicting the cluster relation of the 
identified modules and sexes was shown in Fig. 2D. It was 
found that the greenyellow module and the green mod-
ule clustered with the male group and the female group, 
respectively. As above, the greenyellow module was most 
significantly positively correlated with the male, while 
the green module was most significantly positively cor-
related with the female. Furthermore, the correlation of 
module membership (MM) and gene significance (GS) 
in the greenyellow module (cor = 0.69 and P < 2.6e-30, 
Fig. 2E) and the green module (cor = 0.64 and P < 3.9e-31, 
Fig. 2F) indicated that the two modules possessed the top 
two significant correlations across all modules. Thus, the 
greenyellow module and the green module were selected 
for further analyses.

Functional enrichment analysis and key genes 
identification for the greenyellow and green modules
GO and KEGG enrichment analyses were performed 
on all genes in the greenyellow and green modules 
using the Database for Annotation, Visualization 
and Integrated Discovery (DAVID). In the greenyel-
low module, GO enrichment results showed that one 
biological process (Activation of MAPK activity) was 
significantly enriched (P < 0.05). KEGG enrichment 

analysis showed that four KEGG pathways were sig-
nificantly enriched (P < 0.05), including Ras signaling 
pathway, MAPK signaling pathway, Pathways in cancer 
and Melanoma. The significant enrichment terms were 
shown in Table  1. In the green module, GO enrich-
ment results showed that four biological processes 
(Immune response, Chemokine-mediated signaling 
pathway, Lymphocyte chemotaxis and Cell chemot-
axis) and two molecular functions (Chemokine activity 
and Double-stranded RNA binding) were significantly 
enriched (P < 0.05). KEGG enrichment analysis showed 
that six KEGG pathways were significantly enriched 
(P < 0.05), containing Cytosolic DNA-sensing pathway, 
Herpes simplex infection, Cytokine-cytokine receptor 
interaction, Chemokine signaling pathway, Measles 
and Toll-like receptor signaling pathway. The signifi-
cant enrichment terms were shown in Table 2.

In this study, the key genes were identified accord-
ing to the criterion that the gene was at least involved 
in four KEGG/GO terms. So, four key genes (FGF10, 
FGF1, EGFR and IGF1) in the greenyellow mod-
ule were identified (Fig.  3A). Among the four genes, 
FGF10 and IGF1 were significantly down-regulated 
in the obese group, while FGF1 was significantly up-
regulated in the obese group (Table S3). In the green 
module, eight genes (DDX58, OAS2, OAS1, CXCL9, 
CXCL10, CXCL16, CCL4 and CCL5) were selected 
as key genes (Fig.  3B). Among the genes, OAS1 and 
CXCL10 were significantly up-regulated in the obese 
group (Table S3).

Fig. 1 Differentially expressed genes (DEGs) analysis. A Volcano plot of all genes in the obese group. X-axis represented log2(fold change). Y-axis 
represented -log10(FDR). Blue spots represented down-regulated DEGs and red spots represented up-regulated DEGs. Black spots were not DEGs. 
DEGs (females compared with males). B Heatmap of all DEGs (females compared with males) in the obese group. X-axis represented samples. Y-axis 
represented genes. Blue represented down-regulated DEGs and red represented up-regulated DEGs. The color scale showed the expression values
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Fig. 2 WGCNA. A Scale independence and mean connectivity of various soft-thresholding values (β). The left panel (A) displayed the influence 
of soft-thresholding power (X-axis) on the scale-free fit index (Y-axis). The right panel (A) showed the influence of soft-thresholding power (X-axis) 
on the mean connectivity (degree, Y-axis). B Cluster dendrogram of all filtered genes enriched based on the dissimilarity measure and the cluster 
module colors. C Matrix with Module-Trait Relationships (MTRs) and corresponding P-values between the detected modules on the y-axis and 
sexes (female and male) on the x-axis. D Heatmap of the adjacencies of modules. Red represented positive correlation and blue represented 
negative correlation. The male group clustered with the greenyellow module, and the female group clustered with the green module. Association 
between the module membership and gene significance within the greenyellow module (E) and the green module (F). WGCNA, weighted gene 
co-expression network analysis
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PPI network construction and hub genes identification 
for the greenyellow and green modules
The interactive relationships of all genes in the key 
module were analyzed by constructing PPI networks. 
A PPI network, including 122 nodes and 238 edges 
was constructed for the greenyellow module with a 
combined score > 0.4 (Fig.  4A). The cytoHubba was 
used to screen out hub genes in the whole PPI net-
work. According to the Maximal Clique Centrality 
(MCC) score, the top 10 genes (DCN, MMP2, COL1A2, 
FKBP10, POSTN, COL1A1, PCOLCE, FMOD, ENS-
SSCG00000019885 and ENSSSCG00000018633) were 
identified as hub genes, and the interactive sub-net-
work, including the 10 hub genes was extracted and 
established from the whole PPI network (Fig.  4B). 
Function enrichment analysis showed that the eight 
genes (except for ENSSSCG00000019885 and ENS-
SSCG00000018633) were mainly involved in some 
KEGG pathways, including Proteoglycans in cancer, 
TGF-beta signaling pathway, AGE-RAGE signaling 

pathway in diabetic complications, Relaxin signaling 
pathway, Diabetic cardiomyopathy, Bladder cancer and 
ECM-receptor interaction (Fig.  4C). The significantly 
enriched MF terms were Sulfur compound binding, 
Glycosaminoglycan binding, Heparin binding and Col-
lagen binding. The significantly enriched CC terms 
were Extracellular matrix, and Collagen-containing 
extracellular matrix, etc. (Fig.  4D). Three hub genes, 
COL1A2, POSTN and FKBP10 were significantly down-
regulated in females compared with males in the obese 
group (Table S3).

A PPI network, including 162 nodes and 914 edges was 
constructed for the green module with a combined score 
greater than 0.4 (Fig. 5A). According to the MCC score, 
10 hub genes (MX1, MX2, IFIT1, IFIT3, ISG15, IRG6, 
IFI44, IFI44L, USP18 and DDX60) were identified and the 
interactive network was established (Fig. 5B). The 10 hub 
genes were enriched in some KEGG pathways, includ-
ing Hepatitis C, Coronavirus disease-COVID-19, Human 
papillomavirus infection, RIG-I-like receptors signal 

Table 1 The results of functional enrichment analysis for the greenyellow module using DAVID tool

ID KEGG/GO terms Gene symbols P-value Count

KEGG
 ssc04014 Ras signaling pathway IGF1, FGF1, FGF10, EGFR, LOC100522721, PLA1A, FOXO4 0.009318916 7

 ssc05200 Pathways in cancer IGF1, FGF1, FGF10, EGFR, LOC100522721, PLCB4, MMP2, TCF7L2, FZD5 0.013129853 9

 ssc04010 MAPK signaling pathway FGF1, FGF10, LOC100522721, EGFR, CACNA1G, GADD45G, LOC100620270 0.014998697 7

 ssc05218 Melanoma IGF1, FGF1, FGF10, EGFR 0.018487192 4

Biological process
 GO:0,000,187 Activation of MAPK activity IGF1, FGF1, FGF10, C1QTNF2 0.004864629 4

Table 2 The results of functional enrichment analysis for the green module using DAVID tool

ID KEGG/GO terms Gene symbols P-value Count

KEGG
 ssc04623 Cytosolic DNA-sensing pathway CXCL10, CCL5, ZBP1, DDX58, CCL4 7.62E-04 5

 ssc05168 Herpes simplex infection CCL5, LOC100157336, DDX58, TAP2, OAS2, OAS1 IFIT1 0.001407528 7

 ssc04060 Cytokine-cytokine receptor interaction CX3CL1, CXCL10, CCL5, CXCL9, CCL4, CXCL16, IL2RB 0.002333772 7

 ssc04062 Chemokine signaling pathway CX3CL1, CXCL10, CCL5, CXCL9, CCL4, CXCL16 0.006306876 6

 ssc05162 Measles DDX58, OAS2, MX1, OAS1, IL2RB 0.012380535 5

 ssc04620 Toll-like receptor signaling pathway CXCL10, CCL5, CXCL9, CCL4 0.031557568 4

Biological process
 GO:0,006,955 Immune response CXCL10, CD244, CCL5, LOC100513601, CTSW, OAS2, 

OAS1, CXCL9, CCL4
1.41E-05 9

 GO:0,070,098 Chemokine-mediated signaling pathway CXCL10, CCL5, CXCL9, CCL4 0.001153545 4

 GO:0,048,247 Lymphocyte chemotaxis CCL5, CCL4, CXCL16 0.005016185 3

 GO:0,060,326 Cell chemotaxis CXCL10, CCL5, CCL4 0.035772607 3

Molecular function
 GO:0,008,009 Chemokine activity CXCL10, CCL5, CXCL9, CCL4, CXCL16 4.71E-05 5

 GO:0,003,725 Double-stranded RNA binding DDX58, DHX58, OAS2, OAS1 0.001718079 4
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pathway, Measles, Influenza A and Epstein-Barr virus 
infection (Fig. 5C). BP analysis showed that these genes 
were mainly involved in Response to cytokine, Response 
to virus, Defense response to symbiont, Defense response 
to virus and Response to type I interferon (Fig. 5D). The 
enriched MF terms were Nucleoside binding, Ribonucle-
oside binding, and GTP binding, etc. (Fig. 5D).

Discussion
Key sex-specific pathways and genes in the greenyellow 
module
In our study, a total of 17 coexpression modules were 
detected using WGCNA method, of which six modules 
were significantly related to the sexes (P < 0.01). Among 
the significant modules, the greenyellow module was 
most significantly positively correlated with the male 
(cor = 0.68, P < 9e-06). Functional enrichment analy-
sis showed that the genes in the greenyellow module 
were mainly involved in Ras signaling pathway, Mito-
gen-activated protein kinase (MAPK) signaling path-
way, Pathways in cancer, Melanoma and Activation of 
MAPK activity. It is well known that Ras is an important 
upstream regulator of the MAPK, and the Ras-MAPK 
signaling pathway can regulate cell proliferation, differ-
entiation, and survival through the kinase cascade [27–
29]. Furthermore, four hub genes (FGF10, FGF1, EGFR 
and IGF1) were identified in the greenyellow module 
by functional enrichment analysis (Fig.  3A). The results 

showed that FGF10, FGF1 and EGFR participated in the 
Ras signaling pathway and MAPK signaling pathway, and 
IGF1 participated in the Ras signaling pathway (Table 1). 
Insulin-like growth factor (IGF1) can lead to the activa-
tion of both MAPK and phosphatidylinositol 3-kinase 
(PI3K) pathways through Ras [30, 31]. IGF1 is known to 
stimulate cell proliferation and inhibit apoptosis [32]. A 
study shows that IGF1 action is inhibited in the castrated 
animals, which affects adipocyte proliferation and differ-
entiation [33]. Besides, some studies find that fibroblast 
growth factor receptor (FGFR) and epidermal growth 
factor receptor (EGFR) also participate in activating the 
Ras-MAPK signaling pathway [34, 35]. FGF1 and FGF10 
belong to the fibroblast growth factor family, which are 
widely involved in the regulation of cell growth, prolif-
eration, differentiation and regulation of metabolism 
through FGFR [36, 37]. Some studies suggest that FGF10 
stimulates preadipocyte proliferation and differentiation 
through activating FGFR2 [38, 39]. As the above, IGF1, 
FGF1, FGF10 and EGFR played an important role in acti-
vating the Ras-MAPK signaling pathway and promoting 
adipocyte proliferation and differentiation. Currently, the 
four genes were not reported in the SATs of pigs of dif-
ferent sexes. Among genes, FGF10 and IGF1 were signifi-
cantly down-regulated in females compared with males 
in the obese group, while FGF1 was significantly up-
regulated in the obese group. Thus, it could be inferred 
that FGF10 and IGF1 might play key roles in promoting 

Fig. 3 Pathway-gene interactive networks for the greenyellow and green modules. A Four KEGG pathways, one GO term and 14 genes were used 
to construct a pathway-gene interactive network for the greenyellow module. B Six KEGG pathways, six GO terms and 19 genes were used to 
construct a pathway-gene interactive network for the green module. Blue triangles represented KEGG pathway terms. Blue diamonds represented 
BP terms, and blue squares represented MF terms. Circles represented genes. Green circles represented key genes and red circles represented non 
key genes
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adipocyte proliferation and differentiation in the SATs of 
boars through the Ras-MAPK signaling pathway.

Besides, eight hub genes, including COL1A2, COL1A1, 
DCN, MMP2, POSTN, FMOD, FKBP10 and PCOLCE 
were identified by the PPI network analysis (Fig.  4B). 
Functional enrichment analysis showed that these genes 
were significantly enriched in Proteoglycans in cancer, 
AGE-RAGE signaling pathway in diabetic complications, 
Relaxin signaling pathway, Extracellular matrix (ECM), 
ECM-receptor interaction, Collagen binding, and Colla-
gen-containing extracellular matrix, etc. (Fig. 4C, D). The 
result was very similar to that from the study of Poklukar 
et al. [33], and their findings showed that the upregulated 

genes in entire males as compared with immunocastrated 
males and surgical castrates were significantly enriched 
in extracellular region/matrix cellular components, ECM 
receptor interaction and focal adhesion pathways. Some 
genes responsible for the differences in backfat deposi-
tion among the three male sex categories were identi-
fied including COL1A2, COL6A3, POSTN, P4HA3, DCN, 
FMOD, MMP2 and MMP27 [33]. In the ECM remod-
eling, COL1A2 and COL1A1 genes involve the synthesis 
of collagen, which is the major component of ECM [40]. 
DCN (Decorin) gene encodes the ECM protein (DCN), 
which belongs to the small leucine-rich proteoglycan 
family. DCN protein can regulate the bioactivities of cell 

Fig. 4 Protein protein interaction (PPI) network for the greenyellow module. A The whole PPI network. There were 122 nodes and 238 edges in 
the network. These nodes (circles) represented genes, and bigger nodes represented genes with more links. Edges (gray lines) between nodes 
indicated the interaction of genes in the network. Yellow circles represented non DEGs. Red circles represented up-regulated DEGs. Blue circles 
represented down-regulated DEGs. DEGs (females compared with males). B The PPI sub-network. There were 10 nodes and 34 edges in the 
network. Color represented Maximal Clique Centrality (MCC) score, and the darker the color, the higher MCC score of the node. Diamond nodes 
represented down-regulated DEGs. DEGs (females compared with males). Functional enrichment analysis for eight hub genes, including KEGG 
enrichment analysis (C) and GO enrichment analysis (D). Top 10 terms and top 5 terms ordered by P.adjust for the KEGG and GO enrichment 
analysis, respectively. P.adjust indicated the degree of enrichment, with smaller P.adjust indicating terms that were more likely to play significantly 
functional roles



Page 8 of 13Wang et al. BMC Genomic Data           (2022) 23:35 

growth factors and participate in ECM assembly [41]. 
Matrix metalloproteinase 2 (MMP2) gene involves ECM 
degradation [42]. POSTN gene is crucial for collagen 
cross-linking and ECM maintenance [43, 44]. Similarly, 
FMOD gene is required for proper collagen folding and 
ECM stabilization [45]. FKBP10 gene is responsible for 
regulating ECM protein crosslinking and secretion [46]. 
PCOLCE gene can regulate the production of a secreted 
glycoprotein called procollagen C-proteinase enhancer 
protein that enhances the activity of procollagen C-pro-
teinases to participate in ECM reconstruction [47, 48]. As 
above, eight hub genes (COL1A2, COL1A1, DCN, MMP2, 
POSTN, FMOD, FKBP10 and PCOLCE) played an impor-
tant role in the ECM remodeling in the SATs of pigs.

Some studies show that ECM remodeling plays many 
vital roles in ATs. Firstly, it is necessary during the early 
stage of angiogenesis in ATs [49]. Secondly, it is also 
associated with the modulation of adipogenesis dur-
ing adipose tissue expansion [49]. Adipocyte differen-
tiation is regulated by the deposition of collagen (the 
major component of ECM) [50]. Besides, excess deposi-
tion of collagen in obesity can cause AT fibrosis, which 
leads to AT inflammation by triggering the infiltra-
tion of immune cells such as macrophages [51, 52]. A 
study finds that ECM also participates in activating the 
Ras-MAPK signaling pathway [53]. Thus, ECM remod-
eling played an indispensable role in angiogenesis, adi-
pogenesis and adipocyte differentiation of ATs. In this 
study, three ECM-related genes (COL1A2, POSTN and 

Fig. 5 Protein protein interaction (PPI) network for the green module. A The whole PPI network. There were 162 nodes and 914 edges in the 
network. These nodes (circles) represented genes, and bigger nodes represented genes with more links. Edges (gray lines) between nodes indicated 
the interaction of genes in the network. Yellow circles represented non DEGs. Red circles represented up-regulated DEGs. DEGs (females compared 
with males). B The PPI sub-network. There were 10 nodes and 45 edges in the network. Color represented MCC score, and the darker the color, 
the higher MCC score of the node. Functional enrichment analysis for 10 hub genes, including KEGG enrichment analysis (C) and GO enrichment 
analysis (D). Top 10 terms and top 5 terms ordered by P.adjust for the KEGG and GO enrichment analysis, respectively
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FKBP10) were significantly down-regulated in females 
compared with males in the obese group. Jeong et  al. 
measured the expression levels of ECM-related genes in 
different adipose tissues from bulls, cows and steers of 
Korean cattle (Hanwoo), and found that the expressions 
of  ECM-related genes  in the omental adipose tissue of 
cows and steers are decreased, and expression levels of 
most ECM-related genes were generally similar between 
cows and steers [54]. Poklukar et  al. found that castra-
tion of male pigs resulted in the downregulation of genes 
involved in ECM dynamics [33]. The results of these 
studies were similar to those of this study. As above, it 
could be speculated that COL1A2, POSTN and FKBP10 
might play more key roles in promoting angiogenesis and 
adipogenesis of boars through ECM remodeling in SATs. 
In summary, two key male-specific pathways (Ras-MAPK 
signaling pathway and ECM remodeling) and five key 
male-specific genes (IGF1, FGF10, COL1A2, POSTN and 
FKBP10) might play key roles in angiogenesis and adipo-
genesis in the SATs of male pigs.

Key sex-specific pathways and genes in the green module
In the current study, the green module was most sig-
nificantly positively correlated with the female among 
the significant modules (cor = 0.49, P < 0.003). The genes 
in the green module were mainly enriched in Immune 
response, Chemokine-mediated signaling pathway, 
Chemokine activity, Chemokine signaling pathway, 
Cytokine-cytokine receptor interaction, Cytosolic DNA-
sensing pathway, Herpes simplex infection, Measles, 
and Toll-like receptor signaling pathway, etc. (Table  2). 
These pathways are closely related to innate immunity 
and inflammatory response [55–58]. It is well known 
that Toll-like receptors play an essential role in the 
innate immune system and inflammatory response [59]. 
Inflammation is a central component of innate immu-
nity. The inflammatory response involves an increase in 
the synthesis and secretion of several mediators, includ-
ing chemokines and cytokines. Chronic inflammation in 
obesity is directly involved in the etiology of cardiovascu-
lar diseases and certain cancer types [60].

Furthermore, eight hub genes, DDX58, OAS1, OAS2, 
CXCL9, CXCL10, CXCL16, CCL4 and CCL5 in the 
green module were identified by the functional enrich-
ment analysis (Fig. 3B). And 10 hub genes, MX1, MX2, 
IFIT1, IFIT3, ISG15, IRG6, IFI44, IFI44L, USP18 and 
DDX60 were identified by the PPI analysis (Fig.  5B). 
Functional enrichment analysis showed that the 10 hub 
genes (MX1, MX2, etc.) were enriched in RIG-I-like 
receptors (RLRs) signal pathway, Hepatitis C, Immune 
effector process, Response to virus, Response to type I 
interferon, and Response to cytokine, etc. (Fig. 5C, D). 
A study shows that the RLRs play essential roles in the 

production of type I interferons (IFNs) and proinflam-
matory cytokines in cell type-specific manners [61]. It 
has been reported that the DDX60 gene can promote 
RLRs receptor signaling [62]. DDX58 gene belongs to 
one of the crucial members of the RLRs family, which 
can promote the production of type I IFN [63, 64]. 
And then, type I IFN activates kinase-driven signaling 
to drive the expression of more than 2000 IFN-stimu-
lated genes (ISGs) [65, 66]. As is known to all, Type I 
IFN plays indispensable roles in immunity and proin-
flammation via induction of the production of ISGs 
through activating Janus kinase (JAK)-signal transducer 
and activator of transcription (STAT) signaling path-
way [67]. In this study, the hub genes, including CXCL9, 
CXCL10, CXCL16, CCL4 and CCL5 belong to IFN-
induced chemokines [68–70], which participate in the 
Toll-like receptor signaling pathway. These IFN-induced 
chemokines might play a vital role in the inflammatory 
response of SATs from pigs. Some studies show that the 
11 hub genes (OAS1, OAS2, IFIT1, IFIT3, ISG15, IRG6, 
IFI44, IFI44L, USP18, MX1 and MX2 were identified 
in the study) belong to the Type I ISGs, which partici-
pate in mediating autoimmune diseases and chronic 
inflammatory diseases through activating inflammatory 
responses and innate immunity responses [61, 67, 71].

Currently, the 18 hub genes were not reported in the 
immunity and inflammation in the SATs of pigs of dif-
ferent sexes. Among 18 genes, OAS1 and chemokines 
CXCL10 were significantly up-regulated in females com-
pared with males in the obese group. The two DEGs 
might play more key roles in autoimmunity and proin-
flammation in SATs of the obese female pigs. In summary, 
some key female-specific pathways and biological pro-
cesses (Chemokine signaling pathway, Cytokine-cytokine 
receptor interaction, Toll-like receptor signaling pathway, 
RLRs signal pathway, Immune response, and Response to 
type I interferon, etc.) and two key female-specific genes 
(CXCL10 and OAS1) participating in type I interferon 
response might play vital roles in innate immunity and 
proinflammation in the SATs of female pigs.

However, some limitations must be noted in this study. 
First, the small sample size limited the statistical power 
to identify the hub genes. Second, molecular biological 
experiments were required to validate the function of 
these hub genes in the SATs.

Conclusions
The systematic associations between SATs and sexes were 
found, and sex-specific pathways and genes in the SATs 
of pigs were identified. Males have more abilities in angi-
ogenesis and adipogenesis through activating the Ras-
MAPK signaling pathway and ECM remodeling in SATs 
compared with females. Females have stronger abilities 
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in autoimmunity and proinflammatory via induction 
of the production of ISGs through activating type I 
interferon response in SATs compared with males. The 
identified key sex-specific pathways and genes in SATs 
from pigs provided some new insights into the molecu-
lar mechanism of being involved in fat metabolism and 
immunoregulation between pigs of different sexes. These 
findings may be helpful for breeding in the pig industry 
and obesity treatment in medicine.

Methods
Data collection and processing
The transcriptome datasets (GSE61271_normalized-
data.csv.gz) and the phenotypic datasets (GSE61271_
series_matrix.txt.gz) were downloaded from the public 
NCBI GEO database (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE61 271). The raw sequenc-
ing data (100 bp pair-ended fragments, about 30 M reads 
per sample) were obtained using the Illumina platform. 
The sequencing samples were collected from the SATs 
of crossbred F2 pigs (Duroc × Göttingen minipig). Göt-
tingen minipig is genetically susceptible to obesity and 
shares a variety of metabolic diseases with humans [72]. 
According to the descriptions of the original paper [8], 
the 36 F2 pigs (17 females and 19 males) were produced 
at the research farm, the University of Copenhagen 
Tåstrup, Denmark. Basing on the selection index theory, 
Kogelman et al. created the Obesity Index (OI) to repre-
sent the degree of obesity in each pig. According to OI, 36 
pigs were categorized into three groups: 12 low OI (Lean, 
L), 12 intermediate OI (Intermediate, I), and 12 high OI 
(Obese, O). Among the selected pigs, there was a large 
difference in age at slaughter (L: 309  days, I: 234  days, 
O: 218 days), as they were slaughtered at approximately 
100 kg.

In order to balance the sample number of male and 
female pigs, two samples of males (GSM1501206 and 
GSM1501208) in the lean group were randomly elimi-
nated. A total of 34 samples (17 females and 17 males) 
were selected for this study. The samples with different 
obesity levels in the three groups were evenly distributed 
in the two sex groups. Details about samples were shown 
in Table 3 and Table S1.

Differential expression genes analysis
The transcriptome datasets, including 5000 genes were 
used to construct the expression matrix. Differential 
expression analysis of the females and males in three 
groups (Lean, Intermediate and Obese groups) was per-
formed separately using the limma package [73]. In the 
study, genes with |log2FC|> 1 and FDR < 0.1 were referred 
to as the differentially expressed genes (DEGs). The DEGs 
were visualized as a volcano plot  using the R package 

ggplot2, while as a heatmap plot  using the R function 
pheatmap.

WGCNA
WGCNA was used to construct the gene coexpression 
network, and identify the coexpression gene modules. 
The WGCNA package (version 1.13) based on R was 
used to perform WGCNA [15]. First, the expression 
matrix was converted into an adjacency matrix, and an 
unsupervised coexpression relationship was constructed 
based on the adjacency matrix using Pearson correla-
tion coefficients for gene pairs. The correlation adjacency 
matrix was strengthened by power β (soft threshold), and 
the power parameter was selected based on the scale-free 
topology criterion.

Second, the adjacency matrix was transformed into a 
topology matrix. TOM was used to measure the correla-
tion of gene pairs. According to 1-TOM, average linkage 
hierarchical clustering was performed to classify genes 
with coherent expression profiles into gene modules. 
The dynamic cutting algorithm was used to identify gene 
modules from the system cluster tree. Module eigengene 
(ME) was defined as the first principal component and 
was the representative of module genes. Module mem-
bership (MM) was defined as the correlation between ME 
and gene module. Gene significance (GS) was indexed by 
log10 transformation of the P-value of the T-test. GS of 
0 indicates that the gene was not significant with regard 
to the biological question of interest. The GS could take 
on positive or negative values. Module significance (MS) 
was defined as the average of GS for all the genes in the 
module. A more detailed description of WGCNA was 
presented in an original article [13].

Finally, the statistical significance of the relationship 
between modules and sexes was analyzed by calculat-
ing the Pearson correlation coefficient. For studying the 
genes in the module correlating with sexes, modules with 
p values < 0.01 were selected as significant modules in this 
study. And then, the module with the significant positive 
correlation (cor > 0) with males and females among all the 
significant modules was selected as the key module for 
further analysis, respectively.

Table 3 The sample information of 34 pigs

According to Obesity Index (OI), 34 pigs (17 females and 17 males) were divided 
into three groups: the Lean, Intermediate and Obese groups, which represented 
different obesity levels of pigs in each group

Sex Total Lean Intermediate Obese

 Females 17 5 6 6

 Males 17 5 6 6

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61271
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61271
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PPI network construction and analysis
The interactive relationships among genes encoding pro-
teins in the key gene coexpression module were analyzed 
by constructing a PPI network. The interactive informa-
tion among genes encoding proteins was retrieved from 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (version 11.5, https:// string- db. org/). 
The gene pairs with a combined score ≥ the medium con-
fidence of 0.4 were used to construct the PPI network. 
The Cytoscape (v3.8.0) software was used to construct 
and visualize the interactive relationships among genes in 
the whole PPI network [74].

Functional enrichment analysis
GO and KEGG pathway terms of all genes in the key 
module were analyzed using the online DAVID database 
(version 6.80, https:// david. ncifc rf. gov/) [75]. The cut-
off criterion was set at P-value < 0.05. Cytoscape (v3.8.0) 
software was used to construct and visualize the interac-
tive relationships between genes and functional enrich-
ment terms in the whole network. Functional enrichment 
analysis for hub genes in the PPI sub-network was imple-
mented using the R-package clusterProfiler [75, 76]. The 
cut-off criterion of KEGG was set at P-value < 0.1, and 
the cut-off criterion of GO was set at P-value < 0.01 and 
q-value < 0.05. GO annotation result includes three main 
bodies: biological process (BP), molecular function (MF) 
and cellular component (CC).

Hub genes identification
Hub genes in the whole PPI network from the key mod-
ules were identified by the cytoHubba algorithm in the 
Cytoscape software, and the criterion for selecting hub 
genes was that the top 10 nodes ranked by Maximal 
Clique Centrality (MCC) [77]. Key genes in key modules 
were identified using the functional enrichment network 
analysis. The selection criterion of key genes in the mod-
ule was that the gene was at least involved in four KEGG/
GO terms.
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