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Abstract 

Background: Heterogeneity of expression quantitative trait locus (eQTL) effects have been shown across gene 
expression processes. Knowledge on how to produce the heterogeneity is quite limited. This study aims to examine 
fluctuations in differential gene expression by alleles of sequence variants across expression processes.

Results: Genome-wide eQTL analyses with transcriptome-wide gene expression data revealed 20 cis-acting 
eQTLs associated simultaneously with mRNA expression, ribosome occupancy, and protein abundance. A 97 kb-
long eQTL signal for mitochondrial ribosomal protein L43 (MRPL43) covered the gene, showing a heterogeneous 
effect size on gene products across expression stages. One allele of the eQTL was associated with increased mRNA 
expression and ribosome occupancy but decreased protein abundance. We examined the heterogeneity and 
found that the eQTL can be attributed to the independent functions of three nucleotide variants, with a strong 
linkage. NC_000010.11:g.100987606G > T, upstream of MRPL43, may regulate the binding affinity of transcrip-
tion factors. NC_000010.11:g.100986746C > G, 3 bp from an MRPL43 splice donor site, may alter the splice site. 
NC_000010.11:g.100978794A > G, in the isoform with a long 3′-UTR, may strengthen the binding affinity of the micro-
RNA. Individuals with the TGG haplotype at these three variants had higher levels of mRNA expression and ribosome 
occupancy than individuals with the GCA haplotype but lower protein levels, producing the flipped effect throughout 
the expression process.

Conclusions: These findings suggest that multiple functional variants in a linkage exert their regulatory functions at 
different points in the gene expression process, producing a complexity of single eQTLs.

Keywords: Expression quantitative trait locus, Functional variant, Mixed model, Mitochondrial ribosomal protein L43, 
Regulation of gene expression
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Background
Many quantitative trait loci (QTLs) have been identi-
fied from genome-wide association studies (GWAS) 
for complex phenotypes over the last decade, but the 

understanding of their underlying functions is mostly 
vague [1]. The genetics of gene expression is criti-
cal in understanding gene regulation with the QTLs 
and dissecting the genetic basis of complex pheno-
types. Genome-wide expression quantitative trait loci 
(eQTLs), especially cis-eQTLs, account for a substantial 
proportion of variation in gene expression [2]. Further-
more, this genome-wide eQTL analysis incorporating 
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transcriptome-wide expression data may provide the 
regulatory genetic architecture of every gene in a human 
cell [3].

A variety of genome-wide identifications of eQTLs 
have been provided by layers of gene regulation. Com-
parison of the data might help in understanding the spe-
cific function during each expression stage. For example, 
when a genome-wide association study was conducted to 
identify mRNA expression QTL (neQTL: narrow-sense 
eQTL), ribosome occupancy eQTL (rQTL), and protein 
abundance eQTL (pQTL), a nucleotide near the 3′-UTR, 
NC_000022.11:g.36209931A > T, was found to be signifi-
cant not as an neQTL or rQTL, but as a pQTL for the 
apolipoprotein L2 (APOL2) gene [4]. An acetylation site 
in proximity to the protein-specific QTL implied a regu-
latory function of lysine acetylation in the degradation of 
the protein. Similar to this protein-specific QTL, many 
eQTLs (71%; 46% neQTL, 16% rQTL, and 9% pQTL) 
were identified only once from the three kinds of data 
[4]. Among the stage-specific eQTLs, it is difficult to fil-
ter out spurious eQTLs produced by experimental errors 
or confounding. Replications of the stage-specific eQTLs 
are needed to avoid false positives and to confirm expres-
sional regulations.

The effect sizes of eQTLs showed fluctuations across 
the regulation stages. In particular, the effect size of the 
pQTL decreased compared with those of the neQTL and 
rQTL.

This post-transcriptional buffering effect appeared in 
many genes [4]. This was explained as a negative feed-
back regulation of the gene itself to reduce differential 
transcription produced by nucleotide variants [5]. More 
recently, it has also been treated as an adaptational regu-
lation of translation rates to maintain balance in protein 
levels [6, 7]. The buffering effect helps maintain homeo-
static steady-state protein levels [8–10]. Producing this 
difference and reducing it by negative feedback regula-
tion might be considered a fundamentally inefficient 
mechanism. Understanding the genetics underlying con-
trol of protein abundance is important because it is the 
direct determinant of cellular function as the final prod-
uct of gene expression [11]. It is crucial to understand 
how protein abundance is determined by various expres-
sion controls to understand the underlying mechanisms 
of specified eQTLs. Nevertheless, few attempts to iden-
tify differences in effect size have been made aside from 
studies on the buffer effects. The heterogeneous effect 
size of eQTLs might be strongly attributed to spatial and 
temporal regulation in its specific function. However, 
multiple functions of eQTLs are also suspected to pro-
duce this heterogeneity.

The aims of this study are to examine fluctuations 
in differential gene expression by alleles of nucleotide 

variants simultaneously associated with mRNA expres-
sion, ribosome occupancy, and protein abundance, and 
to uncover their multiple regulatory functions across 
expression stages. We employed a mixed model to adjust 
genetic backgrounds in the genome-wide eQTL analy-
sis. We revealed the complexity of the gene regulation of 
mitochondrial ribosomal protein L43 (MRPL43) caused 
by multiple functional variants in strong linkage.

Results
We identified 84,094, 31,933, and 12,690 associations 
of nucleotide variants with mRNA expression, ribo-
some occupancy, and protein abundance, respectively 
(P < 1 ×  10− 5). Of these, 117 were shared by mRNA 
expression, ribosome occupancy, and protein abundance. 
These turned out to be 20 eQTL signals, each located 
in an LD block constructed by the algorithm developed 
by Gabriel et  al. [12]. All were located in and around 
the corresponding gene; 19 eQTLs were found for the 
major histocompatibility complex, class II, DQ alpha 1 
(HLA-DQA1) gene, and one was for the MRPL43 gene. 
The eQTLs for HLA-DQA1 had a range of 32,603,487–
32,658,801 bp (hg19) in chromosome 6, including 503 
nucleotide variants (Online Resource Fig. S1). Although 
only one eQTL signal was identified for MRPL43, this 
had a wider range, from 102,670,196 to 102,767,155 bp in 
chromosome 10 (hg19), including 41 nucleotide variants. 
These cis-acting eQTLs are presented with their repre-
sentative nucleotide variants and significances for associ-
ations with mRNA expression, ribosome occupancy, and 
protein abundance in Table 1.

The HLA-DQA1 expression increased with a cer-
tain allele of its eQTL and decreased with the other 
allele regardless of mRNA expression, ribosome occu-
pancy, and protein abundance. A variety of functions 
of the nucleotide variants were found across the eQTL 
region, and eQTLs with likely functions are presented 
in Fig.  1a. Two nucleotide variants likely affecting his-
tone modification were uncovered by exploring ChIP-
seq data obtained from the Roadmap Epigenomics study: 
NC_000006.12:g.32642332A > C using H3K4me1 and 
H3K4me3; and NC_000006.12:g.32668657A > G using 
H3K4me1. HaploReg showed several transcription fac-
tor binding sites around the transcription start site, 
which were identified by ChIP-Seq against transcrip-
tion factors. Potential allelic imbalance in transcription 
factor binding between homologous chromosomes of 
heterozygous individuals of the 1000 Genomes Pro-
ject was found for two nucleotide variants (T:G = 30:0 
for NC_000006.12:g.32638603 T > G and C:A = 27:1 for 
NC_000006.12:g.32638840C > A) in intron 1 of HLA-
DQA1. Many significant consensus sequences altered by 
the nucleotide substitution were found by the ENCODE 
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project. Exon-specific association analysis using the 
paired-end 75 bp mRNA-seq data obtained by Lap-
palainen et  al. [13] also revealed the allelic imbalance 
in HLA-DQA1 expression between homologous chro-
mosomes of heterozygous individuals (P < 1 ×  10− 5). A 
significant poly(A) ratio was found between the alleles 
of NC_000006.12:g.32640003C > A in intron 1 of HLA-
DQA1 to likely alter the poly(A) site (P = 3.27 ×  10− 310). 
The miRDB database predicted that some 3′-UTR nucle-
otide variants (NC_000006.12:g.32643538C > T and 
NC_000006.12:g.32643564G > A) may be associated with 
miRNA binding affinity.

In the large eQTL for MRPL43, the A allele of the 
NC_000010.11:g.100983006C > A or linked alleles were 
associated with increased mRNA expression and ribo-
some occupancy and with decreased protein abundance. 
Further analysis also showed various potential functions 
of the nucleotide variants within the eQTL, as shown 
in Fig.  1b. The analysis revealed that the difference in 

expression of MRPL43 across expression stages could 
be attributed to independent functions of nucleotide 
variants within its eQTL (Fig.  2). One nucleotide vari-
ant (NC_000010.11:g.100987606G > T; rs3740484) 87 bp 
upstream of MRPL43 was located in a transcription fac-
tor binding site uncovered by the ChIP-seq data with 
RNA polymerase and relevant components resulting 
from the ENCODE Project. The promoter function was 
supported by a variety of epigenomic data with chro-
matin states obtained from the Roadmap Epigenomics 
Consortium (Core 15-state model, 25-state model with 
12 imputed marks, H3K4me1, H3K4me3, H3K27ac, 
K3K9ac, and DNase). This variant can alter the recog-
nition site for GATA, and its T allele increased bind-
ing affinity to GATA 2.95–8.67 times (HaploReg 4.1). 
Another variant (NC_000010.11:g.100986746C > G; 
rs2863095), 3 bp downstream from the splice donor 
site of exon 3, may alter the splice site and thus 
produce an isoform of MRPL43. Exon-specific 

Table 1 Nucleotide variants associated with mRNA expression, ribosome occupancy, and protein abundance of HLA-DQA1 and 
 MRPL43a

a Only representative nucleotide variants are presented (P < 1 ×  10−5)
b Chromosome number: chromosomal position in the hg19 version
c The three nucleotide variants in complete linkage had the lowest P value in one signal

SNP Positionb MAF mRNA expression Ribosome occupancy Protein abundance

BETA P BETA P BETA P

HLA-DQA1

 g.32637603 T > A 6:32,605,380 0.48 0.842 2.78 ×  10−8 0.614 7.15 ×  10− 6 0.886 1.50 ×  10−7

 g.32639416 T > C 6:32,607,193 0.24 −0.678 7.83 ×  10−7 − 0.647 4.48 ×  10− 7 − 0.741 6.15 ×  10−6

 g.32639504G > A 6:32,607,281 0.36 −0.573 2.87 ×  10−6 −0.501 5.75 ×  10−6 −0.637 2.72 ×  10−6

 g.32640436G > A 6:32,608,213 0.44 −0.687 2.17 ×  10−7 −0.537 6.91 ×  10−6 −0.692 2.58 ×  10−6

 g.32641103G > A 6:32,608,880 0.27 −0.790 7.69 ×  10−8 −0.716 1.90 ×  10−7 −0.881 7.70 ×  10−8

 g.32641737C > A 6:32,609,514 0.48 0.840 3.05 ×  10−8 0.607 8.83 ×  10−6 0.873 2.24 ×  10−7

 g.32644006A > G 6:32,611,783 0.40 −0.628 7.63 ×  10−7 − 0.533 3.34 ×  10−6 − 0.709 3.91 ×  10− 7

 g.32652582C > A 6:32,620,359 0.37 −0.597 1.42 ×  10−6 −0.495 9.22 ×  10−6 −0.725 1.38 ×  10−7

 g.32658175C > A 6:32,625,952 0.47 −0.725 1.48 ×  10−7 −0.567 6.87 ×  10−6 −0.770 1.07 ×  10−6

 g.32658472 T > A 6:32,626,249 0.45 −0.757 2.86 ×  10−7 −0.676 6.63 ×  10−7 −0.874 4.65 ×  10−8

 g.32658813C > A 6:32,626,590 0.48 0.856 3.08 ×  10−8 0.632 5.87 ×  10−6 0.916 1.19 ×  10−7

 g.32661067 T > A 6:32,628,844 0.43 −0.638 9.91 ×  10−7 − 0.553 3.24 ×  10−6 − 0.649 8.98 ×  10− 6

 g.32661176C > A 6:32,628,953 0.39 −0.641 2.82 ×  10−7 −0.505 8.44 ×  10−6 −0.656 3.23 ×  10−6

 g.32662025A > C 6:32,629,802 0.52 0.841 2.62 ×  10−8 0.634 3.22 ×  10−6 0.904 1.66 ×  10−7

 g.32669003G > A 6:32,636,780 0.44 −0.746 2.88 ×  10−7 − 0.642 1.60 ×  10−6 − 0.848 6.94 ×  10−8

 g.32669230G > C 6:32,637,007 0.42 −0.708 5.50 ×  10−7 −0.659 4.22 ×  10−7 −0.802 1.38 ×  10−7

 g.32670046A > G 6:32,637,823 0.40 −0.674 9.23 ×  10−7 −0.650 2.83 ×  10−7 −0.799 1.11 ×  10−7

 g.32670110 T > C 6:32,637,887 0.42 −0.701 5.72 ×  10−7 −0.612 2.16 ×  10−6 −0.788 2.57 ×  10−7

 g.32670309G > A 6:32,638,086 0.41 −0.729 1.59 ×  10−7 −0.639 6.07 ×  10−7 −0.750 7.31 ×  10−7

MRPL43

 g.100983006C >  Ac 10:102,742,763 0.47 0.534 9.16 ×  10−6 0.748 7.47 ×  10−8 −0.577 6.09 ×  10−6

 g.100986746C >  Gc 10:102,746,503 0.47 0.534 9.16 ×  10−6 0.748 7.47 ×  10−8 −0.577 6.09 ×  10−6

 g.100980514 T >  Cc 10:102,740,271 0.47 0.534 9.16 ×  10−6 0.748 7.47 ×  10−8 −0.577 6.09 ×  10−6
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analysis for mRNA expression revealed that the G allele 
of NC_000010.11:g.100986746C > G increased long tran-
scripts with exons 4, 5, 6, and 7 (P < 1 ×  10− 5).

Isoform-specific analysis for mRNA expression showed 
more transcripts with a long 3′-UTR in individuals 
with the G allele (P < 1 ×  10− 5), and allelic imbalance in 
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Fig. 1 Functional nucleotide variants within the eQTL signals for HLA-DQA1 (a) and MRPL43 (b). Dots with a variety of colors indicate functions of 
the nucleotide variants as presented in the index bar. Line color of the nucleotide variant indicates the corresponding function shown at the last 
expression stage. Black boxes indicate exons. Chromosomal position is relative to the human reference sequence hg19
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heterozygous individuals was also observed for the nucle-
otide variant. Further analysis using SpliceAid2 identified 
a splicing factor, zinc finger ran-binding domain-con-
taining protein 2 (ZRANB2), that likely binds to the G 
allele of NC_000010.11:g.100986746C > G, but not to its 
C allele. A variant, NC_000010.11:g.100978794A > G, 
within the long 3′-UTR was specific for this isoform and 
was located in the 7-mer seed sequence for microRNA 
binding. The miRDB showed that miR-4447 microRNA 
bound with its G allele, but not with its A allele.

Deep learning analyses supported that all the pro-
moter (NC_000010.11:g.100987606G > T), intronic 
(NC_000010.11:g.100986746C > G), and 3′-UTR 
(NC_000010.11:g.100978794A > G) nucleotide sequence 
variants could contribute to the expression of MRPL43 
with independent functions across the expression stages. 
ExPecto predicted that transcription of MRPL43 was 
affected by the promoter variant, but not by the intronic 
or 3′-UTR variant. SpliceAI yielded a splice donor 
3 bp upstream of the intronic variant. The probability 
increased by 0.46 when its allele was substituted from C 
to G. miTAR predicted the miRNA of has-miR-4447 and 
its target, 3′-UTR of MRPL43. The calling probability 
decreased with the A allele (0.87) of the 3′-UTR variant 
compared with that with the G allele (0.98).

Discussion
The current genome-wide eQTL analysis with tran-
scriptome-wide data revealed cis-acting eQTLs for 
HLA-DQA1 and MRPL43 by employing a mixed model, 
showing associations with mRNA expression, ribosome 
occupancy, and protein abundance. All eQTLs included 
many potentially functional nucleotide variants in strong 
linkage over a wide range.

We found only one eQTL for MRPL43; this had flipped 
effects across expression stages, implying its involve-
ment in multiple functions. This eQTL covering the 
gene was 96,960 bp long, and a variety of functional 
nucleotide variants were identified within it. For exam-
ple, Fig.  2 shows three nucleotide variants in linkage 
with different functions, especially at different expres-
sion regulatory stages. NC_000010.11:g.100987606G > T, 
a nucleotide variant in the promoter of MRPL43, 
might alter the binding affinity to transcription fac-
tors such as GATA, a transcription factor binding site. 
NC_000010.11:g.100986746C > G, a nucleotide variant 

next to the splice donor site of exon 3, altered a splice 
site, which was likely to result in the production of an iso-
form of MRPL43. The NC_000010.11:g.100978794A > G, 
a nucleotide variant of a 7-mer microRNA binding site 
for miR-4447 in its 3′-UTR, controlled translation. We 
found that 94.7% of the Yoruba population was com-
posed of two major haplotypes (GCA and TGG) of 
these three variants (NC_000010.11:g.100987606G > T, 
NC_000010.11:g.100986746C > G, and 
NC_000010.11:g.100978794A > G). Thus, an end product 
can be determined by summing up all the effects of these 
variants in different stages of gene expression. Individu-
als with the T allele of NC_000010.11:g.100987606G > T 
have higher mRNA levels because of the enhanced tran-
scription factor binding affinity of the T allele. This is 
consistent with results from a previous study where the 
substitution of the T allele to a G allele in the GATA 
consensus sequence undermined GATA binding and 
gene expression [13]. The individuals with the G allele 
of NC_000010.11:g.100986746C > G in strong linkage 
with the T allele of NC_000010.11:g.100987606G > T 
show nearby splicing more frequently through enhanced 
recognition of the G allele over the C allele by the splic-
ing factor ZRANB2. As a result, these individuals have 
more specific isoforms with long 3′-UTRs. In gen-
eral, mRNAs with a long 3′-UTR appear to be less sta-
ble than those with a short 3′-UTR. In particular, the 
G allele of NC_000010.11:g.100978794A > G within 
the long 3′-UTR in strong linkage with the G allele of 
NC_000010.11:g.100986746C > G is a critical nucleotide 
of the miRNA binding site. The nucleotide can enhance 
the binding affinity and specificity as the fifth nucleotide 
of the miRNA binding sequence as shown in previous 
studies where mRNA sequence pairing with the nucleo-
tides 2–8 of the miRNA played a central role in binding 
to the miRNA bound by Argonaute [14]. This miRNA 
binding site has the important function of interfering 
with translation considering another miRNA binding 
site in proximity. Such multiple miRNA binding sites are 
considered to greatly destabilize mRNA [15]. This inter-
ference might be crucial to the isoform in producing pro-
tein, even contributing to the flipping effect. This flipping 
effect shows that it is the result of active control not pas-
sive control, unlike the buffer effect. The substantial con-
trol by the interference concurs with previous studies [16, 

Fig. 2 Example of various functions of multiple nucleotide variants in the strong linkage of the eQTL signal for MRPL43. Positions of nucleotide 
variants in DNA and RNA (a), functions of the nucleotide variants marked with an asterisk (b), expression effects resulting from the functions (c). 
Human reference sequence hg19 was used for consensus sequences. An asterisk indicates a nucleotide variant with major (top) and minor (bottom) 
alleles. Note that the GATA in (b) is presented as a candidate transcription factor that can cause differential binding affinity and might cause 
differential transcription by allele substitution

(See figure on next page.)
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17], in which elongation speed of translation was consid-
erably controlled for ribosomal proteins.
MRPL43, a nuclear gene, encodes a component of the 

large subunit of the mitochondrial ribosomal protein 
(MRP) and plays a core role in synthesizing proteins in 
the mitochondrion. The MRP is critical in mitochon-
drial dysfunction and some pathological conditions 
[18]. In particular, impaired translation in mitochon-
dria may result in many phenotypic abnormalities, 
including hypertrophic cardiomyopathy, psychomotor 
retardation, growth retardation, and neurological dete-
rioration [19–21]. A possibility under consideration is 
that the genetic variants responsible for regulating the 
expression of MRPL43 might influence these pheno-
types or their intermediate products. For example, indi-
viduals with the second most frequent haplotype (TGG 
of the functional variants) of eQTL for MRPL43 exhib-
ited reduced protein levels at the final stage as shown 
in the current study. This is a potential factor associ-
ated with susceptibility to diseases. Further studies are 
required to examine the contribution and the interac-
tion with other factors.

The promoter variant was found in a transcription 
factor binding site via the ChIP-seq experiments with 
RNA polymerase and relevant components and by vari-
ous regulatory chromatin states with histone marks and 
DNase. Thus, the binding affinity of the variant to some 
transcription factors differs by its allele substitution. 
For example, a stronger binding affinity (3.0–8.7 times) 
of its T allele to GATA was estimated based on a posi-
tion frequency matrix. Experimental investigation is 
needed to confirm the influence of the GATA binding to 
the promoter variant NC_000010.11:g.100987606G > T 
on transcribing the MRPL43. Likewise, specifically 
designed experiments would support the other causa-
tive variants, NC_000010.11:g.100986746C > G and 
NC_000010.11:g.100978794A > G, in splicing and micro-
RNA binding, respectively.

Furthermore, this study found several eQTLs in and 
around the HLA-DQA1 gene. Many nucleotide variants 
in this large region are in strong linkage. Furthermore, 
they are complexly linked to nucleotide variants outside, 
especially within the major histocompatibility complex. 
This necessitates a careful interpretation of functional 
variants, especially in assessing the effect size of func-
tional variants. Thus, studies with sophisticated design 
are required to identify functional variants with hetero-
geneous effects over different expression stages.

Because this study only dealt with the eQTLs simul-
taneously associated with mRNA expression, ribosome 
occupancy, and protein abundance, we did not exam-
ine regulatory functions of eQTLs associated with only 
one or two of them which might be caused by multiple 

functional variants in linkage. eQTLs identified at an 
early stage might act antagonistically with the nucleo-
tide alleles that compose a specific haplotype, and thus 
the effects produced by the eQTLs disappear at a later 
stage by the antagonistic function. Such a disappear-
ance is more likely observed as a buffering effect. In 
terms of genetics and evolution, the antagonistic func-
tion should be distinguished from the buffering effect. 
The antagonism is an active mechanism by genetic vari-
ants, and the buffering is a negative feedback mecha-
nism for homeostatic maintenance of protein levels.

Genotype imputation is considered an important pro-
cess that can infer missing genotypes of nucleotide var-
iants linked with known markers based on their linkage 
disequilibrium in a reasonable reference population. 
This enables us to identify more GWAS signals and 
integrate multiple studies for meta-analysis [22]. How-
ever, false genotypes produced by imputation may lead 
to bias in eQTL effect size. We conducted eQTL analy-
sis without any imputation of genotypes in the current 
study to avoid such biases because this study consid-
ered eQTL effect size rather than eQTL discovery.

The current study employed a mixed model with 
polygenic covariance among individuals to identify 
eQTLs. The mixed model approach helps avoid spuri-
ous eQTLs, which might be produced by population 
stratification [23]. The best linear unbiased estimates 
of eQTL effects using the mixed model were used to 
determine their identification [24]. Accuracy is crucial 
in the current eQTL analysis. This study focused not 
only on the identification of eQTLs but also the com-
parison of eQTLs in terms of expression products and 
stages to determine their functions.

Conclusions
The current genome-wide analysis revealed eQTL 
signals for MRPL43 and HLA-DQA1, showing asso-
ciations with mRNA expression, ribosome occupancy, 
and protein abundance. Heterogeneity was shown in 
their effect sizes across the stages of gene expression. 
A variety of functions across expression stages were 
identified within each signal. This study suggests that 
an end product of gene expression could be summed 
up by the individual functional effects of nucleotide 
variants. The eQTL for MRPL43 is a good example 
with multiple functions by different nucleotide variants 
in strong linkage, even showing a flipped effect. Many 
eQTLs associated with one or two of the parameters for 
mRNA expression, ribosome occupancy, and protein 
abundance in this study may have been caused by mul-
tiple functional variants in linkage. In particular, eQTLs 
identified at an early stage may have an antagonistic 
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function with the nucleotide alleles that compose a spe-
cific haplotype. Considering that many eQTLs gener-
ally have many nucleotide variants in linkage, research 
efforts on the decomposition and quantification of indi-
vidual functions are required to understand the under-
lying mechanism of differential gene expression and 
their roles in complex phenotypes.

Methods
Subjects and expression data
eQTL analysis was first conducted using expression data 
of mRNAs, ribosome occupancy, and proteins from 
lymphoblastoid cell lines (LCLs) of 63 Yoruba individu-
als in Ibadan, Nigeria who had participated in the Hap-
Map project. We used high resolution mRNA expression 
data produced by Pickrell et al. [25, 26]. They sequenced 
cDNA libraries for the RNA with polyadenylation from 
each individual in at least two lanes of the Illumina 
Genome Analyzer 2 platform and mapped reads to the 
human genome using MAQ v0.6.8. They had a median 
coverage of 8.6 million mapped reads per sample. We 
used ribosome occupancy data as an index of inter-
mediate regulations between transcription and post-
translation. The data were quantified by Battle et  al. [4] 
using the ARTseq Ribosome Profiling kit for mammalian 
cells (RPHMR12126) and had a median of 12.1 million 
mapped reads per individual. Both mRNA expression 
and ribosome profiling data were calculated as the sum of 
reads per kilobase per million mapped reads for all tran-
scripts of each gene in each individual. We used protein 
abundance data calculated as relative values to a SILAC 
internal standard sample (i.e., log2

sample
standard ) produced by 

quantitative protein mass spectrometry [4].
This analysis excluded all genes with three or more 

missing samples. mRNA expression, ribosome occu-
pancy, and protein abundance were independently stand-
ardized and quantile-normalized to reduce technical 
variation among the data sets [27]. Principal component 
analysis was then conducted to reduce the impact of hid-
den confounders from all the data sets of mRNA expres-
sion, ribosome occupancy, and protein abundance. Six, 
nine, and seven principal components were regressed out 
to maximize the number of eQTLs.

The corresponding genotypic data were obtained from 
the study of the 1000 Genomes Project Consortium 
[28], in which low-coverage whole-genome sequenc-
ing, deep exome sequencing, and dense microarray 
genotyping were used. Nucleotide variants with minor 
allele frequency < 0.1 or with Hardy-Weinberg disequi-
librium (P < 1 ×  10− 6) were removed. Only individuals 
with both genotypes and the specific molecular level 
were included in the corresponding analysis. In the 
current study, 63 individuals were analyzed for mRNA 

expression, 62 for ribosome profiling, and 51 for protein 
abundance.

Statistical methods
To discover eQTLs, we employed a mixed linear model 
that included random polygenic effects to explain the 
variability of individual genetic backgrounds. The poly-
genic variability can be estimated by the covariance 
structure of pairwise genomic similarity among individu-
als, based on the genotype information of genome-wide 
nucleotide variants. This avoids population stratification 
and explains the remaining genetic effects aside from the 
candidate locus, and as a result, false-positive associa-
tions can be reduced [29].

The analytical model employed in the current study 
was as follows:

where y is the vector (n × 1) of the gene expression lev-
els, n is the number of the gene expression levels, β is 
the scalar of the fixed minor allele effect of the candidate 
nucleotide variant, x is the design vector (n × 1) for the 
fixed effect, g is the vector (n × 1) of random polygenic 
effects, and ε is the vector (n × 1) of random residuals. 
Elements of the vector x are classified as the number of 
minor alleles (0, 1, or 2) under the assumption of an addi-
tive genetic model. The random variables g and ε in the 
analytical model have the following normal distributions:

where σ 2
g  is the polygenic variance component, σ 2

ε
 is the 

residual variance component, I is the identity matrix 
(n × n), and G is the n × ngenomic similarity matrix 
(n × n) with elements of pairwise genomic similarity 
coefficients based on genotypes of nucleotide variants. 
The genomic similarity coefficient (gjk) between individu-
als j and k can be calculated as follows [29]:

where nv is the number of nucleotide variants that con-
tribute to the genomic similarity, τij and τik are the num-
bers (0, 1, or 2) of minor alleles for the nucleotide variant 
i of the individuals j and k, and fi is the frequency of the 
minor allele. Polygenic and residual variance components 
were estimated using restricted maximum likelihood 
(REML). The REML estimates were first obtained by the 
expectation-maximization (EM) algorithm, then the final 
REML estimates were obtained by the average informa-
tion algorithm with the EM-REML estimates as initial 

y = xβ+ g + ε

g ∼ N
(

0,Gσ
2
g

)

ε ∼ N
(

0, Iσ 2
ε

)

gjk =
1

nv

nv
∑

i=1

(

τij − 2fi
)(

τik − 2fi
)

2fi
(

1− fi
)



Page 9 of 11Han and Lee  BMC Genomic Data           (2022) 23:42  

values. The nucleotide variant effect was estimated and 
tested given the variance component estimates. Multiple 
testing adjusted by permutation was employed to deter-
mine significant associations, and a conservative sig-
nificance threshold value of 1 ×  10− 5 was applied to the 
shared eQTL identification. The statistical analyses were 
conducted using the GCTA program [30]. Nucleotide 
variants with significant association were determined 
as eQTLs if they were independent signals. Linkage dis-
equilibrium (LD) blocks at association signals were con-
structed using Haploview [31].

Functional analysis
The eQTLs identified from genome-wide associa-
tion analyses were further examined to identify their 
functional roles. The functional roles were searched 
sequentially across expression stages. The eQTLs were 
examined to find the corresponding methylation sites 
using genome-wide analyses to identify the association 
of CpG-sites with their methylation levels observed by 
the Illumina HumanMethylation27 and Illumina Human 
Methylation 450 K [32, 33]. The eQTLs were investi-
gated to discover their histone marks using genome-wide 
chromatin profiles based on H3K4me3, H3K4me1, and 
H3K27ac produced by LCL-specific Hi-C and ChIA-
PET [34]. Epigenomic data including ChromHMM, his-
tone modification ChIP-seq, and DNase hypersensitivity 
resulting from the Roadmap Epigenomics study [35] were 
also utilized to find relevant functions of eQTLs.

Regulatory protein-binding sites were examined 
using the ChIP-seq data with RNA polymerase com-
ponents in various cell types from the ENCODE Pro-
ject [36], and the data processed using the narrowPeak 
algorithm were made publicly available in HaploReg 
v4 [37]. To examine the effects of the nucleotide vari-
ants on protein binding, the position weight matri-
ces were estimated by combining data collected from 
TRANSFAC [38], JASPAR [39], and other protein-
binding microarray experiments [40–42]. To investi-
gate allele-specific binding, we used allelic imbalance 
measurements between homologous chromosomes 
of heterozygous individuals using ChIP-seq [43]. The 
regulatory role of enhancers was also examined using 
genome-wide integration of enhancers and target genes 
using the GeneHancer database [44].

Subsequent analysis was conducted for association 
with expression data of isoforms, exons, or alleles. We 
used data for isoform-, exon-, and allele-specific tran-
scripts mapped with Genome Multitool mapper using 
paired-end 75 bp mRNA-seq data obtained using the 
Illumina HiSeq 2000 platform [13]. The data were made 
available after quality assurance by sample correlations 
and removal of technical variation by normalization.

To identify other post-transcriptional functions, 
the poly(A)-specific transcripts were compared as the 
poly(A) ratios of at least two poly(A) sites produced from 
a gene [45]. RNA decay rates obtained from a study with 
a time-course design were also compared by the alleles of 
eQTLs [46]. Splicing sites were predicted with intragenic 
nucleotide variants using RNA sequences bound by splic-
ing proteins in the database of SpliceAid2 [47].

Translational regulatory functions were examined for 
the eQTLs with the role of regulating the expression 
of miRNA. We used miRNA expression data produced 
using the Illumina HiSeq 2000 platform with single-end 
36 bp small-RNA-seq [13]. Associations of eQTLs with 
the abundance of aminoacyl-tRNA synthetase were 
examined to see whether tRNA shortage functioned as 
an obstacle to translation, using aminoacyl-tRNA syn-
thetase quantified by high-resolution mass spectrome-
try [4]. MicroRNA target sequences in the 3′-UTR were 
predicted using high-throughput profile data made 
available at miRDB that resulted from the crosslinking 
and immunoprecipitation followed by RNA ligation 
studies [48].

The eQTLs identified with potential functions were 
further investigated by predicting their functions using 
an artificial intelligence approach (deep learning-based 
methods). We employed ExPecto to predict the tran-
scriptional effects of nucleotide sequence variants. 
ExPecto enabled us to predict cell type-specific effects 
(218 tissues and cell types) of each nucleotide variant 
based on 2002 different profile data of histone marks, 
transcription factor binding sites, and DNA accessibil-
ity [49]. Splice-altering consequences were predicted 
employing the SpliceAI [50], a deep neural network 
algorithm. miRNAs and their targets were predicted 
using miTAR with DeepMirTar and miRAW datasets. 
This was devised based on both convolutional and 
recurrent neural networks to increase prediction accu-
racy [51].
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