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Abstract 

Background: Aberrant levels of 5‑hydroxymethylcytosine (5‑hmC) can lead to cancer progression. Identification 
of 5‑hmC‑related biological pathways in cancer studies can produce better understanding of gastrointestinal (GI) 
cancers.

We conducted a network‑based analysis on 5‑hmC levels extracted from circulating free DNAs (cfDNA) in GI cancers 
including colon, gastric, and pancreatic cancers, and from healthy donors. The co‑5‑hmC network was reconstructed 
using the weighted‑gene co‑expression network method. The cancer‑related modules/subnetworks were detected. 
Preservation of three detected 5‑hmC‑related modules was assessed in an external dataset. The 5‑hmC‑related 
modules were functionally enriched, and biological pathways were identified. The relationship between modules was 
assessed using the Pearson correlation coefficient (p‑value < 0.05). An elastic network classifier was used to assess the 
potential of the 5‑hmC modules in distinguishing cancer patients from healthy individuals. To assess the efficiency of 
the model, the Area Under the Curve (AUC) was computed using five‑fold cross‑validation in an external dataset. 

Results: The main biological pathways were the cell cycle, apoptosis, and extracellular matrix (ECM) organization. 
Direct association between the cell cycle and apoptosis, inverse association between apoptosis and ECM organiza‑
tion, and inverse association between the cell cycle and ECM organization were detected for the 5‑hmC modules in 
GI cancers. An AUC of 92% (0.73–1.00) was observed for the predictive model including 11 genes.

Conclusion: The intricate association between biological pathways of identified modules may reveal the hidden 
significance of 5‑hmC in GI cancers. The identified predictive model and new biomarkers may be beneficial in cancer 
detection and precision medicine using liquid biopsy in the early stages.
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Background
Circulating free DNAs (cfDNA) are free DNA fragments 
found in plasma, serum, or other body fluids. Physiologi-
cal events such as apoptosis or micrometastasis are the 
origin of cfDNAs in the body [1]. Previous studies have 
shown that cfDNA levels are 2–3 times greater in cancer 
patients than in healthy individuals [2]. Use of cfDNA in 
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cancer monitoring has emerged with the advent of liquid 
biopsy [3]. In cancer studies, cfDNAs are investigated for 
genomics and epigenomics patterns as they are repre-
sentative of the primary tumor, and because their levels 
can be assessed noninvasively. Thus, they may be a fea-
sible alternative to biomarker detection in the clinic  [1]. 
In cfDNA studies, 5-hydroxymethylcytosine (5-hmC) is 
a specific DNA modification used in cancer monitoring. 
However, it has rarely been applied in pan-cancer studies 
[4, 5]. Thus, we investigated 5-hmC-related gene clusters 
in gastrointestinal (GI) cancers.

5-hmC is an epigenetic mark originating from 
5-methylcytosine, a cytosine modification found in DNA 
[6]. 5-hmC plays a significant role in biological processes 
such as gene expression and cancer pathogenesis [7]. 
The presence of cytosine modifications, such as 5-hmC 
in gene bodies is related to transcription level; however, 
the mechanism is unknown [7]. To the extent that cfD-
NAs indicate primary tumor characteristics, detecting 
clustered genes related to increases/decreases in 5-hmC 
may allow noninvasive determination of the mechanism 
of such cytosine modifications.

Biomarkers are an important topic in modern precision 
medicine, especially in cancer study [8]. 5-hmC is widely 
studied in cfDNAs as a promising cancer biomarker as it 
can be detected rapidly and noninvasively. Such markers 
in cancer research could lead to biomarkers or predictive 
models that  can noninvasively classify normal and dis-
ease samples, which could be an integral part of cancer 
management in some cases [9–11].

In the context of systems biology, techniques and algo-
rithms have been developed to study complex biologi-
cal environments [12–14] and identify new and effective 
targets in the design of new drugs [11, 15, 16] or repur-
pose existing drugs for different treatments [17]. There 
are several methods for determining the biological 
mechanisms of 5-hmC-enriched genes. Network-based 
methods are promising for identifying clustered 5-hmC-
enriched genes that activate specific biological pathways. 
Detecting such pathways could result in more precise 
treatments and deeper insight into cancer biology. Pre-
dictive models for cancer detection play an essential part 
in research. Assessing 5-hmC markers in cfDNAs may be 
of great interest to scientists and physicians in terms of 
biological insights and practical predictive models.

In this study, we aimed to identify co-5hydroxym-
ethylcytosine (co-5hmC) modules, assess the biological 
relationships between them in GI cancers, and develop 
a diagnostic model that can distinguish between can-
cer patients and healthy individuals. First, differentially 
hydroxymethylated genes were detected, and the co-
5hmC network was reconstructed using the weighted-
gene co-expression network analysis (WGCNA) method. 

The co-5hmC network was clustered; the GI-related 
5-hmC modules were detected, and the relation between 
co-5hmC modules was assessed. The gene significance 
(GS) values were used as the cut-off index to select the 
most cancer-related genes. To develop a diagnostic model 
based on 5-hmC values, the elastic network method was 
implemented and validated in an external dataset.

Results
We detected hydroxymethylated modules to predict GI 
cancers, and investigated the biological patterns. We pre-
processed the data using the WGCNA method to recon-
struct a co-hydroxymethylated network, and extracted 
the hydroxymethylated modules related to GI cancers.

Coefficient variation and differentially hydroxymethyl-
ated genes (DHMG) filters were used on the data; 7000 
genes and all samples were included for downstream 
analyses. The network was reconstructed, and 14 mod-
ules were detected. Three modules had statistically trait-
significant p-values (p-value < 0.05), with an absolute 
value of Pearson correlation greater than 0.5. The sig-
nificant modules were denoted as GreenYellow, Tan, and 
Black, and included 94 genes, 91 genes, and 159 genes, 
respectively (Tables S1, S2, S3). These modules were 
functionally enriched; the most significant pathways are 
shown in Fig. 1 (p-value < 0.01). The GreenYellow module 
indicated biological pathways including ‘Cell cycle’, ‘Toll-
Like receptor cascades’, and ‘NOD1/2 signaling pathway’ 
(Fig. 1a). The Tan module indicated biological pathways 
including ‘Apoptosis’, ‘Adherens junction’, ‘DNA damage 
response (only ATM-dependent)’, ‘Neutrophil degranu-
lation’, and ‘BMP receptor signaling’ (Fig. 1b). The Black 
module indicated biological pathways including ‘RUNX3 
regulates immune response and cell migration’, ‘Extracel-
lular matrix organization’, ‘Integrin cell surface interac-
tions’, and ‘Transcriptional activation of dbpb from mRNA 
(Fig. 1c).

Module reproducibility
To demonstrate module preservation or reproducibility, 
we extracted two preservation statistics, Zsummary and 
Medianrank . Both indicated that the hydroxymethylated 
GI-related modules were preserved. The preservation 
results for 25%, 50%, and 75% of the data (GSE81314), 
and GSE89570 are provided in Supplementary tables S5 
and S6. The Zsummary values for the GreenYellow module 
were 12, 15, 16, and 18 ( Zsummary > 12 indicates highly 
preserved). The Zsummary values for the Tan module were 
12, 13, 15, and 16. The Zsummary values for the Black mod-
ule were 37, 35, 42, and 40. As the Black module was 
much larger than the GreenYellow and Tan modules, we 
extracted the Medianrank statistics, which are less sen-
sitive to module size. A smaller  larg Medianrank value 
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Fig. 1 Biological pathways related to three statistically significant gastrointestinal cancer subnetworks/modules



Page 4 of 9Moravveji et al. BMC Genomic Data           (2022) 23:49 

indicates greater preservation. The Medianrank values 
for the Black module were 4, 3, 8, and 3 out of 15. The 
Medianrank values for the GreenYellow module were 7, 
7, 6, and 6 out of 15. The Medianrank values for the Tan 
module were 5, 3, 5, and 5 out of 15.

Module association
The associations between GI-related modules were 
extracted using PCC. The association values and their 
biological processes are illustrated in Fig. 2. We detected 
a reverse association between the GreenYellow and Black 
modules (PCC = -0.88), a reverse association between the 
Black and Tan modules (Pearson Correlaion Coefficient 
(PCC) = -0.8), and a direct association between the Gree-
nYellow and Tan modules (PCC = 0.96). We detected 
mostly cell cycle-related biological processes such as 
regulation of cell cycle and regulation of cell division for 
the GreenYellow module, apoptosis-related biological 
processes for the Tan module such as apoptotic process, 
and cell adhesion and extracellular-related biological pro-
cesses for the Black module (Fig. 2).

Predictive modules for detection of GI cancers in cfDNA
To develop a predictive model for classifying cancer and 
normal cfDNA, we used the elastic net method for the 
GreenYellow, Tan, and Black hydroxymethylated mod-
ules. To reduce the feature space, we computed the gene 
significance (GS) for each gene; genes with a GS greater 
than 0.5 were selected as the input for the elastic net 
model (Table S1). In the GreenYellow module, 11 genes 

were selected as significant features for the elastic net. 
The model was trained, and the best alpha and lambda 
values were estimated as 0.216 and 0.048, respectively. 
The Area Under the Curve (AUC) was estimated as 92% 
(confidence interval: 0.731–1.000) (Fig.  3a). The final 
features extracted from the GreenYellow module (11 
features) and the estimated coefficients are presented 
in Table S4. The final selected genes were c21orf91, 
C4orf33, dbf4, gapt, gucy1b3, kiaa1468, klrg1, mthfd2l, 
samd11, sod3, and vrk1. The gene expression changes of 
the final 11 genes were assessed in different GI cancers 
(Table 1) (FDR < 0.05); five of the 11 genes exhibited a sig-
nificant change in gene expression in different GI cancers 
(Table 1).

The other modules did not indicate a high AUC; thus, 
the GreenYellow module was selected for the final model. 
The clustering potential of the GreenYellow module was 
assessed using a heatmap; the GreenYellow module was 
able to cluster normal/cancer samples well (Fig. 3b). The 
heatmap includes 22 genes in the GreenYellow module 
with a GS greater than 0.5, and 68 samples (Table S1).

Discussion
Although 5-Hydroxymethylcytosine signatures in cell-
free DNAs provide information about tumors, the co-
5-Hydroxymethylcytosine subnetworks/modules, their 
biological pathways, and the associations of biological 
processes in cfDNAs related to 5-hmC were not thor-
oughly investigated. 5-hydroxymethylated modules 
may be a cancer signature, and may be useful as clinical 

Fig. 2 Inverse/direct interplay between 5‑hmC gastrointestinal cancer subnetworks/modules. The node color represents the biological process. The 
numbers on the edges represent the PCC

(See figure on next page.)
Fig. 3 Distinguishing ability of 5‑hmC gastrointestinal cancer modules/ subnetworks. a Area under the curve (AUC) for GreenYellow subnetwork/
module. This Elastic Net model includes c21orf91, C4orf33, dbf4, gapt, gucy1b3, kiaa1468, klrg1, mthfd2l, samd11, sod3, and vrk1. b Heatmap of 
GreenYellow subnetwork/module. The heatmap includes 22 genes of the GreenYellow module with gene significance greater than 0.5, and 68 
samples
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Fig. 3 (See legend on previous page.)
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diagnostic biomarkers with liquid biopsy for a broad 
range of cancers [18, 19].

We reconstructed the 5-hydroxymethylated network 
and clustered it to detect the GI-cancer-related mod-
ules. The reproducibility of GI cancer-related modules 
was assessed [8, 11]. The biological pathways of signifi-
cant modules were detected and visualized. To develop 
a predictive model for distinguishing GI patients from 
healthy individuals, the GS method and elastic net clas-
sifier were used for feature selection and model specifi-
cation, respectively. The cross-validation, heatmap, and 
AUC were used for model validation.

cfDNAs are detectable using liquid biopsy, and could 
be used in the clinic to provide more precise therapies 
in the early stages [2, 20, 21]. Stratifying GI patients 
and healthy individuals using a limited number of genes 
would be useful and cost-effective, especially as a non-
invasive method. In this study, the GreenYellow module 
was found to be GI-related; its potential in stratifying 
patients and healthy individuals was computationally val-
idated using the elastic net model and hierarchical clus-
tering (Fig. 3a, b). After experimental validation, it could 
be used in the clinic for cancer prediction.

The biological pathways and processes of three GI 
cancer-related modules, and their associations, were 
assessed in this study (Figs.  1, 2). The associations 
between cell-cycle arrest and apoptosis were indepen-
dently investigated in several cancer-related studies 
[22–24]. In our study, a direct association between these 
metastasis-prone biological processes was detected for 
aberrant 5-hmC genes in GI cancers (Fig. 2). Close direct 
association may indicate concurrent activation of cell-
cycle and apoptosis processes through 5-hmC aberra-
tions in GI cancers.

In contrast, there is a close inverse association between 
cell-cycle-related biological processes and extracellular 
structure organization/cell adhesion-related biological 
processes (Fig. 2). In studies conducted by Walker et al. 
and Pickup et al., several aspects of extracellular matrix 
(ECM) dysregulation leading to cancer progression and 
metastasis were individually explored [25, 26]. It was 
reported that the ECM concentration increases and the 

ECM stiffens during tumor development. The stiffened 
ECM increases cell mobility and reduces the expression 
of genes that typically inhibit cell-cycle progression and 
proliferation [25, 26]. In our study, we detected an inverse 
association between ECM dysregulation and cell-cycle 
activity for the Black and GreenYellow hydroxymeth-
ylated modules (Fig.  2), which may be consistent with 
results reported by Walker et  al. and Pickup et  al. [25, 
26]. However, they did not study cfDNAs. The LUX gene 
family secreted by primary tumor cells is responsible for 
ECM stiffness and total ECM concentration [25]. Some 
members of the LUX family were detected in our study, 
including lux, lux1, and lux3. They exhibited a low level 
of 5-hmC. An inverse association between the high vol-
ume of ECM stiffness and reduced cell cycle inhibition 
may be due to aberrant 5-hmC in primary cancer cells 
detected in cfDNAs.

Many previous studies have investigated the role of 
5-hmC in the regulation of gene expression [4, 27–29]. 
Due to a lack of gene expression values, we were unable 
to assess the correlation between dysregulation of gene 
expression and aberrant 5-hmC values for detected 
genes in significant modules in this study. However, we 
assessed the gene expression changes of 11 final genes 
using TCGA data. Genes such as samd11 and mthfd2l 
were reported as diagnostic 5-hmC signatures in previ-
ous studies [2, 30]. These biomarkers were detected in 
the GreenYellow and Black modules. Although there is no 
experimental evaluation in our study, on the basis of pre-
vious studies, the new genes detected in these modules 
may be new 5-hmC-related biomarkers for GI cancers.

The other significant finding in this study is a close 
inverse association between the Black and Tan modules, 
which indicate apoptosis and ECM organization and 
pathways, respectively. Signaling properties of the ECM 
such as three-dimensional organization of cells and ECM 
structures have significant impacts on cellular processes 
such as proliferation and apoptosis [31]. Moreover, the 
DNA damage response pathway, which is significant in 
the Tan module, is the vital determinant of the plastic-
ity of the cellular genome and depends on signaling path-
ways that regulate apoptosis. Cell adhesion to the ECM, 

Table 1 Gene expression changes

The numbers in the table indicate the logarithm of fold change (FDR < 0.05)

Gene stable ID Gene name Gene type Gastric cancer Colon cancer Hepatocellular 
carcinoma

ENSG00000154642 C21orf91 protein_coding ‑0.90

ENSG00000151470 C4orf33 protein_coding 2.04

ENSG00000100749 VRK1 protein_coding 1.08 1.02 1.66

ENSG00000006634 DBF4 protein_coding 1.45 1.74

ENSG00000175857 GAPT protein_coding ‑1.47



Page 7 of 9Moravveji et al. BMC Genomic Data           (2022) 23:49  

as a part of ECM organization, regulates several of these 
pathways [31, 32]. Less cell–ECM contact leads to more 
apoptosis. This finding is consistent with the results 
from two 5-hmC-related modules (Figs.  1, 2). We con-
cluded that activation of ECM and apoptosis pathways 
may be related to aberrant 5-hmC values. Our findings 
for 5-hmC pathways were not experimentally validated; 
however, we computationally validated the reducibility 
in another dataset. Accordingly, some of the associations 
found in our study were reported in previous studies on 
5-hmC in GI cancers, including the inverse associations 
between cell-cycle and ECM organization, and between 
apoptosis and ECM organization [27, 28]. However, some 
of the associations in GI cancers have not been reported, 
and are good targets for future research. Although we 
assessed the associations between biological pathways 
of GI-related modules, the module activities were not 
assessed in each GI-related cancer. Cubuk et al. assessed 
the module activities by integrating gene expression into 
biological pathways [33].

As cfDNAs mirror the primary characteristics of every 
patient, they may be an option for precision medicine in 
the clinic [21, 34]. In the future, checking the 5-hmC pro-
file may be practical in precision medicine for GI cancers 
with aberrations, such as a patient’s specific 5-hmC. With 
5-hmC-related modules and their associations, predictive 
models based on 5-hmC may be highly practical for cfD-
NAs as they are detectable using a noninvasive method. 
Such predictive models could be used in the clinic to dis-
tinguish patients from healthy individuals.

The studies by Song et  al. and Li et  al. [4, 18] were 
performed to detect cancer biomarkers using statisti-
cal methods including the fold change and t-test. In this 
study, we used a network-based method to detect GI-
related 5-hmC modules, their associations, and 5-hmC 
biomarkers for GI cancers.

Conclusions
The effect of 5-hmC in GI cancers is not fully understood. 
5-hmC-related modules  in gastrointestinal cancers, 
their biological pathways, and the associations among 
them might be used efficiently in the clinic, and also such 
studies can provide biological insights into GI cancers. 

Methods
Data and preprocessing
The GSE81314 and GSE89570 datasets were downloaded 
from the National Center for Biotechnology Informa-
tion (NCBI). The 5-hydroxymethylcytosine (5-hmC) 
data were used for downstream analyses. GSE81314 
includes 5-hmC methylation values for healthy donors 
(n = 16), lung cancer, hepatocellular carcinoma (n = 24), 

pancreatic cancer (n = 15), breast cancer (n = 6), colon 
cancer (n = 8), glioblastoma (n = 8), and gastric cancer 
(n = 9); breast, lung, and glioblastoma cancers were fil-
tered out. In addition, we included 5-hmC profiles for 
90 healthy individuals and 191 patients diagnosed with 
colorectal (n = 71), gastric (n = 61), pancreatic (n = 25), 
and liver (n = 34) cancer in our study from GSE89570 for 
computational validation.

The processed 5-hmC values were downloaded. For 
preprocessing, genes without values (NA) were filtered 
out. The coefficient of variation was computed for each 
gene; the first quartile of genes that had minimum vari-
ation among the samples was filtered out. After preproc-
essing, the FPKM values of 5-hmC were computed and 
median-centered using R [18]; the median-centered data 
are robust to outliers. Differentially hydroxymethylated 
genes (DHMGs) were detected at the probe level using 
the LIMMA package in R (FDR < 0.05, Benjamini Hoch-
berg adjustment) [35]. The significant methylated genes 
were computed separately for each cancer type, and 
between healthy individuals and cancer patients. The sig-
nificant DHMGs were combined to reconstruct the co-
5hmC network.

To assess the gene expression changes of the final gene 
list, the gene expression of GI cancers was downloaded 
from the TCGA database [36] and normalized using 
edgeR package [37]. The differentially expressed genes 
were extracted [37].

Network reconstruction and GS detection
We detected 5-hmC GI-related modules/subnetworks 
in cfDNAs. After preprocessing and detecting DMGs, 
the co-hydroxymethylated network was reconstructed 
using the WGCNA approach with the Pearson correla-
tion coefficient (WGCNA version 1.71) [38]. As our data 
were spread around zero and the values were small, we 
did not use the scale-free part of the WGCNA approach 
(soft thresholding power = 1). The topological overlap 
matrix  and connectivity measures  were computed  to 
detect more dense clusters [11, 38, 39] then,   hierarchi-
cal clustering was used to detect modules. The minimum 
module size and deepSplit parameter were set as 30 and 
4, respectively. For GI-related modules, the first principle 
of each module was computed as module eigengenes, and 
the Pearson correlation coefficients (PCC) between mod-
ule eigengenes and cancer trait (cancer = 1/healthy = 0) 
were identified. Modules with a PCC greater than 0.5 and 
significant p-values were selected as GI-related modules.

To detect biological pathways and biological processes 
related to GI-cancer modules, we conducted overrepre-
sentation analyses using the ConsensesPthDB webserver 
(p-value cutoff = 0.01, minimum overlap = 2). 
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Reproducibility of modules
Module reproducibility is important, and was checked 
with preservation statistics. To investigate the reproduc-
ibility of detected modules, we used the Zsummary and 
Medianrank statistics [11, 39]. As the validation datasets 
for preservation analysis were limited, we computed the 
preservation statistics for the external dataset GSE89570. 
We randomly selected 75%, 50%, and 25% of the samples 
from GSE81314 for the pattern preservation analyses.
Zsummary and Medianrank were computed. A larger 

Zsummary and smaller Medianrank indicate greater mod-
ule pattern preservation. A Zsummary greater than 10 indi-
cates preserved module patterns; there is no cutoff for 
Medianrank [39]

Association between modules
The association between modules was computed using 
the PCC for the first principle of each module. The first 
principle of a module is the representative containing the 
most information about the module/subnetwork.

Predictive model for detection of GI cancers in cfDNA
As early detection of GI cancer is of great importance 
in the clinic, we developed a predictive model for clas-
sifying patients. We defined two labels for classification, 
cancer and normal. We included the significant mod-
ules GreenYellow, Tan, and Black as a feature space for 
three classification models. As there were sample size 
limitations compared to the feature space for all models, 
we used the elastic net classification model. The elas-
tic net model is a regularized model that combines the 
least absolute shrinkage, selection operator (lasso), and 
ridge methods. There are two parameters in the elastic 
net, alpha and lambda. Lambda indicates the penalty 
effect, and alpha indicates the effects of norm 1 or norm 
2 on the elastic model. If the value of alpha is 1, the 
lasso model is used. If the value of alpha is 0, the ridge 
model is used. To obtain the best alpha and lambda val-
ues, we used the cv.glmnet and cva.glmnet functions 
in R, which are cross-validation-based functions that 
find the optimum lambda and alpha values. Regularized 
models such as the elastic net are suitable for reduc-
ing overfitting. The area under the curve (AUC) for the 
models was computed for each module; the model with 
the greatest AUC was selected as the final model. In 
cross-validation, 75% of the samples were used to train 
the predictive model. The AUC was computed for the 
external dataset GSE89570. The GI-related cancer sam-
ples and healthy samples were included in the validation 
analysis (glmnet version 4.1.4, caret version 6.0.9, e1071 
version 1.7.9, R version 4.0.5 64-bit).

Before using the elastic net on the modules, we computed 
the GS for three significant modules to indicate the correla-
tion between the eigengene vector of the module and the trait 
(cancer/normal hydroxyl methylation). A greater GS indicates 
greater relation to the trait. We used the GS as a feature selec-
tion method for our classification model (cutoff = 0.5).
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