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Abstract 

Background: Colitis-associated colon cancer (CAC) patients have a younger age of onset, more multiple lesions and 
invasive tumors than sporadic colon cancer patients. Early detection of CAC using endoscopy is challenging, and the 
incidence of septal colon cancer remains high. Therefore, identifying biomarkers that can predict the tumorigenesis of 
CAC is in urgent need.

Results: A total of 275 DEGs were identified in CAC. IGF1, BMP4, SPP1, APOB, CCND1, CD44, PTGS2, CFTR, BMP2, KLF4, 
and TLR2 were identified as hub DEGs, which were significantly enriched in the PI3K-Akt pathway, stem cell pluripo-
tency regulation, focal adhesion, Hippo signaling, and AMPK signaling pathways. Sankey diagram showed that the 
genes of both the PI3K-AKT signaling and focal adhesion pathways were upregulated (e.g., SPP1, CD44, TLR2, CCND1, 
and IGF1), and upregulated genes were predicted to be regulated by the crucial miRNAs: hsa-mir-16-5p, hsa-mir-1-3p, 
et al. Hub gene-TFs network revealed FOXC1 as a core transcription factor. In ulcerative colitis (UC) patients, KLF4, CFTR, 
BMP2, TLR2 showed significantly lower expression in UC-associated cancer. BMP4 and IGF1 showed higher expression 
in UC-Ca compared to nonneoplastic mucosa. Survival analysis showed that the differential expression of SPP1, CFRT, 
and KLF4 were associated with poor prognosis in colon cancer.

Conclusion: Our study provides novel insights into the mechanism underlying the development of CAC. The hub 
genes and signaling pathways may contribute to the prevention, diagnosis and treatment of CAC.

Keywords: Colitis-associated colon cancer, Differentially expressed genes, Signaling pathways, functional enrichment 
analysis, Prognosis
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Introduction
Colon cancer is the third leading cause of cancer-associ-
ated death worldwide. Sporadic, hereditary, and colitis-
associated colon cancer (CAC) are the three categories 
of this disease based on etiology. CAC is a major com-
plication of inflammatory bowel disease (IBD). Com-
pared with the age- and sex-matched general population, 

patients with IBD have a twofold increased risk of devel-
oping colon cancer [1]. Owing to a rising incidence 
and duration of IBD, the prevalence of CAC has also 
increased. Previously published epidemiological data has 
shown that the incidence of CAC ranges from 0.64% to 
0.87% among the general population. However, 8%–16% 
of these patients die of the disease [2–4]. In terms of clin-
ical features, CAC patients have a younger age of onset 
and more multiple lesions and invasive tumors than spo-
radic colorectal cancer patients; in addition, the progno-
sis of these patients is poor [5]. Early detection of CAC 
using endoscopy is challenging, and the incidence of 
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septal colon cancer remains high. Thus, the discovery of 
specific molecular markers for CAC is urgently required.

It is widely known that microarray and RNA sequenc-
ing are both primary techniques used in transcriptome 
analysis. Horever, microarray is the common choice of 
most researchers since RNA-Seq is a expensive technique 
with data storing challenges and complex data analysis 
[6, 7]. Microarrays have widely been used to explore and 
identify the specific biomarkers for diagnosis and prog-
nosis of disease [8]. Previously, bioinformatics analyses 
of CAC were mainly conducted by using gene chips of 
ulcerative colitis and colon adenocarcinoma [9, 10]. How-
ever, not all patients with ulcerative colitis would develop 
colon cancer. Meanwhile, some studies have demon-
strated that there were significant changes in genome-
wide RNA patterns between sporadic colon cancer and 
CAC patients [11]. Therefore, as the genes involved in the 
development of CAC and the relationship between those 
genes is still unclear [12], it is imperative to explore and 
reveal the accurate genes and signaling pathways of CAC.

In this study, we downloaded GSE43338 and GSE44904 
datasets from the publicly available Gene Expression 
Omnibus (GEO) database and normalized the data 
to identify the differentially expressed genes (DEGs) 
between CAC and normal adjacent (control) tissues. In 
addition, this study provides a multi-level bioinformat-
ics analysis strategy for identifying DEGs that consists 
of modular analysis, functional enrichment analysis, and 
screening of core genes by constructing a protein–pro-
tein interaction network (PPI) and the Sankey diagram 
of core genes. Gene-related network analyses were per-
formed using NetworkAnalyst. The mRNA expression of 
hub genes were examined in ulcerative colitis-associated 
cancer patients. Prognostic analysis of hub genes was 
conducted based on The Cancer Genome Atlas (TCGA) 
data. Our findings may contribute to a better under-
standing of the mechanisms underlying the occurrence 
and development of CAC.

Material and methods
Acquisition and processing of gene expression set
GSE44904 and GSE43338 datasets were downloaded from 
the GEO database (Gene Expression Omnibus, https:// 
www. ncbi. nlm. nih. gov/ geo). The platform for the dataset 
GSE44904 is GPL7202 (Agilent-014868 Whole Mouse 
Genome Microarray 4 × 44  K G4122), which includes 
the AOM/DSS group (n = 3), DSS group (n = 3), AOM 
group (n = 3), and control group (n = 3). The platform for 
dataset GSE43338 was GPL339 ([MOE430A] Affymetrix 
Mouse Expression 430A Array). The CAC group (n = 4) 
and CAC control group(n = 2) were selected as per the 
needs of the study. The R software limma package Ver-
sion 4.0, (http:// www. bioco nduct or. org/) [13] was used to 

calibrate the data, the platform annotation file was used to 
annotate the probe, and the probe that did not match the 
gene (gene symbol) was removed. In addition, for multiple 
probes mapped to the same gene, the average value was 
calculated as the final expression value.

Screening and VENN analysis of DEGs
Two or more groups of samples were compared using the 
limma R package, and the genes with adj. P. Val < 0.05 and 
|log fold change (FC)|> 2 were considered to be DEGs. 
The upregulated and downregulated gene lists were saved 
as Excel files, and the TXT files of all gene lists sorted by 
logFC in each dataset were saved for subsequent analysis. 
The bioinformatics online tool (AIPuFu, www. aipufu. com) 
was used to analyze the data obtained by VENN. The DEGs 
in the GSE44904 dataset were screened by VENN to iden-
tify the differential genes expressed alone in the AOM/DSS 
group. Then, above differential genes intersecting with the 
upregulated and downregulated DEGs of GSE43338 data-
set were used as the target DEGs for follow-up analysis.

Construction of PPI protein interaction network 
and module analysis
The Search Tool for the Retrieval of Interacting Genes 
(STRING, https:// cn. string- db. org/) is an online database 
that explores functional interactions between proteins 
encoded by differential genes and visualizes the PPI-
protein interaction network of DEGs [14]. We selected 
the PPI relation pairs with a combined score > 0.4, elimi-
nated the scattered PPI pairs, and mapped them to the 
network. The PPI network diagram was constructed 
using the Cytoscape software (https:// cytos cape. org/). 
The MCODE plugin in the Cytoscape software was used 
to filter the submodules based on the default param-
eters "Degree Cutoff = 2″, "Node Score Cutoff = 0.2″, 
"K-Core = 2″ and " Max. Depth = 100".

Screening of hub genes for DEGs
The Cytohubba plug in the Cytoscape software was used 
to screen hub genes. TOP 15 nodes were calculated by 
Degree, Closeness and Radiality methods in Cytohubba. 
Scores were calculated by the Cytohubba plugin, and 
the top 11 genes with the most significance in the sur-
vival analysis were selected as hub genes according to 
their score.

Functional enrichment analysis of genes
The database used for annotation, visualization, and inte-
grated discovery (DAVID, http:// david. ncifc rf. gov/) is an 
online tool that provides a comprehensive set of func-
tional annotation methods for a range of genes or pro-
teins provided by researchers [15]. The identified genes 
were analyzed for GO annotation and KEGG (https:// 
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www. kegg. jp/ kegg/ kegg1. html) pathway enrichment 
using the DAVID tool. P < 0.05 was selected as the thresh-
old for considering genes to be enriched, and the TXT 
file of the above analysis results was downloaded for fur-
ther analysis.

Analysis of transcriptional factors (TFs) and miRNAs of hub 
genes
NetworkAnalyst3.0 (https:// www. netwo rkana lyst. ca) is a 
comprehensive network visual analysis platform for gene 
expression analysis and meta- analysis [16]. JASPAR data-
base on the platform was used to analyze the TFs related 
to the hub genes. The gene-miRNA target interaction net-
work was built using the miRNet 2.0.

mRNA expression of hub genes were examined in patients
Microarray mRNA expression data of GSE3629 was 
taken from GEO. All statistical analyses and plots were 
conducted using R software. Shapiro–Wilk normality test 
and Wilcoxon rank-sum test were used to analyze the 
expression of hub genes in UC-Ca and UC-NonCa sam-
ples, respectively [17].

Survival analysis of hub genes
The survival analysis of the identified hub genes was 
carried out by using the online software UALCAN 
(http:// ualcan. path. uab. edu/ index. html), which uses 
TCGA Level 3 RNA-seq and clinical data from 31 can-
cer types. UALCAN can estimate the effect of gene 
expression levels and clinicopathologic features on 
patient survival [18].

Results
Microarray data normalization and identification of DEGs
The chip expression datasets GSE44904 and GSE43338 
were normalized, and the results are shown in Fig.  1. 
The limma R package (adjusted p < 0.05, and | log fold 
change (fc) |> 2) was used to screen DEGs. First, dif-
ferent groups in GSE44904 were compared, the differ-
ent volcanoes plots are shown in Fig.  2a- c. Second, a 
total of 905 DEGs, comprising 496 upregulated and 409 
downregulated genes, were screened from the dataset 
GSE43338. The DEGs of GSE43338 datasets are shown 
in Fig. 2d. A heat map was drawn for the top 100 DEGs 
as shown in Fig.  2e&f. Based on the different groups 
in the GSE44904 dataset, we further performed Venn 
analysis to screen out DEGs solely in CAC. Then a total 
of 1063 DEGs were identified, comprising 503 upregu-
lated and 560 downregulated genes (Fig.  2g-h). Based 
on the DEGs screened from the two data sets, a Venn 
analysis was repeated, and 275 overlapping genes were 
found, comprising 103 upregulated and 172 downregu-
lated genes (Fig. 2i-j).

PPI network construction and functional analysis of DEGs
The STRING online database was used to analyze the 
275 intersecting DEGs. A PPI network was constructed 
as shown in Fig.  3a. To study the functional annotation 
of the selected DEGs, DAVID analysis was performed to 
categorize genes by biological process (BP), molecular 
function (MF), and cellular component (CC). The results 
were considered statistically significant at p < 0.05; the 
GO results are shown in Fig. 3c. BP mainly includes posi-
tive regulation of transcription from RNA polymerase II 
promoter, oxidation–reduction process, negative regula-
tion of transcription from RNA polymerase II promoter, 
negative regulation of cell proliferation, positive regula-
tion of transcription, DNA-templated, cell proliferation, 
transport, inflammatory response, negative regulation 
of transcription, DNA-templated, cell adhesion, among 
others. CC mainly includes extracellular space, plasma 
membrane, extracellular exosome, extracellular region, 
integral component of plasma membrane, endoplasmic 
reticulum membrane, Golgi apparatus, endoplasmic 
reticulum, and others. MF mainly includes hormone 
activity, transporter activity, calcium ion binding, recep-
tor binding, heparin binding, and oxidoreductase activ-
ity. We performed KEGG analysis of DEGs and as shown 
in Fig.  3e, the pathways mainly enriched were ovarian 
steroidogenesis, fat digestion and absorption, metabo-
lism, vitamin digestion and absorption, and regulation of 
pluripotency of stem cells, arachidonic acid metabolism, 
FoxO signaling pathway, aldosterone-regulated sodium 
reabsorption, bile secretion, PI3K-Akt pathway, cancer, 
and ether lipid metabolism.

To further understand the DEGs, the MCODE plugin 
in the Cytoscape software was subsequently used for 
modular analysis, and the sub-modules with high scores 
were selected with a score of 9. Module genes were SPP1, 
Tgoln2, ApoB, FSTL1, LAMB1, LAMC1, CHGB, BMP4, 
and CYR61 (Fig.  3b). The GO function analysis results 
for the submodule genes are shown in Fig. 3d. BP mainly 
includes extracellular matrix organization, cell adhesion, 
positive regulation of epithelial cell proliferation, and 
positive regulation of cell migration. CP mainly includes 
the extracellular region, extracellular space, and extracel-
lular exosomes. MF mainly includes heparin binding and 
extracellular matrix binding. KEGG pathway analysis 
showed that genes were mainly enriched in ECM-recep-
tor interaction, focal adhesion, PI3K-Akt signaling path-
way, and cancer pathways, such as small cell lung cancer 
pathways (Fig. 3f ).

Hub genes selection and analysis
The scores of DEGs were calculated using the Cytoscape 
software, and the top 11 genes were selected as hub genes 
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(Fig.  4a). These included IGF1, BMP4, SPP1, APOB, 
CCND1, CD44, PTGS2, CFTR, BMP2, KLF4, and TLR2. 
Detailed information on the hub genes, is shown in 
Table 1. The scores calculated by the Radiality and Close-
ness methods in the cytohubba pluginto were shown in 
Table S1. To determine the enriched pathways terms for 
hub genes, KEGG pathway analysis was performed using 
DAVID. The genes were enriched in signaling pathways 
regulating many biological functions (Fig. 4b). The San-
key diagram shows the distribution of hub genes in the 
different signaling pathways (Fig. 4c): signaling pathways 

regulating pluripotency of stem cells (enriched genes: 
IGF1, BMP4, BMP2, KLF4; p = 0.0015), pathways in can-
cer (enriched genes: BMP4, BMP2, CCND1, IGF1, and 
PTGS2; p = 0.0035), proteoglycans in cancer (enriched 
genes: CCND1, IGF1, CD44, and TLR2; p = 0.0043), 
AMPK signaling pathway (enriched genes: CCND1, 
IGF1, CFTR; p = 0.0186), PI3K-Akt signaling pathway 
(enriched genes: CCND1, SPP1, IGF1, TLR2; p = 0.0196), 
Hippo signaling pathway (enriched genes: BMP4, 
BMP2, CCND1; p = 0.0273), and pathways involved in 

Fig. 1 Normalized gene expression. The normalization of GSE44904 dataset (a and b). The normalization of GSE43338 dataset (c and d). Blue 
represents data before normalization, and red represents data after normalization
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Fig. 2 Identification of DEGs from two dataset chips. Different groups in GSE44904 dataset: AOM/DSS VS Control group (a), AOM VS Control group 
(b), DSS VS Control group (c), and (d) GSE43338 dataset (CAC VS Control group). adj. P. Val < 0.05 and | log a fold change |< 2, red dots represent 
upregulated genes, green dots represent downregulated genes, and black dots represent genes with no significant difference. Heat maps of 
the top 100 DEGs in GSE44904 (e) and GSE43338 (f) datasets. Red indicates relative upregulation of gene expression; green indicates relative 
downregulation of gene expression. VENN diagram of DEGs identified from datasets (g&h: DEGs were only expressed in the AOM/DSS group from 
GSE44904 dataset; i&j: overlapping DEGs which were upregulated and downregulated in the two datasets)
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Fig. 3 Protein–protein network and module analysis of DEGs. The network map of DEGs was constructed using STRING (a). The modular analysis 
was carried out on the network to screen out the module (b) with the highest score (MCODE score = 9.0). Red represents upregulated genes and 
the blue represents downregulated genes. Gene ontology (GO) enrichment analysis in DEGs and module genes were performed using the DAVID 
Database (c: DEGs, d: module genes); Classification: Biological Process (BP), B: Cellular Component (CC), C: Molecular Function (MF). KEGG pathways 
using the ggplot2 package in R language for visualization (e: DEGs, f: module genes). The size of the dot represents the amount of gene enrichment, 
and the color of the dot represents p value
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Fig. 4 The hub genes were screened and analyzed by KEGG and correlation analysis. The top 11 genes with the most significance were selected 
as hub genes according to the score (a). KEGG pathway analysis of hub genes was analyzed by DAVID (b). The distribution relationship between 
hub genes and pathways (c): Red represents upregulated genes and blue represents downregulated genes. Correlation analysis of core TF and hub 
genes (d) and gene-miRNA interactions network (e), circles represents genes, diamonds represents TFs, and squares represents the miRNAs, sizes 
represents the degree
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focal adhesion (enriched genes: CCND1, SPP1, IGF1; 
p = 0.0483).

The TF-gene regulatory network was constructed 
based on the JASPAR database on the Network Ana-
lyst platform. Figure  4d depicts the transcription fac-
tors that can regulate two or more genes. In addition 
to hub genes, there were 46 transcription factors in 
the regulatory network, and 86 relationship pairs were 
established. Among the predicted transcription factors, 
FOXC1 is considered to be the core TF that can regu-
late multiple genes, including SPP1, IGF1, BMP4, TLR2, 
CD44, KLF4, and CFTR. In order to further investigate 
the upregulated genes in the hub genes, we performed 
gene-miRNA interactions network using miRNet 2.0. 
A total of 8 genes, 613 miRNAs, and 823 gene-miRNA 
pairs were registered in the network (Fig.  4e). Main 
miRNAs with interactions of more than six genes are 
listed in Table S2. It was predicted that hsa-miR-16-5p 
could regulate CCND1, CD44, PTGS2, IGF1, APOB, 
SPP1, and BMP4, while hsa-miR-1-3p could regulate 
CCND1, CD44, IGF1, PTGS2, APOB, and BMP4.

mRNA expression of the hub genes in patients
mRNA expression results of hub genes in the GSE3629 indi-
cated that CFTR(p < 0.01), KLF4(p < 0.05), BMP2(p < 0.05) 
and TLR2(p < 0.01) were downregulated. BMP4(p < 0.05), 
and IGF1(p < 0.05) were upregulated. These were consistent 

with our analysis results. There were no significant differ-
ences in mRNA expression of CD44, PTGS2, CCND1, 
SPP1 and APOB (Fig. 5).

Survival analysis of hub genes in colon cancer
Considering CAC as an etiological classification of colon 
cancer, we used colon cancer data from the TCGA data-
base to analyze the survival of hub genes (Fig.  6). Sur-
vival analysis data contained information on high or low 
expression of target genes, as well as that on the correla-
tion between hub genes and colon cancer. Among the 11 
hub genes, the following genes were found to be associ-
ated with the prognosis of colon cancer patients: SPP1 
(p = 0.019), CFTR (p = 0.031), and KLF4 (p = 0.048).

Discussion
Not all patients with inflammatory bowel disease develop 
CAC. Therefore, comparing the differentially expressed 
genes in the CAC model and those in the IBD model may 
enable us to find specific genes in CAC. In this study, 
data from the GEO database (GSE44904 and GSE43338) 
were normalized, different groups of the GSE44904 data-
set were analyzed. Through Venn analysis, DEGs alone in 
CAC (AOM/DSS) were screened. Through intersection 
analysis using gene microarray data from the CAC animal 
model in the GSE43338 dataset, a total of 275 specific 
genes (including 103 upregulated and 172 downregulated 

Table1 Detailed information about the hub gene

Gene symbols Type Degree Full name Encoded protein function

IGF1 up 24 Insulin-like growth factor 1 The encoded protein is a member of a family of proteins involved in 
mediating growth and development

BMP4 up 23 Bone morphogenetic protein 4 The encoded protein is possibly involved in the pathology of multiple 
cardiovascular diseases and human cancers

SPP1 up 22 Secreted phosphoprotein 1 The encoded protein is a cytokine that upregulates the expression of 
interferon-ɣ and interleukin-12

APOB down 22 Apolipoprotein B The encoded protein affects plasma cholesterol and apolipoprotein 
levels in various diseases

CCND1 up 20 Cyclin D1 The encoded protein alters cell cycle progression, and its expression is 
widely observed in various human cancers

CD44 up 18 CD44 molecule The encoded protein participates in various cellular functions, including 
lymphocyte activation, recirculation, and homing; hematopoiesis; and 
tumor metastasis

PTGS2 up 18 Prostaglandin-endoperoxide synthase 2 The encoded protein is responsible for activating prostanoid biosynthe-
sis involved in inflammation and mitogenesis

CFTR down 16 CF transmembrane conductance regulator The encoded protein acts as a chloride channel, and it controls ion and 
water secretion and absorption in epithelial tissues

BMP2 down 16 Bone morphogenetic protein 2 The encoded protein plays a role in bone and cartilage development

KLF4 down 14 Kruppel-like
factor 4

The encoded protein controls the G1-to-S transition of the cell cycle 
following DNA damage by mediating the expression of the tumor sup-
pressor gene p53

TLR2 up 14 Toll-like receptor 2 The encoded protein regulates host inflammation and promotes apop-
tosis in response to exposure to bacterial lipoproteins
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genes) were found in CAC. GO and KEGG pathway anal-
yses of the selected DEGs indicated that some biological 
processes and functions were associated with CAC, such 
as regulation of transcription from RNA polymerase II 
promoter, reduction process, cell proliferation, inflamma-
tory response, cell adhesion, extracellular space, plasma 
membrane, extracellular exosome, transporter activity, 
calcium ion binding, and receptor binding. Furthermore, 
the enrichment results of the genes in the submod-
ules with the highest scores also confirmed the impor-
tance of these biological processes and functions. In the 
KEGG pathway analysis, a large number of differential 
genes were found to be enriched in metabolic pathways, 
which is consistent with published studies [19]. Lu and 
Wang, through metabonomics analysis, found that there 
were many metabolic pathway changes in colon cancer 
induced by AOM/DSS [20]. Our study also demonstrated 
that fat digestion and absorption, ovarian steroidogen-
esis, vitamin digestion and absorption, arachidonic acid 

metabolism, ether lipid metabolism, and other metabolic 
pathways are closely related to the occurrence and devel-
opment of CAC.

However, interestingly, in addition to the metabolic 
pathway, a large number of DEGs were enriched in path-
ways in cancer, signaling pathways regulating pluripo-
tency of stem cells, PI3K-Akt signaling pathway, and 
FoxO signaling pathway. Subsequently, KEGG pathway 
analysis was performed for the genes in the submodules. 
The pathways obtained were similar to those enriched in 
DEGs, such as the pathways involved in cancer, PI3K-Akt 
signaling pathway, and focal adhesion pathway. These 
results suggest that these pathways and their genes play 
key roles in the occurrence and development of CAC. 
Focal adhesion is the contact point between cells and the 
surrounding environment, which can drive cell migra-
tion. The signaling pathway plays an important role 
in wound healing and tumor metastasis. It has been 
found that low expression of miR-4728-3p in ulcerative 

Fig. 5 The mRNA expression level of hub genes in patients according to the GEO database. UC-NonCa indicates nonneoplastic mucosa tissue of 
ulcerative colitis patients, and UC-Ca indicates ulcerative colitis-associated cancer tissue. ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001
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Fig. 6 Survival analysis of hub genes in colon cancer (P < 0.05). (a) CFTR, (b) KLF4, (C) SPP1
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colitis-associated colorectal cancer can influence CAV1, 
THBS2, and COL1A2 genes as well as focal adhesion 
signaling, which is related to tumor pathogenesis [21]. Li 
and Wang found that activation of focal adhesion kinase 
prevented the development of ulcerative colitis and CAC 
[22].

Further, PPI network analysis was conducted on 
DEGs. According to the degree score value, we identi-
fied DEGs with the highest score and significance as 
hub genes, namely, BMP4, SPP1, APOB, CCND1, CD44, 
PTGS2, CFTR, BMP2, KLF4, TLR2, and IGF1. To vali-
date the results of bioinformatics analysis, we examined 
the mRNA expression levels of hub genes in patients by 
using GEO databases. The results were basically consist-
ent with the observed gene expression trends. There was 
no significant difference in mRNA expression of some 
hub genes, which may be due to the small sample size. 
KEGG pathway analysis for the hub genes revealed that 
these genes were not only enriched in signaling pathways 
regulating the pluripotency of stem cells, PI3K-Akt sign-
aling pathway, and focal adhesion pathway, but also were 
enriched in the Hippo and AMPK signaling pathways. 
These genes and their enriched pathways are closely 
related to the occurrence and development of CAC. 
Pluripotency is a characteristic of stem cells, and a small 
number of cells in tumors have self-renewal ability and 
produce heterogeneous tumors [23]. P53 can inhibit the 
pluripotency of tumor stem cells. In a preclinical animal 
model of CAC, targeted knockout of stem cell-specific 
P53 was found to significantly increase tumor size and 
incidence [24]. Josse et al. also found that PI3K/Akt is the 
main pathway affected by the AOM/DSS model through 
miRNA chip experiments [25]. This finding is consistent 
with our findings. In human colon tissue infiltrated with 
inflammatory cells, the PI3K/Akt pathway is activated 
and mediates the progression of colitis and CAC through 
a positive feedback loop that maintains the recruitment 
of inflammatory cells [26].

In inflammation-related tumor models, inhibition of 
IGF1 signaling can reduce the number and size of colon 
tumors in wild-type mice [27]. IGF-1R knockout can acti-
vate the LKB1/AMPK pathway and play a protective role 
in colitis and CAC [28]. Chen et al. found that the Hippo 
pathway was involved in the occurrence of intestinal 
inflammation and progression of CAC in an experimen-
tal mouse model [29]. YAP1 is a transcriptional co-acti-
vator in the Hippo signaling pathway. PGE2 signaling can 
increase the expression and transcriptional activity of 
YAP1, and YAP1 further activates PTGS2 and PTGER4, 
which in turn can activate PGE2. This positive feedback 
loop plays an important role in colon regeneration and 
promotes the development of colitis-related cancer [30]. 
In a mouse model of CAC, Ya-Chun Chou demonstrated 

that Boswellia serrata mediated Akt/GSK3β/cyclin D1 
signaling pathway and altered the composition of gut 
microbiota to alleviate tumor growth [31].

Furthermore, other hub genes were significantly asso-
ciated with the development of CAC. For example, an 
abnormal expression of BMP protein is a common 
feature of cancer. In the colon mucosa, the BMP path-
way overlaps with several other colon cancer pathways 
[32]. Inhibition of the BMP pathway is an early event in 
inflammation-driven colon tumors in mice [33]. TLR2 
is highly expressed in tumor tissues of CRC patients. 
Gene knockout and knockdown of TLR2 can inhibit 
the proliferation of inflammation-related colorectal 
cancer and sporadic colorectal cancer [34]. SPP1 is an 
important inflammatory mediator. It is upregulated 
in inflammation-related intestinal tumors and medi-
ates the progression of colon cancer [35]. Yang and Liu 
found that deletion of KLF4 causes genetic instability, 
which in turn lead to the progression of CAC [36]. The 
mutation of the APOB gene in CRC associated with 
ulcerative colitis was found by whole exon sequencing, 
and there was a significant difference between ulcerative 
colitis-associated CRC and scattered CRC [37]. CD44 is 
an adhesion and anti-apoptotic molecule that is highly 
expressed in colon cancer [38]. However, in a compara-
tive study, CD44 expression was found to be lower in 
ulcerative colitis-associated dysplasia and cancers than 
in sporadic colonic tumors [39].

The regulatory network of TF-gene predicted analy-
sis showed that FOXC1, FOXL1, NFKB1, STAT3, JUN, 
E2F1, CREB1, and GATA2 were significantly related to 
hub gene. Recent studies have emphasized the impor-
tant role of transcription factor nuclear factor kappa 
B (NF-κB) and signal transducer and activator of tran-
scription 3 (STAT3) in the progression of inflammation-
associated cancer [40, 41]. Meanwhile, transcription 
factors JUN [42], E2F1 [43], and GATA2 [44] have been 
reported to be closely related to the occurrence and 
development of colitis-associated tumors. FoxC1, as 
a core transcription factor, interacts most closely with 
hub genes. FoxC1 belongs to the forkhead box (FOX) 
transcription factor family. Many studies have con-
firmed that at least 14 proteins in the FOX transcription 
factor family are closely related to the pathogenesis of 
CRC [45]. Currently, as a new cancer marker and thera-
peutic target, the regulatory role of FOXC1 in many 
types of cancer has been widely studied [46]. Future 
studies should focus on CAC.

Conclusion
In summary, based on GSE44904 and GSE43338 data-
sets, bioinformatics analysis identified 275 DEGs in CAC, 
including 103 upregulated and 172 downregulated genes. 
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IGF1, BMP4, SPP1, APOB, CCND1, CD44, PTGS2, 
CFTR, BMP2, KLF4, and TLR2 were hub proteins, which 
were mainly related to the PI3K-Akt signaling pathway, 
focal adhesion, Hippo signaling pathway, AMPK signal-
ing pathway, and stem cell pluripotency regulation path-
way. The expression of hub genes were examined in the 
patient samples. A study on the TF-gene regulatory net-
work of hub genes showed that FOXC1 was the core tran-
scription factor, and had the most interaction with hub 
genes. Additional work is needed to elucidate the under-
lying mechanisms behind these observations. Survival 
analysis showed that the differential expression of SPP1, 
CFRT, and KLF4 were associated with poor prognosis in 
colon cancer. This study helps us further understand the 
mechanism of CAC progression.
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