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Abstract 

Background: Physical molecular interactions are the basis of intracellular signalling and gene regulatory networks, 
and comprehensive, accessible databases are needed for their discovery. Highly correlated transcripts may reflect 
important functional associations, but identification of such associations from primary data are cumbersome. We have 
constructed and adapted a user‑friendly web application to discover and identify putative macromolecular associa‑
tions in human peripheral blood based on significant correlations at the transcriptional level.

Methods: The blood transcriptome was characterized by quantification of 17,328 RNA species, including 341 mature 
microRNAs in 105 clinically well‑characterized postmenopausal women. Intercorrelation of detected transcripts signal 
levels generated a matrix with > 150 million correlations recognizing the human blood RNA interactome. The correla‑
tions with calculated adjusted p‑values were made easily accessible by a novel web application.

Results: We found that significant transcript correlations within the giant matrix reflect experimentally documented 
interactions involving select ubiquitous blood relevant transcription factors (CREB1, GATA1, and the glucocorticoid 
receptor (GR, NR3C1)). Their responsive genes recapitulated up to 91% of these as significant correlations, and were 
replicated in an independent cohort of 1204 individual blood samples from the Framingham Heart Study. Further‑
more, experimentally documented mRNAs/miRNA associations were also reproduced in the matrix, and their pre‑
dicted functional co‑expression described. The blood transcript web application is available at http:// app. uio. no/ med/ 
klinm ed/ corre lation‑ brows er/ blood/ index. php and works on all commonly used internet browsers.

Conclusions: Using in silico analyses and a novel web application, we found that correlated blood transcripts across 
105 postmenopausal women reflected experimentally proven molecular associations. Furthermore, the associations 
were reproduced in a much larger and more heterogeneous cohort and should therefore be generally representative. 
The web application lends itself to be a useful hypothesis generating tool for identification of regulatory mechanisms 
in complex biological data sets.
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Background
Regulation of human gene expression relies on func-
tional macromolecules, including transcription factors 
(TFs), and micro RNAs (miRNAs). TFs may induce or 
suppress transcription of their target genes, exerted via 
distinct binding sites and interaction with other signal-
ling molecules [1]. miRNA’s main function is inactivation 
of mRNAs [2]. Our hypothesis is that highly correlated 
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transcripts in blood and tissue may reflect important 
functional associations and be a useful tool for hypothe-
ses generation. Signal molecules are often involved in the 
same pathways and likely to be similarly regulated [3, 4]. 
We have used the global transcriptome generated from 
peripheral blood donated by an Oslo cohort of 105 post-
menopausal women who were similar with respect to age, 
ethnicity and health status to generate a large correlation 
matrix with Pearson r values and modes of significance 
based on transcription signal values. A web application 
was developed to explore associations between genes of 
interest in the dataset.

Coexpressed transcripts tend to reflect co-expressed 
proteins [5] and we hypothesized that highly correlated 
transcripts could reflect associations at the protein level. 
Three ubiquitously expressed TFs known to be func-
tionally important in blood cells were used for testing: 
cyclic AMP-responsive element (CRE)-binding protein 
1 (CREB1), GATA Binding Protein 1 (GATA1) and glu-
cocorticoid receptor (GR). CREB1 is involved in several 
aspects of hematopoiesis [6–9]. DNA binding and acti-
vation of CREB1 depends on its phosphorylation, for 
example induced by parathyroid hormone (PTH) [10]. 
Furthermore, expression of CREB1 in peripheral blood 
mononuclear cells (PBMC) correlates positively with 
CREB1 expression in the postmortem brain of Alzhei-
mer’s patients [11]. Thus, identification of associated 
transcripts may help to identify novel TFs and their gene 
targets of functional importance in blood and other tis-
sues. In fact, three datasets of gene expression in immor-
talized B cells from normal individuals were used to show 
that correlated transcript levels could be used to predict 
gene function [12]. GATA1 is essential for erythroid 
development by regulating the switch of fetal hemoglobin 
to adult hemoglobin in haemopoietic cells. GATA1 is a 
multifunctional gene regulating a plethora of genes, and 
Encyclopedia of DNA Elements (ENCODE) has regis-
tered its response element in nearly 10,000 genes.

The glucocorticoid receptor (GR, NR3C1) is also 
expressed in most tissues and cells, modulating activi-
ties of genes involved in cell differentiation/develop-
ment, metabolism, and immune responses [13]. Natural 
forms of glucocorticoids or analogs like dexamethasone, 
all acting through GR, are frequently used medical drugs 
with direct effects on almost all cell types [14]. Even in 
physiological concentrations, glucocorticoids regulate 
major aspects of immune cell functions and are powerful 
immunosuppressants at pharmacological doses [15].

We also verified the representativeness of our dataset 
by replicating the top 200 associations in an independ-
ent cohort from the Framingham study. Furthermore, we 
tested if experimentally proven miRNA/mRNA associa-
tions, also were statistically correlated in our dataset.

Construction and content
Blood donors
For the postmenopausal blood sampling, Norwegian 
women (50–86 years, n = 105) representing a cohort with 
varying bone mineral densities (BMDs) and free of pri-
mary diseases known to affect the skeleton, were consec-
utively recruited as described [16]. Blood was collected 
in the morning from fasting individuals. Postmenopausal 
women from the Offspring cohort (women aged 40–92, 
n = 1204) participating in The Framingham Study [17, 18] 
were used as replication cohort. The Framingham Heart 
Study (FHS) is an ongoing prospective community-based 
study that includes the children of the original cohort 
and their spouses, who were enrolled into the Offspring 
Cohort in 1971. At each FHS examination, age, height, 
weight and extensive questionnaires were obtained 
according to standardized protocols. For this analysis, 
we included Offspring participants who attended exami-
nation cycle 8 (2005–2008). Gene expression data was 
collected for (n = 2442) as previously described [18, 19]. 
These were further filtered on female sex and menopause 
to achieve the final sample size (n = 1204). Of note, hor-
mone replacement therapy was not included in filtration 
criteria.

RNA purification and gene expression analysis
RNA from whole blood was isolated according to the 
PAXgene Blood RNA Kit manufacturer (BD, Frank-
lin Lakes, NJ, USA), including the optional on-column 
DNase digestion according to manufacturer’s instruc-
tions. RNA from the Oslo and Framingham cohorts were 
analysed according to manufacturer’s instructions on 
the Affymetrix Human Gene 1.0 ST GeneChip (Thermo 
Fisher Scientific, Waltham, MA, USA) which contains 
~ 1.4 million probe sets in total. In brief, the Affymetrix 
Human Exon 1.0 ST Array (Affymetrix, Inc., Santa Clara, 
CA) was used and gene annotations were obtained from 
Affymetrix NetAffx Analysis Center (version 31), result-
ing in ~ 17,000 distinct genes for downstream analysis.

A PCR based method involving LDA cards A and B 
was used for quantification of ~ 700 microRNAs and 
other non-coding RNAs in the Oslo cohort according to 
manufacturer’s instructions (Thermo Fisher Scientific, 
Waltham, MA, USA).

Calculations, statistics and the web application
Pearson product-moment correlation coefficients 
(r) were computed between expressions of all genes 
(> 17,000 probe sets) across 105 women using  log2 trans-
formed Affymetrix RMA (Robust Multi-array Average) 
signal values and inversed PCR Ct values and saved in 
a database along with their corresponding p-values. A 
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web application publicly available at http:// app. uio. no/ 
med/ klinm ed/ corre lation- brows er/ blood/ index. php was 
programmed in order to access the database and flexibly 
search for correlations of interest as previously described 
[20]. A screenshot of the web application is displayed 
in Fig.  1. Search results are returned together with raw 
and Bonferroni-corrected p-values and a measure of 
the false discovery rate (FDR) as estimated by the Ben-
jamini & Hochberg procedure [21]. This procedure has 
been shown to control FDR when the tests are independ-
ent or positively correlated [22]. This assumption is rea-
sonable when identifying differentially expressed genes. 
The Oslo cohort generated expression data earlier and 
was the basis for development of the web application. 
When other expression data became available later, the 
Framingham data was selected for replication because of 
similarity with regard to the platform. In the replication 
analysis, we computed Pearson product moment correla-
tions, followed by Bonferroni correction. Algorithm and 
methods used in generation of the web application have 
been more thoroughly described in a previous similar 
paper [20].

Utility
Verifications
First, we identified the 200 most significantly corre-
lated transcripts for each of the selected transcription 
factors (CREB1, GATA1, GR) and second, tested if 
associations identified by the web application reflected 
experimentally verified interactions. Then, we analysed 
if the genes harboured the corresponding transcrip-
tion factor binding sites in their promoters. For this we 
used ENCODE summarizing results from Chromatin 
Immunoprecipitation (ChIP) studies by use of the Har-
monizome web portal (https:// maaya nlab. cloud/ Harmo 
nizome/ gene_ set/ NR3C1/ ENCODE+ Trans cript ion+ 
Factor+ Targe ts) [23].

Promoter elements binding CREB1 protein, were iden-
tified in 182 of the 200 (91%) topmost CREB1 correlated 
genes (Table  S1), In contrast, when selecting random 
genes from the same Oslo cohort, 48.3% (SD = 2.1%) 
were identified as having a CREB1 promoter element 
(not shown). In all, 13,251 genes have this element as reg-
istered by ENCODE, thus, a high fraction of associations 
are expected for sets of random genes. Similar results 
were obtained for GATA1 with binding elements found 

in 73.0% while 34.5% (SD = 6.1) binding elements were 
found in 200 random genes (Table S2). For GR 35.5% of 
200 topmost correlated genes had the GR binding ele-
ment while random genes had 14.0% (SD = 3.0) binding 
sites (Table S3). ENCODE have registered 9608 and 4104 
genes with binding sites for GATA1 and GR, respectively.

We tested representativeness of the Oslo cohort by 
checking if the 200 most significant associations in 
the Oslo cohort were reproduced in blood from post-
menopausal women at exam 8 in Framingham Study 
(N = 1204). For CREB1, 180 associations reached sig-
nificance also in the Framingham cohort (six did not 
reach significance, and 14 transcripts were undetected) 
(Table S1). For GATA1 and GR, all, but five and four of 
the transcripts detected in both cohorts reached statisti-
cal significance in the Framingham cohort (Tables S2 and 
S3, respectively).

Evaluation of associations involving microRNAs
To verify whether the web application/matrix can iden-
tify also putative miRNA targets, we took advantage of 
experimentally proven miRNA targets in TarBase 8.0 
using DIANA Tools (https:// carol ina. imis. athena- innov 
ation. gr/ diana_ tools/ web/ index. php?r=  tarba sev8% 
2Find ex) [24]. For each of the ten miRNAs most highly 
expressed in peripheral blood based on their PCR Ct-
values, the 20 best experimentally verified interact-
ing mRNAs, accessing all cell lines and tissues, were 
obtained. Out of the ~ 200 interactions/associations, 50 
(25%) appeared as nominally significant when analysed in 
the web application (Table S4). As an alternative evalua-
tion strategy, we selected the top 50 experimentally veri-
fied miRNA/mRNA interactions in blood from TarBase 
8.0, and found that 30 pairs reached detection level in the 
Oslo cohort and 13 (43%) of these obtained nominal sig-
nificance (Table S5).

Analysis of the blood interactome employing ingenuity 
pathway analysis (IPA)
Initially, we tested whether experimentally proven, 
functional associations mapped by IPA were repro-
duced in our data. As presented in Table S6, transcripts 
associating with CREB1 as well as GATA1 were statis-
tically over-represented in functions related to haema-
tological systems within the category “Physiological 
System Development and Function” As expected, more 

(See figure on next page.)
Fig. 1 Interface of the web application. A typical search starts with inserting an identifier in the first window of “Search Options”, either Entrez Gene 
ID (e.g., “1234”), an Accession Number (e.g., “BE644809” or “NM_005715”), a Gene Symbol (e.g., “NR3C1” or “CREB1”, not case‑sensitive) or an Affymetrix 
probe set ID (e.g., “8,114,814”). Then, a specific transcript can be traced by inserting a second identifier in window two under “Search Options”. 
Alternatively, the window may be left open to obtain a list of the transcripts most significantly correlating to the identifier in the first window. Filling 
in boxes in the “Output Options” fields enables restriction of output to e.g., transcripts having specific keywords in Gene Ontology (GO), TFs (genes 
having “transcription” as part of the Gene Title) or only positive or negative correlations

http://app.uio.no/med/klinmed/correlation-browser/blood/index.php
http://app.uio.no/med/klinmed/correlation-browser/blood/index.php
https://maayanlab.cloud/Harmonizome/gene_set/NR3C1/ENCODE+Transcription+Factor+Targets
https://maayanlab.cloud/Harmonizome/gene_set/NR3C1/ENCODE+Transcription+Factor+Targets
https://maayanlab.cloud/Harmonizome/gene_set/NR3C1/ENCODE+Transcription+Factor+Targets
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
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Fig. 1 (See legend on previous page.)
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general functions were attributed to the genes most 
strongly associated with GR. Furthermore, in the inter-
correlation network generated by IPA, all the tested 
transcriptional regulators (CREB1, GATA1, and GR) 
had a very central position in the respective top ranked 
networks (Figs. S1, S2 and S3), supporting that the 
detected associations were real.

Discussion
We hypothesized that highly correlated blood cells tran-
scripts could be functionally associated in our dataset 
and that these associations could be easily assessed by 
a user-friendly web application. We explored significant 
macromolecular associations involving CREB1, GATA1 
and GR transcription factors. The in silico associations 
were supported using ENCODE ChIP data from both 
tissues and cells unrelated to blood, indicating a com-
mon functionality irrespective of cell or tissue type. The 
finding that fewer significant GR correlations (71/200, 
Table  S3) were identified in ENCODE compared to 
CREB1 (182/200, Table  S1) and GATA1 (146/200, 
Table S2) may be related to GR being able to bind other 
transcription factors, e.g., those binding to The Activa-
tor Protein-1 (AP-1) sites (Fos, Jun and others) without 
binding directly to DNA [25]. For example, only 62% of 
dexamethasone induced GR binding sites contained the 
GR response element when dexamethasone induced 
transcription was studied in A549 cells [26]. Since thou-
sands of human genes harbour DNA binding elements 
for the tested transcription factors, we expected to find 
such elements also in several randomly tested genes used 
as control, but significantly less. The very high over-
lap in transcript association between the Framingham 
and Oslo cohorts, confirmed the validity of the results 
obtained using in silico analyses. Correlation estimates 
from the Oslo cohort were generally somewhat higher 
than in the Framingham dataset, and the difference may 
be related to a more heterogenous Framingham cohort 
with respect to age, ethnicity and health status. As 
expected, experimentally verified mRNA/miRNA asso-
ciations were not reproduced equally well as mRNA/
mRNA associations in our data. This is probably because 
cell/tissue specific sets of miRNAs are needed to target 
and degrade mRNAs [2]. Sets of miRNAs targeting spe-
cific mRNAs identified in other cohorts and/or tissues 
may not be present in peripheral blood. Thus, we con-
sider replication of 25% (Table  S4) and 43% (Table  S5) 
of verified miRNA/mRNA interactions as satisfactory. 
The results underscore the usefulness of the in silico 
approach and web application for detection of miRNA/
mRNA associations in peripheral blood, but appear 
also to have relevance for other tissues. We assume that 

associations identified are relevant for both sexes, but 
this needs to be verified.

Conclusion
The results indicate that in silico analyses using a large 
correlation matrix containing the blood transcriptome 
associations in combination with a user-friendly web 
application, may identify functionally associated macro-
molecules in blood with relevance also for tissues.
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