
Samuel et al. BMC Genomic Data           (2022) 23:64  
https://doi.org/10.1186/s12863-022-01080-8

RESEARCH

Genetic diversity of DGAT1 gene linked 
to milk production in cattle populations 
of Ethiopia
Behailu Samuel1, Dejenie Mengistie2, Ermias Assefa2, Mingue Kang3, Chankyu Park3, Hailu Dadi2 and 
Hunduma Dinka1* 

Abstract 

Background: Diacylglycerol acyl-CoA acyltransferase 1 (DGAT1) has become a promising candidate gene for milk 
production traits because of its important role as a key enzyme in catalyzing the final step of triglyceride synthesis. 
Thus use of bovine DGAT1 gene as milk production markers in cattle is well established. However, there is no report on 
polymorphism of the DGAT1 gene in Ethiopian cattle breeds. The present study is the first comprehensive report on 
diversity, evolution, neutrality evaluation and genetic differentiation of DGAT1 gene in Ethiopian cattle population. The 
aim of this study was to characterize the genetic variability of exon 8 region of DGAT1 gene in Ethiopian cattle breeds.

Results: Analysis of the level of genetic variability at the population and sequence levels with genetic distance in the 
breeds considered revealed that studied breeds had 11, 0.615 and 0.010 haplotypes, haplotype diversity and nucleo-
tide diversity respectively. Boran-Holstein showed low minor allele frequency and heterozygosity, while Horro showed 
low nucleotide and haplotype diversities. The studied cattle DGAT1 genes were under purifying selection. The neutral-
ity test statistics in most populations were negative and statistically non-significant (p > 0.10) and consistent with a 
populations in genetic equilibrium or in expansion. Analysis for heterozygosity, polymorphic information content and  
inbreeding coefficient revealed sufficient genetic variation in DGAT1 gene. The pairwise FST values indicated signifi-
cant differentiation among all the breeds (FST = 0.13; p ≤ 0.05), besides the rooting from the evolutionary or domesti-
cation history of the cattle inferred from the phylogenetic tree based on the neighbourhood joining method. There 
was four separated cluster among the studied cattle breeds, and they shared a common node from the constructed 
tree.

Conclusion: The cattle populations studied were polymorphic for DGAT1 locus. The DGAT1 gene locus is extremely 
crucial and may provide baseline information for in-depth understanding, exploitation of milk gene variation and 
could be used as a marker in selection programmes to enhance the production potential and to accelerate the rate of 
genetic gain in Ethiopian cattle populations exposed to different agro ecology condition.
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Background
The candidate gene, Diacylglycerol acyl-CoA acyltrans-
ferase (DGAT ) activity was first described by Weiss and 
Kennedy [1] and DGAT1 enzyme was found to play fun-
damental role in the metabolism of cellular triacylglyc-
erol during physiological processes, such as intestinal 
fat absorption, lipoprotein assembly, fat tissue formation 
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and lactation [2]. Functionally, the DGAT1 gene was 
identified as one of at least two genes that encodes DGAT  
enzyme which catalyzes the final step of triglyceride 
synthesis in eukaryotic cells [3]. It became a functional 
candidate gene for lactation traits after studies indicated 
that mice lacking both copies of DGAT1 are completely 
devoid of milk secretion, presumably due to deficient 
triglyceride synthesis in the mammary gland [4]. The 
fluorescence in situ hybridization and radiation hybridi-
zation method identified DGAT1 having profound effect 
on milk production [5] and primarily responsible for milk 
fat variation in dairy animals [6]. Bovine DGAT1 was the 
first identified gene of about 14,117 bp and 17 exons that 
encodes a protein with DGAT  activity [2]. In the centro-
meric region of the bovine chromosome 14 [7] a mis-
sense mutation K232A (Lys232 → Ala) was shown to be 
significantly associated with variation in milk fat on exon 
8 region [5].

According to the studies undertaken so far the reported 
haplotype number, haplotype diversity and nucleotide 
diversity for Bos indicus cattle were 2, 0.536 and 0.003 
respectively [8] and gene diversity for Bos indicus cat-
tle range from 0.02–0.50 for DGAT1 gene [9]. Negative 
estimates of FIS (inbreeding coefficient) was observed 
in Creole and Borgou cattle of Uruguay and Benin cat-
tle respectively [10, 11]. Pairwise FST values for pooled 
subpopulations showed least divergence for Bos indicus 
breeds with high milk fat percentage for DGAT1 gene [9]. 
Among the seventeen exons of DGAT1 gene, exon 8 has 
previously been reported to be the most polymorphic 
and potentially affect milk composition and yield traits 
[5, 7, 12]. Moreover, studies reported that the DGAT1 
gene has been associated with regulation of the synthe-
sis of Vitamin A and somatic cell count in lactating cat-
tle [13, 14]. These all mentioned reports indicate DGAT1 
can be used as practical genetic markers for selective 
breeding of dairy cattle.

The effect of any identified polymorphism may dif-
fer across different populations or breed because of 
specific genetic backgrounds. Ethiopia has the largest 
cattle population in Africa and the fifth largest in the 
world and estimated to be about 70 million and indig-
enous cattle hold great promise and potential for milk 
production and constitute about 97.4% of the total 
cattle population [15]. Some census has witnessed an 
increase of 1.97% in population of milking cattle from 
19.7 million to 22.5 million. For instance, Boran and 
Begait are Bos indicus zebu cattle breeds with a well-
developed udder, long legs, and large humps, long teats 
and known for their milk, resistance to heat stress and 
tick infestation [16–18]. Moreover Fogera and Horro 
are Bos indicus Zenga (Zebu x Sanga) cattle breeds 

mainly characterized by their calm disposition and 
variable milk production [17–19]. To increase milk 
volume Boran cattle are crossed with Holstein–Frie-
sian dairy breeds and Boran-Holstein crossbreds have 
increased lactation lengths, shorter calving intervals 
and calve at a younger age than the indigenous stock 
[20, 21]. Before the aforementioned marker is used for 
the genetic improvement of Ethiopian cattle productiv-
ity, its polymorphism should be clearly studied. Unfor-
tunately, no study has been undertaken to understand 
the genetic diversity within a population, analysis of 
evolution, neutrality test and DGAT1 gene popula-
tion differentiation among Ethiopian cattle breeds that 
are critically important for future breeding programs. 
Therefore, the aim of this study was to characterize the 
genetic variability of exon 8 region of DGAT1 gene in 
Ethiopian cattle breeds through sequencing.

Results
DGAT1 gene genetic diversity in Ethiopian cattle breeds
The nucleotide sequences of studied breeds were com-
pared with the reference sequence from the GenBank 
Accession No.AJ318490 and variability of the region was 
visualized (Fig. 1).

The number of polymorphic sites (S) which is the 
measure of usable loci that show more than one allele 
per locus was analyzed. Accordingly, the value of S was 
higher in Boran (10) and lower in Begait (4). Horro and 
Boran-Holstein cattle had the same number of polymor-
phic sites (6). The nucleotide diversities (π) were rela-
tively high in Begait breeds (0.010) whereas in the Horro 
breed a relatively low number of π (0.005) was observed. 
For all breeds, non-synonymous substitutions were less 
as compared to the synonymous substitutions (Table1).

Haplotypes were constructed for each breed and a 
total of 11 haplotypes were obtained. The haplotype val-
ues ranged from 6 (Fogera) to 4 (Boran-Holstein). Boran, 
Begait and Horro cattle had the same number of haplo-
type number (5).

The haplotype diversity (Hd) of the Begait and Boran-
Holstein cattle were relatively higher as compared to 
the Horro. The haplotype diversity for Horro was 0.450 
which was the lowest as compared to the rest of the breed 
(Table 1).

Evolution of DGAT1 gene among Ethiopian cattle breeds
The ratio between non-synonymous (Ka) and synony-
mous mutations (Ks) was calculated to have an insight 
on the evolution of DGAT1 (Table1). The ratio of non-
synonymous substitution (Ka) to synonymous substitu-
tion (Ks) was highest in Fogera with an estimated value 
of 0.758 and lowest in Boran, Begait and Horro with an 
estimated value of 0.00.
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DGAT1 gene genetic parameters and neutrality tests 
in Ethiopian cattle breeds
For analysis of genetic diversity within a population, 
minor allele frequency (MAF), polymorphic information 
content (PIC), average expected (He) and observed het-
erozygosity (Ho) values, HWE in terms of FIS coefficient 
and neutrality tests were estimated. The observed hete-
rozygosity (Ho) ranged between 0.157 in Boran-Holstein 
to 0.413 in Begait cattle (Table 2).

The expected heterozygosity (He) ranged from 0.120 
(Boran-Holstein) to 0.256 (Boran). Boran-Holstein cat-
tle had the lowest number of PIC (0.101), whereas in 

Begait the highest numbers of PIC (0.2005) was detected. 
MAF values ranged from 0.078 in Boran-Holstein to 
0.206 in Begait cattle. The different sequences of DGAT1 
gene were observed in heterozygote excess in studied 
breeds that ultimately lead to low and negative FIS values 
(Table 2). Fu’s Fs was negative and statistically non-signif-
icant (p > 0.10) in Fogera and Horro cattle breeds, while 
positive in Boran and Boran-Holstein. The Tajima’s D 
value obtained was negative and statistically non-signifi-
cant (p > 0.10) in Boran, Fogera, and Horro, while positive 
in Boran-Holstein. Both tests are positive and statistically 
significant in Begait cattle (Table 2).

Fig. 1 The nucleotide sequences alignment of studied breeds with the reference sequence from the NCBI data base (Ac.No.AJ318490). 
Boran-Holstein (ON262825-ON262828), Boran (ON262829-ON262833), Begait (ON262834-ON262838), Fogera (ON262839- ON262844) and Horro 
(ON262845-ON262849)
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DGAT1 gene population differentiation among Ethiopian 
cattle breeds
Two main parameters (FST index and exact G test) for the 
inspection of population genetic structure and differenti-
ation levels among cattle breed were used. The GST (coef-
ficient of interpopulational genetic differentiation) test 
which is used to measure among-population differen-
tiation, relative to the total diversity value, was compared 
between cattle breeds and highest value was observed 
between Boran and Begait (0.096). The lowest GST value 
(-0.016) was found between Boran and Fogera (Table 3). 
The pairwise FST showed significant differences across all 
cattle breeds (FST = 0.13; p-value ≤ 0.0001).

The estimated FST values between Bos taurus breeds 
and individual cattle breed considered in this study 
ranged from 0.005 (Bos taurus vs. Boran-Holstein) to 
0.389 (Bos taurus vs. Begait). Among the Ethiopian 
breeds, the FST value was relatively high (FST = 0.346) 
between Begait and Boran-Holstein, and a low FST value 
of -0.029 was noted between Boran and Fogera. Moreo-
ver, FST values were computed across species leading to 
the detection of higher genetic differences and Bubalus 
bubalis and Camelus dromaderies showed least differ-
entiation and maximum differentiation was observed 
between cattle and other species (Fig. 2).

Phylogenetic relationships and Median Joining network
The evolutionary history was inferred by using neighbor 
joining method based on the Tamura-Nei model with 
bootstrap replications of 1000 and the evolutionary tree 
inferred from cattle.

DGAT1 locus sequences are presented in Figs. 3 and 4.
The analysis revealed four separate clusters among 

the studied cattle breeds sharing a common node from 
the constructed tree (Fig. 3). It looks that DGAT1 alleles 
might have evolved through multiple lineages.

Furthermore, a median-joining network tree was 
constructed based on the haplotypes (Fig.  4). The 
number of individual sequences in H-1, H-2, H-3, 
H-4, H-5, H-6, H-7, H-8, H-9, H-10 and H-11 was 
11,53,1,12,2,4,1,1,2,1,and 1, respectively. Here, H11 being 
with most probable ancestral haplotype. Haplotypes H5, 
H7 and H10 separated from the rest of the clusters.

Discussion
The reported haplotypes number, haplotype diver-
sity and nucleotide diversity were 11, 0.615 and 0.0100 
respectively. These values are significantly higher than 
the values reported by Faraj and his colleagues [8] where 

Table 1 DNA polymorphism and evolution of DGAT1 gene for considered breeds

Nucleotide diversity (π), number of polymorphic sites (S), haplotype number (H), haplotype diversity (Hd), synonymous (Ks), non-synonymous (Ka), Boran-Holstein 
(BHC), Boran (BR), Begait (BG), Fogera (FG ), Horro (HR)

Breeds π S H Hd Ka Ks Ka/Ks

BR 0.009 10 5 0.507 0 0.014 0

BG 0.010 4 5 0.700 0 0.013 0

FG 0.009 9 6 0.514 0.0047 0.0062 0.758

HR 0.005 6 5 0.450 0 0.005 0

BHC 0.008 6 4 0.636 0.0037 0.01 0.37

Table 2 Genetic parameters estimates and neutrality tests for the considered breeds

Number of sequences (N), significant (*) at p <0.10, non-significant (ns)

Breeds N MAF Ho He PIC FIS Fu’s Fs Tajima’s D

BR 17 0.129 0.259 0.176 0.148 -0.446 0.941 ns -1.204 ns

BG 16 0.206 0.412 0.256 0.200 -0.591 0.461* 2.364*

FG 17 0.153 0.306 0.196 0.163 -0.538 -0.631 ns -0.956 ns

HR 16 0.119 0.238 0.146 0.118 -0.606 -1.037 ns -1.214 ns

BHC 23 0.078 0.157 0.120 0.101 -0.283 2.463 ns 0.258 ns

Table 3 Genetic distances between pairs of populations based 
on Wright’s F-statistics FST below the diagonal and Nei’s genetic 
distance GST above the diagonal estimated

BHC BR BG FG HR

BHC 0 0.03659 0.07786 0.06447 0.05644

BR 0.06655 0 0.09618 -0.01613 -0.02029

BG 0.34631 0.21648 0 0.07531 0.08628

FG 0.15855 -0.02984 0.13728 0 -0.02013

HR 0.12778 -0.03543 0.25748 -0.01595 0
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number of haplotypes, haplotype diversity and nucleotide 
diversity of bos indicus cattle were 2, 0.536 and 0.0031, 
respectively. The combination of high haplotype diversity 
and low nucleotide diversity, suggested small differences 
between haplotypes and can be a signature of a rapid 
population expansion from a small effective population 
size [22]. The unique breeding histories of some popula-
tion may account for the high variability of genetic diver-
sity. The ratio of (Ka/Ks) was evaluated and the values 
recorded were less than one for all the breeds. We found 
that cattle DGAT1 gene have been subjected to purifying 
selection (Ka/Ks = 0.00–0.708). The average Ka/Ks ratio 
for DGAT1 gene was 0.564, indicating that the evolu-
tion of bovine DGAT1 is largely shaped by strong puri-
fying selection through the removal of alleles that are 

deleterious, resulting in stabilizing selection in the phe-
notypic outcomes. It has been shown that a Ka/Ks ratio 
of or close to 1 indicates no strong selection pressure, a 
ratio larger than 1 indicates that the protein is subjected 
to positive selection, whereas less than 1 indicates the 
presence of purifying selection [23]. Positive selection 
is observed less often than purifying selection and most 
mammalian genes are under strong to moderate purify-
ing selection [23]. DGAT1 genes were under purifying 
selection in Ethiopian cattle. Purifying selection against 
newly arising deleterious mutations is essential to pre-
serve biological function of DGAT1 gene among Ethio-
pian cattle.

Minor allele frequency(MAF) refers to the frequency 
of the second most common allele in a population, and 

Fig. 2 DGAT1 gene graphic representation of calculated FST values between pairs of population (Bos taurus (BT), Camelus dromaderies (CD), Capra 
hircus (CH), Ovis aries (OVA), and Bubalus bubalis (BB ), generated by the R function: pairwise FST matrix.R
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it affects heritability and predictive ability and multiple 
studies have shown that MAF affects predictive ability 
[24]. Higher MAF recorded for indigenous cattle than 
Boran-Holstein. The higher values for indigenous breeds 
can be explained by the fact that loci used in this study 
were detected in indicine breeds, and their average MAF 
was much lower in taurine-indicine breeds. The present 
MAF values were lower than the report of Edea and his 
colleagues [25] for Ethiopian cattle. This could be attrib-
uted to the differences in genotyping platforms used and 
causal variants have lower MAF than SNPs in a panel 
[26].

The heterozygosity situation in the present study for He 
ranged from 0.120- 0.256 were in the previously reported 
range of 0.02 to 0.50 for Bos indicus cattle [9]. Observed 
heterozygosity at DGAT1 locus in this study was higher 
than the reports of Borgou (0.388) and White Fulani (0.155) 
cattle breeds of Benin [11]. The values of heterozygosity 
were lower when compared with previous study on Rathi, 
Sahiwal and Kankrej cattle breeds of India [27]. Similarly 
higher values of heterozygosity in Holstein cattle breeds 

was reported by previous studies (Ho ranged from 0.313–
0.938 and He ranged from 0.264–0.498) [28]. The highest 
observed heterozygosity and haplotype diversity in Begait 
indicates that Begait cattle are more genetically variable at 
the DGAT1 locus compared to the other breeds.

A marker with PIC > 0.5 can be considered as highly 
informative, whereas, 0.5 > PIC > 0.25 recognized as 
reasonably informative and below 0.25 is measured as 
slightly informative [29]. In the present study breeds PIC 
values range between 0.101 and 0.200. Thus, the marker 
is slightly informative for the studied breeds.

Genetic divergence among populations of the same 
or different breeds is usually quantified by fixation 
indices or F statistics [30]. The FIS coefficients are the 
classical Wright’s F-statistic, which estimates the vari-
ation within populations. Specifically, it measures the 
reduction in heterozygosity in an individual caused by 
nonrandom mating within its subpopulation [30]. The 
FIS coefficient value was negative for the studied breeds 
ranged from -0.284 to -0.606. The present study is in 
agreement with the findings of Rincon et  al. [10] who 

Fig. 3 Neighbor-joining tree showing the genetic relationships among 89 DGAT1 gene sequences grouped into four distinct clusters using 
evolutionary distances computed by the Nei (1993) method. The labels were coded in such a way that the first two/three letters stands for breed 
name and the number is order of the different breeds. The four colours represent the four clusters
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also observed negative estimates of FIS for DGAT1 loci 
in Uruguayan Creole cattle population and for Borgou 
cattle of Benin [11]. Negative estimates of FIS coeffi-
cient value for Ethiopian cattle were also observed [25]. 
This suggests there is no heterozygosity deficiency in 
all studied cattle population as a result of uncontrolled 
mating leading to higher diversity.

The negative FST values recorded by Fogera and Horro 
with Boran as well as between Horro and Fogera indi-
cated that genetic subdivision could not be established 
among these populations. Moreover, the genetic differen-
tiation of all the breeds based on GST was small and sup-
ported by the previous studies [25, 27]. The little genetic 
distance inferred from the breeds could be the result of 
the evolutionary or domestication history of cattle breeds 
[31] and which could be due to their common ancestral 
origin.

Neutrality tests of Tajima’s D [32] and Fu’s Fs statistics 
[33] were carried out to assess signatures of recent his-
torical demographic events. Tajima’s D test is based on 
comparison of the allelic frequency of segregating nucle-
otide sites, while Fu’s Fs test is based on the alleles or 
haplotypes distribution [32, 33]. They estimate the devia-
tion from neutrality, which is based on the expectation of 
a constant population size at mutation-drift equilibrium 
and negative values of both tests signifies an evidence for 
an excess number of alleles and could be expected from 
a recent population expansion or genetic hitchhiking and 
positive value signifies deficiency of alleles, as would be 
expected from a recent population bottleneck and/or 
balancing selection [32–34]. Overall Tajima’s D(-0.147) 

and Fu’s Fs(-1.534) tests statistics in all populations were 
negative and statistically non-significant(p > 0.10) and 
consistent with a populations in genetic equilibrium or in 
expansion [35]. However, the two tests of neutrality were 
not statistically significant for Boran-Holstein, Boran, 
Horro and Fogera cattle populations (Table 2). The results 
suggested that these populations are in genetic equi-
librium or in expansion and Tajima’s and Fu’s neutrality 
tests were both significant for Begait population, indicate 
deficiency of alleles, as would be expected from a recent 
population bottleneck (Table  2). The Begait cattle have 
been reduced in population size; however, they main-
tained genetic diversity which is comparable to other 
studied breeds. The influence of factors which affect 
genetic diversity can complicate an attempt to interpret 
the genetic diversity of any population in terms of popu-
lation size as observed in Begat cattle populations [36]. 
We observed a close genetic relationship between the 
Ethiopian cattle breeds from the inferred phylogenetic 
tree and median joining-network tree. The current result 
is consistent with the report of other researchers [25, 37]. 
This is generally interpreted as indicative of a population 
that has recently expanded in size from a small number 
of founders following a population bottleneck [31].

Conclusions
The overall diversity indices showed the cattle popu-
lations studied were polymorphic for DGAT1 locus. 
DGAT1 genes were under purifying selection and the 
presence of high gene diversity, heterozygosity and poly-
morphic information content revealed sufficient genetic 
variation in the studied cattle breeds. Fixation indices 
indicated significant differentiation among all the breeds. 
This study confirmed that the DGAT1 gene locus is 
extremely crucial and may provide baseline information 
for in-depth understanding, exploitation of milk linked 
gene variation and could be used as a marker in selection 
programmes to enhance the production potential and 
to accelerate the rate of genetic gain in Ethiopian cattle 
populations exposed to different agro ecology condition.

Methods
Sampled populations and genomic DNA extraction
A total of eighty nine animals comprising of five Ethio-
pian cattle (Boran, n = 17; Begait, n = 16; Fogera, n = 17; 
Horro, n = 16 and Boran-Holstein, n = 23) were consid-
ered in this study (Table 1). Animals were selected ran-
domly from each breed with intentional exclusion of 
closely related ones. Blood samples were collected from 
the tail head with a volume of 4 ml under aseptic condi-
tions and gently mixed with ethylene diamine tetraacetic 
acid (EDTA) anticoagulant placed into an ice box con-
taining ice. Extraction of genomic DNA was carried out 

Fig. 4 DGAT1 Median-joining network constructed by NETWORK 
software version 10.0.0, and yellow circles represent the number 
of sequences that have sizes proportional to the frequencies. The 
branch length is proportional to the mutation rate of the haplotypes 
whereas the red diamond represents the median vector
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using modified salting out extraction procedure [38]. 
Briefly, blood samples were first thawed at room temper-
ature and about 500 µl blood was poured into 2 ml cen-
trifuge tube. Exactly 800 µl of lysis buffer (0.3 M sucrose, 
0.01  M Tris Hcl, pH7.5, 5mMmgcl and1%tritonX100) 
was added into the centrifuging tube and blood samples 
were mixed gently by inversion. Then it was centrifuged 
for 5  min at 4725  rpm. The supernatant was removed 
carefully and the step was repeated until white pellet 
obtained. The pellet was vigorously vortexed and re-sus-
pended with the 60 µl of 10 mM trisHcl pH 8 and centri-
fuged again at 2500 rpm for 2 min. After discarding the 
supernatant, the pellet was re-suspended in 66 µl 10 mM 
tris Hcl, 66 µl laundry powder solution (30 mg/ml laun-
dry powder solution) and glass beads and vortexed for 
2 min. Exactly 50 µl of 6 M Nacl was added and vortexed 
again for 20 s, then centrifuged for 5 min at 11573 rpm 
and the supernatant was transferred into 2 ml eppendorf 
tube and 150 µl of 96% ethanol was added and the solu-
tion was mixed by inversion and centrifuged for 3  min 
at 13,000 rpm until the genomic DNA was precipitated. 
The precipitate was then rinsed twice with 100 µl of 70% 
ethanol in 1.5  ml eppendorf tube by inverting the solu-
tion for 5 min and centrifuged for 2 min at 12,000 rpm. 
Then ethanol was carefully poured off using tissue paper. 
The DNA was allowed to air dry for 30 min. Finally, the 
extracted DNA was allowed to dissolve in 60 µl TE buffer 
(10  mM tris–Hcl pH 8; 0.1  mM EDTA, pH 7.4) over-
night and stored at  40C. The quality of the DNA and its 
concentration were quantified via NanoDrop1000 and 
electrophoresis in 1.7% agarose gels. Those DNA sam-
ples with good quality and quantity were considered for 
amplification and sequencing.

PCR Amplification and Sequencing of DGAT1 Gene region
To amplify 278 bp product size of DGAT1 exon 8 region, 
primers were designed with accession number AJ318490 
as reference sequence using primer 3 plus software [39]. 
The region was amplified by PCR using the two prim-
ers: Forward  5’-AAG GCC AAG GCT GGT GAG   -3’ and 
Reverse: 5’-GGC GAA GAG GAA GTA GTA G -3’.

Polymerase chain reaction (PCR) was carried out in a 
total volume of 25 μL containing, 5X PCR buffer (5 μl), 
1.5 mM MgCl2 (3 μl), 10 Mm dNTP’s mix(1 μl), forward 
primer 70  pmol/μl (0.5  μl), reverse primer 70  pmol/μl 
(0.5 μl), genomic DNA 25 ng/ μl (2 μl), Taq DNA poly-
merase 5U/μl (0.3  μl) and DNAase free water (12.7  μl). 
The optimized thermal profile include an initial dena-
turation at 94  °C for 3  min, 30cycles of denaturation at 
94 °C for 1 min, annealing at 57 °C for 45 s, elongation at 
72 °C for 1 min and a final extension at 72 °C for 7 min. 
Finally, the PCR products were visualized post electro-
phoresis on 1.7% agarose gel with acetate EDTA (TAE) 

buffer followed by GelRed staining. For sequencing, the 
PCR products were sent to Konkuk University, Seoul, 
South Korea.

Before sequencing, sequencing reaction was performed 
for the PCR products by using one of a pair of PCR 
primers used for amplification of the DGAT1 (Forward) 
gene as the size was short (278  bp). After completion 
of the reaction, reaction products were purified using a 
sodium acetate–ethanol purification method. The puri-
fied products of sequencing reactions were analyzed on 
an ABI3730 capillary genetic analyzer (Sanger Sequenc-
ing Machine). Finally, the sequences were analyzed and 
deposited to GenBank with the following accession num-
bers (ON262825- ON262849).

Data management and statistical analysis
Genetic diversity at sequence level was performed 
encompassing partial intron 7, exon 8 and intron 8 region 
of DGAT1 gene. Prior to analysis, all the chromatograms 
were visualized and sequence fragments were edited 
using Bio-edit version 7.0.5.3 and aligned by clustalX2 
software package [40]. DNA polymorphism, observed and 
unbiased expected heterozygosity was computed using 
ARLEQUIN software version 3.5.2.2 [41]. Minor allele fre-
quency (MAF), Polymorphic information content (PIC) 
and coefficient of inbreeding (FIS) was calculated using 
Power Marker (version 3.25) [42]. Evolutionary analysis of 
DGAT1 exon 8 regions was carried out through analysis 
of rates of synonymous (Ks) and non-synonymous (Ka) 
substitutions. Ka/Ks ratio, the average rates of non-synon-
ymous (Ka) over synonymous substitutions (Ks) per site 
were computed using DnaSP v5 [43].

Population differentiation due to the population 
genetic structure was also assessed from sequence data, 
population pairwise Wright’s FST [44] values were cal-
culated by using ARLEQUIN software version 3.5.2.2 
applying 1000 replication values [41]. The pairwise FST 
graph was displayed by Rcmd (console version of the R 
statistical package) installed on the computer integrated 
with ARLEQUIN. Moreover, to strengthen the analy-
sis fifteen haplotypes/sequences of milk producing farm 
animals from Genbank including Bos taurus (AJ318490, 
EU077528, MF069174 and MF445056), Bubalus buba-
lis (MZ230553, MZ230553, MF069172 and KX965992), 
Camelus dromedaries (MF069170 and MF069171), 
Capra hircus (LT221856 and FJ415876) and Ovies aries 
(KJ918741, FJ415875 and EU178818) from Germany, 
Turkey, India, Iran and Benin were included in the analy-
sis. Hence, population genetic differentiations based on 
the DGAT1 genes of the breeds were evaluated by Ne’s 
genetic distance (GST) by DnaSP software [43].

To test for past population expansion, we used two sta-
tistical tests Tajima’s D [32] and Fu’s Fs [33]. The analyses 
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were implemented in the program ARLEQUIN software 
version 3.5.2.2 [41] and p-values were generated using 
1,000 simulations under a model of infinite site neutrality.

Phylogenetic analysis of coding region was carried out 
for DGAT1 gene in accordance to neighbor-joining algo-
rithm [45] based on the Tamura-Nei model [46] using 
MEGA 11 [47] via implementing1000 bootstrap values 
[48]. Positions from DNA sequences containing gaps or 
missing data including identical sequences were excluded 
from the analysis. A median-joining network (MJN) tree 
was constructed using the NETWORK software (version 
10.0.0) [49]. To evaluate the median network, the nucle-
otide sequences were first converted into binary data, 
while identical sites were omitted from the analysis. Each 
split was programmed as a binary character, satisfying 
the values of 0 and 1. The haplotypes were denoted as a 
binary vector in this method [49].
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