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Abstract 

Background: Describing how genetic history shapes the pattern of medically relevant variants could improve the 
understanding of how specific loci interact with each other and affect diseases and traits prevalence. The Qatari popu-
lation is characterized by a complex history of admixture and substructure, and the study of its population genomic 
features would provide valuable insights into the genetic landscape of functional variants. Here, we analyzed the 
genomic variation of 186 newly-genotyped healthy individuals from the Qatari peninsula.

Results: We discovered an intricate genetic structure using ancestry related analyses. In particular, the presence of 
three different clusters, Cluster 1, Cluster 2 and Cluster 3 (with Near Eastern, South Asian and African ancestry, respec-
tively), was detected with an additional fourth one (Cluster 4) with East Asian ancestry. These subpopulations show 
differences in the distribution of runs of homozygosity (ROH) and admixture events in the past, ranging from 40 to 5 
generations ago. This complex genetic history led to a peculiar pattern of functional markers under positive selection, 
differentiated in shared signals and private signals. Interestingly we found several signatures of shared selection on 
SNPs in the FADS2 gene, hinting at a possible common evolutionary link to dietary intake. Among the private signals, 
we found enrichment for markers associated with HDL and LDL for Cluster 1(Near Eastern ancestry) and Cluster 3 
(South Asian ancestry) and height and blood traits for Cluster 2 (African ancestry).

The differences in genetic history among these populations also resulted in the different frequency distribution of 
putative loss of function variants. For example, homozygous carriers for rs2884737, a variant linked to an anticoagu-
lant drug (warfarin) response, are mainly represented by individuals with predominant Bedouin ancestry (risk allele 
frequency G at 0.48).

Conclusions: We provided a detailed catalogue of the different ancestral pattern in the Qatari population highlight-
ing differences and similarities in the distribution of selected variants and putative loss of functions. Finally, these 
results would provide useful guidance for assessing genetic risk factors linked to consanguinity and genetic ancestry.
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Background
Qatar has a rich and fascinating history, inhabited by 
humans for approximately 50,000 years with a substantial 
influx of Arab tribes from the surrounding region, mainly 
from the Nejd desert to the West. Islam began to flourish 
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in Qatar in the seventh century CE, and the area became 
an important cultural centre for the spread of the Islamic 
religion [1]. Like many other Gulf region countries, the 
Qatari population is affected mainly by diabetes, obe-
sity, and cardiovascular diseases [2], in particular The 
prevalence of obesity in Qatar is among the highest in the 
world, 41.4% based on reports from the Qatari Ministry 
of Public Health (https:// phs. moph. gov. qa/ data/ healt hy- 
lifes tyle/), in addition the level of CVD related deaths in 
Qatar is high as in other high income countries” (https:// 
phs. moph. gov. qa/ data/ cardi ovasc ular- disea ses/).

Thus, it is an interesting “laboratory” to investigate the 
genetics and environmental risk factors underlying such 
diseases.

As a matter of fact, genetic disorders are generally 
well-described by purifying selection models, while 
complex-disease susceptibility is tied, at least in part, to 
evolutionary adaptations and demography. In particu-
lar, reducing effective population size due to inbreeding 
and bottlenecks reduces the effectiveness of both positive 
and purifying selection [3]. The type of selection and the 
strength of its coefficient vary across populations, affect-
ing the prevalence of causative variants for diseases and 
traits [4].

Previous data on the Qatari population demonstrated 
a peculiar clustering and different variance in homozy-
gosity regions (ROH) [5]. Recent data show that ROH 
across genomes could impact different phenotype distri-
butions across different ancestries [6, 7]. Such changes in 
the genomic architecture of a given population could also 
impact the effect of the same variants in different popu-
lations. For example, although PPARγ gene variants are 
associated with diabetes in some individuals of European 
descent, mutations in this gene were found not to be a 
risk factor in the Qatari population [8].

In addition, a recent study showed that European-
derived polygenic scores (PGS) had reduced predictive 
performance in the Qatari population [9].

In fact, several studies investigated the pattern of 
genetic diseases in conjunction with endogamy and con-
sanguinity in the populations of this geographical area 
[10–12].

An essential piece of information needed is the 
knowledge of the genetic history and the evolutionary 
mechanism behind the genomic makeup of the Qatar 
population. A recent work studied several thousands of 
individuals highlighted the link with ancient hunter-gath-
erers and Neolithic farmers from the Levant [13]. How-
ever, in our work we aimed to integrate several pieces of 
information coming from population genetics analyses 
and we tried to integrate them in order to understand 
the pattern of deleterious variation in a group of Qatari 
individuals.

Here, we investigated the genetic structure of 186 
newly genotyped individuals from Qatar and analyzed 
the distribution of ROH regions under recent natural 
selection and putative loss of function variants.

Our work aims to address the following questions: i) 
How genetic structure and demography affect the ROH 
pattern in the Qatari population and ii) how genetic 
structure affects the pattern of genes under putative posi-
tive selection and the distribution of deleterious variants 
with a specific focus on the loss of function variants. Our 
final goal is to provide a detailed insight into the genetic 
makeup of the Qatari population to better estimate and 
understand the genetic risk factors based on ancestry 
components, demography and natural selection.

Results
Uniparental markers analysis
High variation was observed for mitochondrial DNA 
(haplotype diversity = 0.873) in both the entire dataset 
and the subset, including male individuals only. Major 
haplogroups are represented by H (South West Asia ori-
gin), L (Africa origin) and J (Western Asia origin). The 
Y chromosome shows a reduced diversity with a major 
haplogroup (J1*) representing 75% of the Y chromosomes 
analysed (see Fig. S1 A-B-C). The ratio of Y chromosome 
haplotype diversity (haplotype diversity = 0.574) on mito-
chondrial haplotype diversity is 0.65.

Population structure and admixture
An unsupervised analysis with ADMIXTURE v.1.3 [14] 
was performed on the Qatari samples using a subset of 
reference population from the Human Origins data-
set downloaded from https:// reich. hms. harva rd. edu/ 
allen- ancie nt- dna- resou rce- aadr- downl oadab le- genot 
ypes- prese nt- day- and- ancie nt- dna- data and the lowest 
cross-validation error was obtained with a total number 
of cluster equal to 11 (see Table S1. Four major ancestral 
components differently distributed among individuals 
were detected (Fig.  1A). The red component was found 
mainly in the Bedouin population. The green component 
(found mainly in Yoruba samples) was appreciable only 
in a fraction of the Qatari sample. The violet (Palestin-
ian) and azure (South Asian) components were found in 
another group of Qatari individuals showing low levels 
of both red (Bedouin) and green (African) components. 
A small group of individuals shows an admixture pattern 
that contains only South Asian and East Asian ancestry 
but neither Palestinian nor Bedouin.  A full representa-
tion of all cluster solution is shown in Fig. S2.

Using the first six principal components from the Prin-
cipal component analyses (PCA), a gaussian clustering 
using the approach implemented in Mclust [15] was car-
ried out. An overall number of four clusters was detected: 

https://phs.moph.gov.qa/data/healthy-lifestyle/
https://phs.moph.gov.qa/data/healthy-lifestyle/
https://phs.moph.gov.qa/data/cardiovascular-diseases/
https://phs.moph.gov.qa/data/cardiovascular-diseases/
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
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Cluster 1 (red), Cluster 2 (gold), Cluster 3 (green) and 
finally Cluster 4 (blue), which contains a small fraction of 
East Asian ancestry (Fig. 1B, Figs. S3-S4).

PCA using as reference the 1000 Genome Project [16] 
data shows that the Qatari individuals are placed between 
the European and South Asian pole of variation. Cluster 
2 (gold) is spread towards African samples while individ-
uals from Cluster 4 show similar variation to East Asian 
samples, confirming the ADMIXTURE analysis (Fig. 1C).

In order to better investigate the genetic relationships 
between individuals using admixture patterns, we used 
the individual ancestry values obtained from previous 
admixture analyses to build a distance matrix which was 
used to generate a dendrogram (Fig.  2A). Each individ-
ual was coloured according to their cluster assignment, 
and for each of them, the level of homozygosity due to 
ROH (Runs of homozygosity) was collected. As shown 
in Fig. 2B, individuals from Cluster 1 and Cluster 3 show 
the highest level of ROH. These clusters are characterized 
by Bedouin and Palestinian/South Asian ancestry. On the 
other hand, individuals from Cluster 2 (characterized by 
the highest level of African ancestry) shows the lowest 

level of runs of homozygosity in our dataset. Interest-
ingly, individuals from Cluster 4 (with both South Asian 
and East Asian ancestry) show a homozygosity level simi-
lar to that of Cluster 3.

We also found a sizeable ancestry-related variation 
in the number of ROH segments and total homozygo-
sity due to ROH when the three clusters were compared 
to the 1000 Genome populations (Fig.  3A, Fig. S5). We 
should note that Cluster 1 and Cluster 3 have increased 
total homozygosity with respect to the average number of 
segments, which suggests recent consanguinity [17, 18]

Such a diverse distribution could be explained by the 
different genetic history of each cluster.

Analyses of effective population size (Ne) in the last 50 
generations using IBDNe [19] further support a signifi-
cant difference in the level of genetic drift, as the confi-
dence intervals of the effective population sizes across 
generations never overlap between each other (Fig. 3B).

Admixture analysis using MALDER [20] revealed sev-
eral admixture events that happened at different times: 
one admixture event between 32 ± 3 generations ago for 
Cluster 1 (in which the reference populations with the 

Fig. 1 Population structure of Qatar (A) Admixture plot for K = 11 using Human Origins dataset. The red colour represents the Middle 
Eastern-Bedouin like ancestry, the cyan colour represents the South Asian component the violet component represent the Middle 
Eastern-Palestinian like component, the green one represents the African component and the blue one represents the East Asian component (B) 
Principal component analysis followed by Gaussian clustering based only on 186 Qatari sample, a total of four clusters were found. C Projected 
principal component of 186 Qatari sample onto 1000G populations. We can observe how Cluster 2 shows African ancestry, Cluster 3 has South 
Asian Ancestry and Middle Eastern Ancestry, Cluster 1 has the highest Bedouin like ancestry and finally Cluster 4 shows evidence of South Asian and 
east Asian ancestry.
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highest Zscore, according to MALDER are Greek and 
Yoruba) and a more recent event 5 ± 0.5 generations for 
Cluster 2 (reference populations with the highest Z score, 
according to MALDER are Biaka and Greek).

Interestingly, Cluster 3 shows evidence of two 
admixture events: one at 42 ± 5 generations ago (ref-
erence populations: Greek and Yoruba) and one more 
recently at 5 ± 1 generation ago (reference populations: 

Fig. 2 Clustering based on admixture Q values and ROH pattern. A dendrogram clustering and B each bar represents the individual total 
homozygosity due to ROH in Mb. Cluster 1 is colored in red, Cluster 2 in yellow, Cluster 4 in dark green and Cluster 4 in blue

Fig. 3 A Average level of total homozygosity and number of ROH segments in Qatari population. On the y-axis the ROH were measured in Mb. 
Population from the 1000G are coloured according to their geographic origin. B Effective population size (Ne) estimates with IBDNe. We estimated 
the Ne of the three major clusters found in the Qatari samples. Dotted lines represent the 95% CI
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Biaka and French). We had to exclude Cluster 4 from 
this analysis as its small sample size could produce 
unreliable results in detecting admixture events.

Selection signals
We applied the NSL statistic [21] to the three major 
clusters found in our dataset to understand how 
genetic structure affects the pattern of genes under 
putative positive selection. A conservative approach 
was considered, collecting only the results of markers 
previously associated with a phenotype, using, as a ref-
erence, the GWAS catalogue.

Scans for selection signals revealed that most hits 
are private to each cluster if we consider all the signals 
putatively functional (NSL >  = 99th percentile of the 
genomic distribution and presence in GWAS catalogue 
(see Figs. S6-S7).

Among the top signals that are shared between all 
three major clusters (NSL score over the 99th per-
centile and SNP present in GWAS catalogue), we 
found two variants in the FADS2 gene: one rs174578, 
rs174583 and rs174601 associated with haemoglo-
bin, serum metabolite measurement and different 
lipid traits (HDL, LDL), respectively [22–24]. Addi-
tional signals of shared selection signatures were 
found in  RYR1,  where the variant rs3786829 was 
associated with peanut allergy [25], another SNP was 
found in  DENND1A,  the variant carrying the signal 
(rs2479106) was associated with polycystic ovary syn-
drome [26]. Finally, we found selection signatures in 
three additional markers, one associated with micro-
glial activation measurement (rs651691) [27], one 
associated response to anti-depressant treatment in 
major depressive disorder (rs10517287) [28] and one 
associated with trans-fatty acid levels (rs17099388) 
[29]  (Table  1). Then we grouped the private sig-
nals of selection accordingly to the associated phe-
notypes. We discovered signatures of selection for 

genes linked to lipid traits, BMI and serum metabo-
lite levels for Cluster 1 and Cluster 3. For Cluster 2, 
we found signals in SNPs involved in blood traits and 
height (Table S2).

Putative loss of function variation
Finally, we investigated how genetic structure affected 
the distribution and prevalence of loss of function vari-
ants. A total of 97 putative loss of function variants 
(LOF) were analyzed using a custom-made list described 
in the Method section. For thirty of them, a significant 
difference in frequency was found (after Bonferroni 
correction) only in one cluster compared to the others 
(see Table S3). The majority of them are specific to Clus-
ter 1 (which shows higher homozygosity and Bedouin-
like ancestry) and Cluster 2 (African ancestry). The 
markers with the highest difference in frequency in each 
cluster were then further analyzed (top five lowest p-val-
ues, corresponding to the top 2% of the results). One of 
them, rs2884737 (p-value = 5E-07), is located within  the 
VKORC1  gene and detected at high frequency in Clus-
ter 1(Near Eastern ancestry). This variant is involved in 
warfarin response [30], A graphical representation of 
how ancestry determined the genotype distribution of 
these variants is shown in Figs. S6, S7 and S8. In Clus-
ter 2(African ancestry), signals for rs1127745 located 
in  ACOX2  and associated with triglyceride levels [31]. 
One variant, rs35400274 (in C17orf107, a gene associated 
with Sphingomyelin levels [32], was present in Cluster 3 
(South Asian ancestry). Finally, one variant, rs3213755, 
in  the KRTAP1-1  gene, which encodes for a keratin-
associated protein, was found in Cluster 4; to our knowl-
edge, there are no phenotypes previously associated with 
this gene.  To investigate the relationship between effec-
tive population size and LOF distribution we applied 
the following approach: we grouped the LOF variants 
into two groups. The first one comprises high delete-
riousness variants using CADD score [33] as measure 

Table 1 Shared signals of selection among the different subgroups in Qatar

SNP_id Location Consequence SYMBOL Gene NSL Cluster1 NSL cluster2 NSL cluster3

rs651691 1:193,958,320–193,958,320 intergenic_variant - - -3.42 -2.86 -2.66

rs10517287 4:33,624,702–33,624,702 intergenic_variant - - -3.73 -3.12 -3.51

rs17099388 5:142,095,250–142,095,250 intergenic_variant - - -3.36 -3.81 -3.15

rs2479106 9:126,525,212–126,525,212 intron_variant DENND1A ENSG00000119522 -2.83 -2.72 -3.04

rs174577 11:61,604,814–61,604,814 intron_variant FADS2 ENSG00000134824 -2.95 -2.79 -3.14

rs174578 11:61,605,499–61,605,499 intron_variant FADS2 ENSG00000134824 -3.63 -3.04 -3.19

rs174601 11:61,623,140–61,623,140 intron_variant FADS2 ENSG00000134824 -3.96 -3.11 -3.63

rs3786829 19:39,014,184–39,014,184 intron_variant RYR1 ENSG00000196218 -2.82 -3.79 -3.45
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of deleteriousness (CADD >  = 25), and the second one 
including low deleteriousness ones (CADD <  = 5); then, 
we estimated the median allele frequency in each group 
and each cluster found in the Qatari sample. The amount 
of low deleteriousness variation is related to the level of 
drift, and the amount of high deleteriousness variation 
indicates the natural selection efficiency. The ratio of high 
deleteriousness variation to low deleteriousness variation 
should hint at the efficiency of selection. A low ratio indi-
cates higher purifying selection efficiency compared to 
drift. A high ratio suggests that selection is less efficient 
compared to genetic drift. As we can observe from Table 
S5 the lowest ratio is from Cluster 2 and the highest is 
from Cluster 1 which indicates that in the population 
with highest Ne, selection is more efficient.

Discussion
Previously published works [5, 9, 34–36] described the 
different ancestral components in the Qatari population. 
Our focus is to describe how a peculiar genetic history 
shaped one population’s genomic pattern in terms of 
homozygosity burden, variants under positive selection, 
and genetic drift of putative loss of function variants. 
With the current emphasis on precise and personalized 
medicine, and therefore on rare variants, we must not 
forget that demography and admixture shape the preva-
lence of common genetic factors that could impact the 
phenotype distribution at a population level, with reper-
cussion on the welfare system.

With our findings, we provide a more comprehensive 
analysis regarding the ancestry-related structure that 
could be useful for future analyses on both array and 
whole-genome sequencing data (WGS). Three major 
ancestral groups (with predominantly Bedouin, African, 
and South Asian ancestry) named Cluster 1, Cluster 2 
and Cluster 3 were found in agreement with previous 
data and uniparental marker analysis. The difference in 
variability between Y and mitochondrial data could hint 
at a sex-biased migration, in fact an higher haplotype 
variability in the mitochondrial genome respect to the Y 
chromosome could hint to movement of females in pat-
rilocal groups [37]. Interestingly, a novel cluster with a 
small fraction of East Asian ancestry was found (Cluster 
4), indicating additional cryptic gene flow from a more 
distant origin in the past. This additional cluster suggests 
that increased sample size could reveal higher levels of 
substructure than expected, further hinting at the Qatari 
population as a melting pot of different ancestries and 
admixture events [13]. Moreover, this scenario adds a 
new layer of complexity to the genetic architecture of the 
Qatari population. Therefore, for example, GWAS analy-
sis should carefully consider this complex stratification 
to avoid any bias, for example, performing association 

studies in each ancestral subgroup separately, if pos-
sible, or selecting a method that can correctly take into 
account the cryptic structure of this and similar popula-
tions [38–40].

Our data showed how the population substructure is 
linked to the difference in ROH pattern, which affects 
phenotype distribution [6, 7, 41]. Cluster 1 showed 
higher levels of ROHs with respect to Cluster 2, Cluster 
3 and Cluster 4, consequently. Overall, the present find-
ings suggest a hierarchical level of population substruc-
ture in the Qatari population, characterized by varying 
levels of homozygosity. One limitation of our study is the 
lack of phenotype information. Despite some variants are 
found in homozygous state in a population, it is difficult 
to predict the overall variability of a phenotype linked 
to these markers, mainly because the majority of associ-
ated genetic variants explain very little of the phenotype 
variance.

Additional analyses revealed a different effective pop-
ulation size (Ne) between the three major clusters in 
recent time, such as the timing and number of admix-
ture events. If we consider a generation time of 30 years, 
the time of the admixture events for cluster 1 is around 
32 generations ago ~ 1040 CE (32 generations) while for 
Cluster 2 is ~ 1859 CE (5 generations). Cluster 3 shows 
two admixture events, one at 1859 CE (similar to cluster 
2) and one at ~ 740 CE (42 generations ago). It is interest-
ing how we can roughly overlap the admixture events for 
Cluster 1 and Cluster 3 to the period of the Abbasid Cali-
phate (750–1258 CE), where the Qatari region started 
to become a strategic economic hub, and pearl trading 
flourished. The most recent admixture events (for Cluster 
3 and Cluster 2) correspond to the first stage in Qatar’s 
development as a sheikhdom in recent history when the 
house of Thani started to rise in power [42]. Cluster 1 is 
the genetic group with lowest effective population and no 
evidence of recent admixture.

These results lead us to the assumption that also, the 
role of natural selection could be different. For this rea-
son, we investigated the pattern of recent selection using 
nSL statistics. The analysis revealed that, despite all 
clusters sharing the same environment and actual geo-
graphical location, the selection signals are composed 
predominantly of private ones (~ 70%). These signals 
involve markers previously associated with lipid traits 
such as HDL and LDL (Cluster 1 and Cluster 3) and 
height and blood traits (Cluster 2).

Some of the signals are shared between clusters, such 
as variants in FADS2, which could be linked to diet adap-
tation [43, 44]. The pattern of shared signals is negatively 
correlated with the genetic distance between these three 
clusters. As previously shown, the selection pressure 
should come from an adaptation to a diet characterized 
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by a high level of fatty acids derived from plants but rela-
tively poor in fatty acids derived from fish or mammals 
[45] which could relate to the introduction of agricul-
ture in the Middle East. One limitation in our analysis is 
that we based our assumptions on selection taking into 
account only specific variants reported in GWAS cata-
logue. Considering only a direct effect on a trait could 
restrict the possible explanations of selection pressures.

Besides signals of selection (related to ancestral ori-
gins), genetic drift shows different patterns in the Qatari 
population. Due to the reduced effective population size, 
we also expect reduced effectiveness of purifying selec-
tion. Thus, we investigated the pattern of a specific group 
of variants: the putative loss of function variants (pLOF). 
Our analysis revealed that there is a relative higher ratio 
of deleterious LOF (CADD >  = 25) in the clusters with 
lower Ne (Cluster1and Cluster 3), respect to the Cluster 
2(Africans), which shows higher effective population size.

Our work showed that several common putative 
pLOF harbour significant differences in allele frequency 
between clusters. Some of them, like the variant in the 
VKORC1 gene, are linked to a specific pharmacological 
response and show higher prevalence in Cluster 1 or are 
considered risk factors for phenotypes like triglyceride 
level ( ACOX2 variant for Cluster 2).

The result on VKORC1 is of particular interests, mainly 
because recent works showed the importance of warfa-
rin management in the Qatar population [46] and how 
this gene is involved in warfarin dose variability in Qatari 
[47].Here we show that one genotype is more prevalent 
in one ancestry respect to another in the structured pop-
ulation of Qatar.

A study of the population structure of Qatar’s people, 
as inferred by genetic testing, is necessary to determine 
how best to perform several association studies and other 
genetically-assisted analyses of risk in the Qatari popula-
tion. Furthermore, our findings provide crucial informa-
tion for risk stratification in the Qatari population.

Material and methods
Data preparation
Saliva samples from 188 healthy individuals were col-
lected in Hamad Medical Corporation (HMC), A written 
informed consent for participation was obtained from 
all subjects. Samples DNA was extracted at the IRCCS 
Burlo Garofolo Hospital. Genotyping was conducted at 
the Life & Brain Research Centre (Bonn, Germany) using 
the Illumina Infinium Global Screening Array-24 v1.0 
(GSAMD-24v1-0_20011747_A1). The initial quality con-
trol was performed on Illumina GenomeStudio software 
to remove poorly called samples and sites. Raw genotype 
data underwent a step of recalling using the software 
z-call [48] to obtain more reliable calls on low-frequency 

variants. PLINK v1.9 software [49] was used to process 
the genotype calls for further variants and samples QC: 
i) remove samples with high IBD sharing; ii) remove sites 
with a heterozygous rate higher than three standard devi-
ations from the mean heterozygosity rate distribution; iii) 
remove sites and samples by call rate (–geno 0.01 –mind 
0.05 options); iv) remove sites, not in Hardy–Weinberg 
equilibrium (–hwe 0.000001 option). The dataset result-
ing from these QC steps resulted in 186 individuals that 
was finally phased using the shapeit2 software [50], with-
out using any reference panel.

Y and mitochondrial haplogroup analysis
First, 28 male samples were extracted from the dataset 
and Y chromosome haplogroups were assigned using 
AMY-tree v2.0 software [51]. Input files were created by 
converting PED and FAM files into a vcf using PGDSpi-
der v2.1.1.1 [52] and then from a vcf into AMY-tree input 
files with R scripts. Results were then combined using in-
house R scripts. Mitochondrial analysis of 186 individu-
als was performed using the software haplogrep-2.1.20 
[53]. Haplotype diversity was estimated following the for-
mula described in [54]

Population structure and admixture pattern
To obtain a larger picture of the geographical pattern we 
merged our dataset with 1000G Phase 3 [16] (dataset-A) 
and Human Origins dataset [55] (dataset-B). Principal 
component analyses on dataset-A and dataset-B were 
performed after removing markers in linkage disequilib-
rium using the option –indep-pairwise 200 50 0.4 imple-
mented in PLINK [49]. Clustering approach was made 
using the R package Mclust [15] on the first 6 PCA eigen-
vectors. A complete list of all population used and their 
relative sample size is reported in Table S4.

Unsupervised admixture analysis using ADMIXTURE 
v1.23 [14] was done on dataset-B after removing the pop-
ulations with less than ten individuals. Time of admixture 
using all possible combinations of reference populations 
was performed using MALDER [20].

Inbreeding and runs of homozygosity estimates were 
calculated using PLINK using the option –homozyg and 
–het.

We further investigated effective population size using 
IBDseq [56] and IBDNe [19] on each genetic cluster iden-
tified. We using a threshold of 2 centimorgan for IBD 
segments and default parameters as suggested for SNP 
array data.

Selection scan
Selection scans in the different subgroups were done 
using the nSL statistic, a modification of iHS that has 
improved power in detecting soft sweeps [21]. Genotype 
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data were phased using Eagle [57], and nSL statistics were 
estimated and normalized using selscan [58]. First, we 
collected the values with a score over than 2 and present 
in GWAS catalogue reported the fraction of private and 
shared variants under putative positive selection between 
the various subgroups. We then collected the results 
falling over the 99.9th percentile of the distribution of 
genomic nSL and we selected the variants reported in the 
GWAS catalogue. These analyses were done in order to 
assess the impact of natural selection in putatively func-
tional variants already associated with disease or traits.

Putative loss of function variant distribution
We created a manually curated dataset of LOF variants 
which was composed by two lists: the first set was a list 
of loss of function variants described in MacArthur et al. 
[59] while the second list was composed by all variants 
annotated as stop-gain using VEP tool [60]. This selec-
tion aimed to obtain a reliable list of putative loss of func-
tion variants. We grouped the LOF into two categories: 
one with CADD score >  = 25 which are considered as 
high deleterious and one with CADD score <  = 5, which 
are considered as low deleterious. We estimated the aver-
age allele frequency in each group in each genetic cluster.

For each LOF, using the function –assoc implemented 
in PLINK, we selected the differentiated ones on one clus-
ter but not in the other. Only variants showing significant 
p-values after Bonferroni correction were further analyzed.

We investigated how ancestry affects the distribution 
of genotypes using the R package party [61], selecting the 
top differentiated markers in each subpopulation.
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