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Abstract 

Background: Fatty acid metabolism has been reported to play important roles in the development of acute myeloid 
leukemia (AML), but there are no prognostic signatures composed of fatty acid metabolism-related genes. As the cur-
rent prognostic evaluation system has limitations due to the heterogeneity of AML patients, it is necessary to develop 
a new signature based on fatty acid metabolism to better guide prognosis prediction and treatment selection.

Methods: We analyzed the RNA sequencing and clinical data of The Cancer Genome Atlas (TCGA) and Vizome 
cohorts. The analyses were performed with GraphPad 7, the R language and SPSS.

Results: We selected nine significant genes in the fatty acid metabolism gene set through univariate Cox analysis 
and the log-rank test. Then, a fatty acid metabolism signature was established based on these genes. We found that 
the signature was as an independent unfavourable prognostic factor and increased the precision of prediction when 
combined with classic factors in a nomogram. Gene Ontology (GO) and gene set enrichment analysis (GSEA) showed 
that the risk signature was closely associated with mitochondrial metabolism and that the high-risk group had an 
enhanced immune response.

Conclusion: The fatty acid metabolism signature is a new independent factor for predicting the clinical outcomes of 
AML patients.
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Background
Acute myeloid leukemia (AML) is a hematopoietic neo-
plasm characterized by the clonal expansion of abnor-
mally differentiated myeloid progenitor cells [1, 2]. With 
standard chemotherapy, AML patients have poor out-
comes and high mortality rates because of relapsed dis-
ease and leukemia-related complications, especially 
in patients aged 60 years and older. In addition, the 

outcome of AML is heterogeneous with patient-related 
and disease-related factors [2, 3]. Currently, cytogenetic 
risk combined with molecular abnormalities is used as a 
classic risk stratification system to predict the probability 
of complete response (CR) and relapse, as well as overall 
survival (OS) according to the national recommendations 
[4, 5]. However, this system has limitations in patients 
without defined chromosomal or genetic alterations. 
Therefore, the development of a more accurate risk strat-
ification system for AML is imperative to select suitable 
therapies and precisely predict clinical outcomes.

Metabolic reprogramming is a dynamic process accom-
panied by the whole process of leukemia [6–8]. When 
glucose metabolism shifts to aerobic glycolysis, AML 
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cells enter a malignant proliferation phase, and when glu-
cose metabolism shifts back into mitochondrial metabo-
lism, AML cells enter a stem cell-based self-maintenance 
phase [9, 10]. Moreover, fatty acid metabolism also plays 
an important role in AML progression [11]. Specific 
alterations in fatty acid oxidation (FAO) and fatty acid 
synthesis (FAS) participate in core mitochondrial meta-
bolic pathways influencing the fate of leukemia stem cells 
(LSCs), the adaptation to a specialized microenviron-
ment, and the response to drugs. The expression of FAO 
enzymes including APOC2, CD36, CT2, FABP4, PHD3 
and CPT1 were elevated in AML compared to normal 
hematopoiesis, moreover inhibition of these enzymes 
resulted in increased sensitivity to chemotherapy and 
decreased AML survival [12–17]. However, no mod-
elled signature of fatty acid metabolism has been devel-
oped to predict the prognosis of AML patients and to 
further select therapeutic strategies based on fatty acid 
metabolism.

In this study, we established a fatty acid metabolism 
risk signature with significant prognostic value based on 
The Cancer Genome Atlas (TCGA) AML database and 
validated it in another AML database (Vizome). The fatty 
acid metabolism risk signature could independently iden-
tify AML patients with poor clinical outcomes more pre-
cisely than other prognostic markers.

Results

Construction of a fatty acid metabolism signature in AML
Considering the essential role of fatty acid metabolism 
in AML, we sought to establish a fatty acid metabolism 
signature (FA risk score) for prognostication. We used 
patients from the TCGA AML database as the training 
cohort. Univariate Cox regression analysis was used to 
explore the prognostic value of fatty acid metabolism-
related genes (Supplementary Table  1). Thirty-seven 
genes were found to be associated with prognosis in AML 
(Supplementary Table 2 ). Then, we further screened the 
significant genes by log-rank prognostic analysis (Supple-
mentary Fig.  1A) and finally selected 9 genes (MLYCD, 
CYP4F2, SLC25A1, PLA2G4A, ACBD4, ACOT7, ACSF2, 
CBR1, and ACSL5). MLYCD and CYP4F2 were identi-
fied as protective factors with hazard ratios (HRs) < 1, 
whereas SLC25A1, PLA2G4A, ACBD4, ACOT7, ACSF2, 
CBR1 and ACSL5 were defined as risk factors with 
HRs > 1 (Table 1). The procedure is illustrated in Fig. 1.

We then used the risk score method to establish a 
risk signature for patients with AML based on the gene 
expression levels as follows: FA risk score = (0.299 * 
SLC25A1 expression) - (1.090 * MLYCD expression) 
- (0.394 * CYP4F2A expression) + (0.474 * PLA2G4A 
expression) + (0.488 * ACBD4 expression) + (0.538 * 

ACOT7 expression) + (0.566 * ACSF2 expression) + 
(0.632 * CBR1 expression) + (0.750 * ACSL5 expres-
sion). The patients were divided into high-risk and low-
risk groups based on the median risk score as the cut-off 
(Supplementary Fig. 1B).

Identification of the fatty acid metabolism signature 
as a prognostic marker in AML
We first analyzed the distribution of FA risk scores in 
patients with different survival statuses using a waterfall 
plot. Patients with lower FA risk scores generally had bet-
ter survival outcomes (alive) than those with high risk 
scores (Fig.  2A). Then, we found that high-risk patients 
had shorter OS times than low-risk patients by log-rank 
analysis (Fig.  2B). To demonstrate the validity of the 
9-gene FA metabolism risk signature in other independ-
ent populations, we calculated the risk score for each 
patient in the Vizome AML database [18] as an external 
cohort with the same formula. The patients were clas-
sified into high-risk and low-risk groups based on the 
median risk score. Consistent with the findings from the 
TCGA cohort, more surviving patients appeared in the 
low-risk group, and the OS time was shorter for high-risk 
patients than for low-risk patients (Fig. 2A-B). Moreover, 
the sensitivity and specificity of the FA risk score were 
assessed through time-dependent receiver operating 
characteristic (ROC) analysis. The areas under the curve 
(AUCs) for 1-, 2-, and 3-year OS were 0.8297, 0.8392 
and 0.8130, respectively, in the training cohort, with sig-
nificant p values (Fig. 2C). For validation in the external 
cohort, the AUCs for 1-, 2-, and 3-year OS were 0.6560, 
0.6649 and 0.6663, respectively (Fig. 2C).

To explore the prognostic value of the fatty acid metab-
olism signature in stratified cohorts, the patients were 
classified by two traditional independent markers, age 
and cytogenetic risk. In the training cohort, high-risk 
patients had shorter OS times than low-risk patients in 

Table 1 Cox Regression Analysis of TCGA RNA Sequencing 
Database, AML

Gene HR Low 95% High 95% P value

MLYCD 0.336 0.198 0.570 < 0.0001

CYP4F2 0.674 0.531 0.856 0.0012

SLC25A1 1.349 1.058 1.721 0.0159

PLA2G4A 1.606 1.291 1.997 < 0.0001

ACBD4 1.629 1.017 2.610 0.0425

ACOT7 1.712 1.249 2.346 0.0008

ACSF2 1.761 1.201 2.583 0.0038

CBR1 1.881 1.451 2.439 < 0.0001

ACSL5 2.116 1.320 3.392 0.0018
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all stratified cohorts (Supplementary Fig.  2A-B). How-
ever, when we confirmed the results in the validation 
cohort, we found that the FA score only further predicted 
the prognosis in patients aged ≤ 60 years or with inter-
mediate cytogenetic risk (Supplementary Fig.  2C-D). 
Overall, these results indicated that the FA signature is a 
prognostic marker in AML.

The fatty acid metabolism signature is an independent 
risk factor for precisely predicting the survival time of AML 
patients
We next performed univariate and multivariate Cox 
regression analyses to determine whether the FA risk 
score is independently correlated with the OS of AML 
patients. We analyzed the prognostic value of the FA 
risk score together with other common prognostic fac-
tors (age, FLT3 mutation, NPM1 mutation, leukocyte 
count and cytogenetic risk). We found that the FA risk 
score served as an independent prognostic factor with 
an HR of 4.238 (p < 0.0001) in the training cohort and 
1.406 (p = 0.077) in the validation cohort (Fig.  3A-B). 

Then, we conducted ROC curve analyses of the FA 
risk score and two other independent factors (age and 
cytogenetic risk) for predicting 3 years of OS in the 
training and validation cohorts and found that the AUC 
of the FA risk score was larger than that of cytogenetic 
risk or age (Fig.  3C). These findings confirmed the 
power of the FA risk score to independently predict 
prognosis in AML.

To achieve a better translational and predictive 
evaluation system, we developed a nomogram inte-
grating age, cytogenetic risk and FA score in the train-
ing set and validation set (Fig. 4A and Supplementary 
Fig.  3A). The calibration plots showed high concord-
ance between the predicted and actual probabilities of 
1-, 2- and 3-year survival (Fig. 4B and Supplementary 
Fig. 3B). The C-index of the merged nomogram score 
in the validation set was 0.7, which was significantly 
higher than that of its constituting factors (Fig.  4C). 
However, in the training set, the C-index of the merged 
nomogram score was close to the C-index of the FA 
score but higher than that of age and cytogenetic risk 

Fig. 1 The flowchart of the signature construction
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(Supplementary Fig. 3C). These results suggested that 
incorporating the FA score with traditional AML prog-
nostic factors could increase the precision of survival 
prediction compared to using the single traditional 
prognostic factors alone.

Association between the fatty acid metabolism signature 
and the clinical features of AML
To explore the clinical features associated with the FA 
metabolism signature, we stratified the AML patients 

into FA high-risk and FA low-risk groups according to 
their FA scores and assessed their clinical parameters. 
Genes that formed the fatty acid metabolism signature 
exhibited distinct expression patterns corresponding 
to the risk score (Fig. 5A). Moreover, we found that the 
distribution of the FAB types and cytogenetics-based 
risk groups were different between the FA high- and 
low-risk groups, while other clinical features showed 
no significance (Fig.  5A). Then, we analyzed the FA 
risk values among the FAB subtypes and found that the 

Fig. 2 Prognostic value of the fatty acid metabolism signature in AML. A Survival outcome analysis of FA score distribution in training and 
validation cohort. B Kaplan-Meier analysis revealed the signature expressed prognostic value of AML in training and validation cohort (with log-rank 
test). C The time-dependent ROC curves showed the sensitivity and specificity of predicting 1-, 2- and 3-year overall survival according to the 
signature in training and validation cohort

(See figure on next page.)
Fig. 3 Comparing the fatty acid metabolism signature with classic prognostic factors. A Forest plots of univariate cox regression analysis in 
training and validation cohort. B Forest plots of multivariate cox regression analysis in training and validation cohort. C The time-dependent ROC 
curves showed the sensitivity and specificity of predicting 3-year overall survival according to the signature, age or cytogenetic risk in training and 
validation cohort
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Fig. 3 (See legend on previous page.)
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M5 subtype exhibited the highest risk value, while the 
M3 subtype (acute promylocytic leukemia) exhibited 
the lowest risk value (Fig. 5B). Patients with favourable 
cytogenetic risk were more likely classified into the FA 
low-risk group (Fig.  5C). We also found that patients 
with poor cytogenetic risk had the highest FA risk val-
ues compared with those with intermediate or favour-
able cytogenic risk (Supplementary Fig.  4A). These 

data indicated that FA risk classification were consist-
ent with current risk factors.
The fatty acid metabolism signature is correlated 
with mitochondrial metabolism, and the high‑risk group 
exhibits an enhanced immune response
To explore the related functions of the fatty acid metabo-
lism signature, we analyzed the genes closely correlated 
with the FA score (R > = 0.5) in the TCGA and Vizome 
databases (Supplementary Tables 3 and 4). The results of 

Fig. 4 The nomogram combined the fatty acid metabolism signature and classic prognostic factors to predict the overall survival. A Nomogram 
plot showed the merged score system composed of the signature, age and cytogenetic risk in validation cohort. B Calibration plot showed the 
consistency of nomogram-predicted OS and actual OS in validation cohort. C The C-index comparison between the merged score and its single 
composition in validation cohort (with t test). *, P < 0.05; ****, P < 0.0001



Page 7 of 12Chen et al. BMC Genomic Data           (2022) 23:85  

Fig. 5 The correlation between the fatty acid metabolism signature and clinicopathological features. A Heatmaps described the association of 
the signature with age, gender, FAB subtype, cytogenetic risk, leukocyte count, hemoglobin count and platelet count in training and validation 
cohort. B The FA scores of FAB subtypes in training and validation cohort (with t test). C The distribution of cytogenetic risk between high-risk and 
low-risk group (with Chi-square test). ns, no significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001
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Gene Ontology (GO) analysis showed that the signature 
was associated with mitochondrial metabolism, includ-
ing the tricarboxylic acid (TCA) cycle and oxidative 
phosphorylation, in both databases (Fig. 6A). Moreover, 
to further investigate the differential biological func-
tions between the high-risk and low-risk groups, we 
screened out differentially expressed genes (upregulated 
in the high-risk group; log fold change (logFC) > 0.6 in 
TCGA, logFC > 0.7 in Vizome; p < 0.05; Supplementary 
Tables 5 and 6). We found that most relevant biological 
processes were enriched in the immune response, inflam-
matory response and innate immune response through 
GO analysis (Fig.  6B). To confirm these associations, 
we conducted gene set enrichment analysis (GSEA) of 
immune-related terms, and the results showed that posi-
tive regulation of the immune effector process, IFN-γ 
biosynthetic process, chronic inflammatory response 
and regulation of lymphocyte chemotaxis were posi-
tively enriched in the high-risk group (Fig.  6C). These 
results suggested that the high-risk group might exhibit 
an enhanced immune response. In addition, we explored 
twenty proteins that interacted with the nine FA score 
proteins through GeneMANIA, and most of the twenty 
proteins were included in lipid metabolism pathways 
(Fig. 6D).

Discussion
At present, chromosomal abnormalities and somatic gene 
mutations, considered the pathogenesis of AML, are com-
bined to guide prognostic prediction and treatment selec-
tion [3, 19]. However, this evaluation system has limitations 
because nearly 50% of AML patients harbour a normal 
karyotype, and some patients even lack common somatic 
mutations [20]. Thus, it is essential to develop new signa-
tures to further stratify the heterogeneous prognosis of 
AML patients. In this study, we constructed a suitable 
prognostic signature composed of genetic expression pat-
tern involved in fatty acid metabolism in AML patients.

Previous studies have implied that fatty acid metabo-
lism is active in LSCs and triggers various adaptive mech-
anisms in favour of AML cell survival [16, 21]. Reduced 
synthesis of monounsaturated fatty acid from saturated 
fatty acid leads the increased level of ROS and finally 
induces apoptosis of AML cells [22]. Moreover, the liver 
microenvironment induces fatty acid metabolism adap-
tation, promoting growth and chemo-resistance of liver 
infiltrated leukemia [23]. However, no researchers have 

combined the related genes of fatty acid metabolism to 
predict the prognosis of AML. Here, we screened the 
expression profile of fatty acid metabolism and identified 
nine genes with prognostic significance. Most of these 
nine genes have been reported in different tumors [24–
29] and some of them have been studied in AML such 
as PLA2G4A, ACOT7 and CBR1 [30–32]. The detailed 
roles of these genes in the pathogenesis of AML require 
further exploration.

The fatty acid metabolism signature we established 
could predict the clinical outcomes of AML patients 
independently with preferable specificity and sensitivity.
Acute monocytic leukemia (AML-M5) is a poor prognos-
tic subtype of AML associated with hyperleukocytosis, 
extramedullary disease, and abnormal coagulation [33]. 
We found that M5 subtype patients had the highest FA 
scores, which suggested that fatty acid metabolism might 
be highly activated, providing the potential therapeutic 
targets. Our results showed that FA score was an inde-
pendent prognostic factor and the combination of FA 
score, age and cytogenetic risk was superior to single fac-
tor, providing a more useful tool to stratify AML patient.

Fatty acids converge into the TCA cycle and further 
participate in oxidative phosphorylation (OXPHOS) 
in mitochondria. Several studies have suggested that 
the cellular enhancement of mitochondrial metabolism 
might induce Ara-C resistance, leading to poor progno-
sis and targeting OXPHOS sensitized AML cells to Ara-C 
[34, 35]. Thus, the desregulated fatty acid metabolism 
is an effective target and several inhibitors of FAO have 
been applied in preclinical AML studies [36]. Recently, 
researchers found that LSCs, which are drug-resistant 
cells, selectively depended on OXPHOS to supply energy 
and that the BCL-2 inhibitor venetoclax could inhibit 
OXPHOS in LSCs [37, 38]. The combination of veneto-
clax with the hypomethylating agent (HMA) azacitidine 
showed promising synergistic effects on AML patients in 
a phase 1b clinical study [39, 40]. Further studies showed 
that venetoclax combined with azacitidine targeted 
amino acid metabolism to inhibit OXPHOS in LSCs 
[41]. Moreover, up-regulation of FAO due to RAS path-
way mutations or compensatory adaptation in relapsed 
disease attenuates the essentiality of amino acid metabo-
lism, and finally decreases the sensitivity of the combina-
tion treatment with azacitidine and venetoclax [42]. In 
our study, the fatty acid metabolism signature was closely 
correlated with mitochondrial metabolism, which is con-
sistent with previous studies. Based on these findings, 

Fig. 6 Related function analysis of the fatty acid metabolism signature. A GO analysis based on signature-related genes (R > = 0.5) showing 
mitochondrial metabolism associated functions of the signature in training and validation cohort. B GO analysis based on differential expressed 
genes showing inmmune associated functions of the signature in training and validation cohort. C The results of GSEA verified the immune-related 
functions of the signature in training cohort. D Protein-protein interaction of the nine constituent genes using GeneMANIA

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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we proposed that fatty acid inhibitors might improve 
the efficiency of venetoclax and azacitidine combination, 
especially in the patients with a high-risk FA metabolism 
signature.

Cellular metabolic reprogramming is not only a hall-
mark of tumours but also a characteristic of immune cells 
[43]. Long-lived memory CD8 T cells (Tm), the key fac-
tors in immunotherapy, have elevated fatty acid oxidation 
levels, as previous studies reported [44]. Here we found 
that the high-risk group showed a disturbance of immune 
response. Therefore, we speculated that fatty acid metab-
olism also played the roles in the abnormal interaction 
between leukemic cells and the immune cells in the bone 
marrow environment, resulting in immune escape and 
drug resistance. However, the detailed mechanism needs 
further exploration and validation in AML.

Conclusion
Overall, we developed a prognostic signature based on 
nine fatty acid metabolism-related genes that could inde-
pendently predict clinical outcomes with specificity and 
sensitivity, as well as improve the existing prognostic 
evaluation system. Moreover, the fatty acid metabolism 
signature might be an index to monitor the effect of tar-
geted therapy.

Methods
Data collection
179 AML patients′ clinical information and transcriptome 
sequencing data of The Cancer Genome Atlas (TCGA) 
were downloaded from https:// xenab rowser. net. Clinical 
information along with transcriptome sequencing data of 
VIZOME (451 patients) were downloaded from http:// www. 
vizome. org/ aml/ and http:// www. cbiop ortal. org/. Function 
gene sets were obtained from http:// www. gsea- msigdb. org/ 
gsea/ index. jsp.

Bioinformatics analysis
Limma R package was used to calculate differential 
expression genes between high-risk and low-risk group. 
The gene ontology (GO) enrichment analysis was per-
formed by DAVID 6.8 (https:// david. ncifc rf. gov/ tools. 
jsp) to find possible functions associated with the fatty 
acid metabolism signature. Gene set enrichment analy-
sis (GSEA) was carried out to verify the AML-related 
functions between patients in high-risk and low-risk 
group (http:// www. broad insti tute. org/ gsea/ index. jsp). 
Heatmaps were made by R language to express informa-
tion correlated with the fatty acid metabolism signature. 
A nomogram model consists of independent prognostic 
factors was established for a better prediction of prog-
nosis. The prediction accuracy of the merged system and 
its elements were determined by Calibration plot and 

C-index [45]. Protein–protein interaction among the 
nine genes was detected using the GeneMANIA datasets. 
GeneMANIA is frequently used datasets which can pro-
vide protein–protein interaction information [46].

Statistical analysis
R language (version 3.5.2), SPSS (20.0) and GraphPad 
Prism 7 were mainly used for statistical analysis and fig-
ure drawing. Univariate cox regression analysis was used 
to identify prognostic genes. A risk signature was devel-
oped according to a linear combination of their expres-
sion levels weighted with regression coefficients from 
univariate cox regression analysis [47]. Kaplan-Meier 
survival analysis and log-rank test were used to indicate 
prognostic values. Multivariate cox regression analysis 
was carried out to identify independent prognostic fac-
tors. Chi-square test was used for showing the difference 
of clinical features between two groups. Two-tailed t test 
was performed to calculate the quantitative difference 
between two groups. ROC curves, forest plots and sur-
vival curves were made by GraphPad Prism 7. Statistical 
significance was defined as P value < 0.05.
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