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Abstract 

Introduction: The biology of colorectal cancer (CRC) is remained to be elucidated. Numerous genetic and epige-
netic modifications are in concert to create and progress CRC. DNA methylation as a principal epigenetic factor has 
gained increased attention and could be utilized for biological studies. This study aims to find novel methylated and 
downregulated genes with a focus on HAND2 in CRC and decipher the biological consequences.

Material and method: Data on DNA methylation from GEO and SMART databases and the expression GEPIA2 
database were downloaded. Afterward, a set of hypermethylated and downregulated genes in CRC was chosen by 
overlapping genes. Consequently, HAND2 was selected as a key gene for further investigation and confirmed with cell 
lines methylation and expression data. The functions of HAND2 were further analyzed using gene ontology analyses 
and the protein–protein interaction network.

Results: The methylation (p < 0.01) and expression (p < 0.01) of HAND2 are significantly varied in CRC compared to 
normal control. The correlation analysis (Pearson’s correlation coefficient = -0.44, p = 6.6e-14) conveys that HAND2 
significantly downregulated and has a reverse correlation with the methylation status of CpG islands. The biological 
process analysis of HAND2 target genes conveyed that disruption in HAND2 expression could dysregulate ERK1 and 
ERK2 signaling pathways.

Conclusion: Together, the findings showed that DNA hypermethylation of HAND2 was critical evidence in CRC. Fur-
ther validation and prospective studies are needed to utilize HAND2 methylation as a promising biomarker.

Highlights 

• Multiple open-access datasets were investigated.

• Investigation of cell lines methylation and expression data were added to consolidate the tissue-based data.

• The focus of this study was on the consequence of aberrant DNA methylation.
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Introduction
Colorectal cancer (CRC) is one of the leading causes of 
cancer-related death, and numerous efforts have been 
made to understand the accurate biology of CRC. In 
2021 Sung et  al. reported that CRC ranks third in inci-
dence and second in mortality. In addition, they claimed 
that "CRC can be considered a marker of socioeconomic 
development, and, in countries undergoing a major tran-
sition, incidence rates tend to rise uniformly with increas-
ing Human Development Index (HDI)" [1]. Recently, 
oncologists have been focused on the precision cancer 
medicine (PCM) concept, which utilizes targeted thera-
pies to obtain efficient treatment with less inconvenience 
that patients might face [2]. The researcher’s efforts eluci-
date numerous aspects of cancer biology and improve the 
quality of patient outcomes; nevertheless, cancer-related 
morbidity and mortality rate remain prevalent.

CRC progression arose from genetic and epigenetic 
alterations. The first profound model of CRC progres-
sion was proposed by Fearon and Vogelstein [3], which 
was based on the accumulation of genetic alterations. 
Epigenetic alterations can be exploited as clinically rel-
evant disease biomarkers for diagnosis, prognostication, 
and treatment response prediction; they may also be 
targeted in novel therapies. The major epigenetic regu-
lators are DNA methylation, histone modifications, and 
non-coding RNA species [4]. Furthermore, investiga-
tions revealed that epigenetic aberrations could perturb 
gene expression and lead to malignant transformation. 
It is also suggested that aberrant epigenetic modifica-
tions probably occur early in pathogenesis and are in 
concert with genetic defections [5]. Intriguingly, one of 
the unique properties of epigenetic alterations is that 
they are reversible, and it has been shown that they have 
treatment value in various cancers [6]. Thus, the impact 
of epigenetic alterations on cancer progression should be 
emphasized and studied more.

DNA methylation is an enzymatic modification in that 
DNA methyltransferases add a methyl group to cytosines 
leading to the regulation of DNA–protein interactions in 
the major grooves. Mainly, aberrant DNA methylation 
plays a significant role in tumorigenesis. Hypomethyla-
tion is commonly observed during cancer progression, 
leading to genomic instability and, less frequently, onco-
genes’ activation. DNA hypomethylation occurs on spe-
cific sequences, such as heterochromatic DNA repeats, 
dispersed retrotransposons, and endogenous retroviral 
elements. On the other hand, hypermethylation could 

suppress the tumor suppressor genes and has often been 
observed in CpG islands in gene regions. CpG island 
methylator phenotype (CIMP) is the hypermethylation 
of cancer-specific CpG islands [7]; Toyota et  al. sug-
gested CIMP as a subset of CRC [8], and they proposed 
that deciphering the mechanisms underlying methylation 
phenomena can be beneficial for CRC precise detection, 
prevention of cancer progression, and development of 
novel therapies.

This study aimed to explore the consequences of 
aberrated DNA methylation in CRC patients. The can-
cer methylome, for instance, CpG island hypermeth-
ylation, is traceable evidence. This study provides a 
multi-approach bioinformatics analysis strategy for iden-
tifying the hypermethylated and downregulated genes. 
Datasets (GSE17648, GSE25062, GSE29490, GSE47071, 
and GSE47592) from the publicly available Gene Expres-
sion Omnibus (GEO) database were downloaded and 
analyzed by GEO2R. Also, the TCGA differentially meth-
ylated CpGs and the expression data were obtained from 
the SMART GEPIA2 databases, respectively.

Consequently, HAND2 was selected as a key factor 
for further investigation. This approach was followed by 
chip-seq analysis, gene ontology (GO) enrichment analy-
ses, and protein–protein interaction networks. The con-
cise path of this study is depicted in Fig. 1.

Material and methods
Databases analysis
GEO database
The colorectal cancer tissue methylation profile datasets 
were obtained from the NCBI GEO database (http:// 
www. ncbi. nlm. nih. gov/ geo/). The accession number 
was GSE17648, GSE25062, GSE29490, GSE47071, and 
GSE47592. The microarray data of GSE17648 was based 
on GPL8490 Platforms (Illumina HumanMethylation27 
BeadChip), including 22 tumoral and 22 adjacent normal 
samples; GSE25062 was based on GPL8490 Platforms 
(Illumina HumanMethylation27 BeadChip), including 
125 tumoral and 29 adjacent normal samples; GSE29490 
was based on GPL8490 Platforms (Illumina HumanMeth-
ylation27 BeadChip), including 24 tumoral and 24 adja-
cent normal samples; GSE47071 was based on GPL8490 
Platforms (Illumina HumanMethylation27 BeadChip), 
including 51 tumoral and 38 adjacent normal samples; 
and GSE47592 was based on GPL8490 Platforms (Illu-
mina HumanMethylation27 BeadChip), including 51 
tumoral and 38 adjacent normal samples. Differentially 

• The study introduced a simple method for investigating online databases.
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methylated CpGs were refined log2FC higher than 1 and 
p-value less than 0.01. It should be mentioned that log2FC 
is relative to the group selection order and only available 
when two groups of samples are defined. In this study, we 
defined two groups for each dataset, including "Tumoral" 
and "Normal," respectively. Hence, log2FC for hypermeth-
ylated regions was positive. The duplicated gene’s name 

was deleted. The instruction of GEO2R explained that 
the log2FC is based on M-value and adjusted p-value cal-
culated through Benjamini & Hochberg [9].

Investigating the methylation by SMART database
The methylation data based on Illumina Infinium 
HumanMethylation450 BeadChip from the SMART 

Fig. 1 Flowchart of the bioinformatic analysis
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database (http:// www. bioin fo- zs. com/ smart app/), includ-
ing 288 cancerous and 34 normal samples (COAD (Colon 
adenocarcinoma)), were downloaded. Differentially 
methylated CpGs were refined through the M-value 
higher than 2 and p-value less than 0.01 [10]. The dupli-
cated gene’s name in the obtained results from the 
SMART database was deleted to have a faster and more 
reliable analysis. This study considers the M-value met-
ric to measure methylation levels because the M-value 
is more statistically valid for the differential analysis of 
methylation levels [11].

Investigating the gene expression by GEPIA2
The expression data is based on the RNA-SeqV2 plat-
form, generated by the GEPIA2 database (http:// GEPIA2. 
cancer- pku. cn/). The gene expression profile of COAD 
is provided by Genotype-Tissue Expression (GTEx) and 
TCGA repository. Two hundred seventy-fine COAD 
cancerous samples and three hundred forty-nine normal 
samples, including 41 COAD normal adjacent samples, 
and 308 GTEx-based samples, were analyzed. Differen-
tially expressed genes were refined through Log2FC cutoff 
higher than 1, q-value cutoff less than 0.01, and under-
expressed as the chromosomal distribution by ANOVA 
analysis. The q-value is an adjusted p-value, considering 
the false discovery rate (FDR) [12].

The procedure of hypermethylated and downregulated genes 
discovery
Firstly, hypermethylated genes (log2FC less than 1 and 
p-value less than 0.01) in the five GEO datasets, includ-
ing GSE17648, GSE25062, GSE29490, GSE47071, and 
GSE47592, were analyzed by Venn diagram (http:// bioin 
forma tics. psb. ugent. be/ webto ols/ Venn/) to find inter-
sections (hypermethylated genes) among five datasets. 
Afterward, hypermethylated genes (M-value higher than 
2 and p-value less than 0.01) obtained from the SMART 
database were compared to the results of the previous 
GEO datasets intersections analysis. Ultimately, another 
Venn diagram was constructed to find the downregulated 
genes (Log2FC cutoff higher than 1, q-value cutoff less 
than 0.01) intersections with obtained hypermethylated 
genes from the previous step.

Investigation of cell lines expression and methylation 
profile
The DepMap database (https:// depmap. org/) was used 
to confirm the tissue’s expression and methylation pro-
file. This profound database provides "discoveries related 
to cancer vulnerabilities by providing open access to key 
cancer dependencies analytical and visualization tools" 
is provided. For this purpose, fifty-one colorectal can-
cer cell lines with methylation and expression data were 

chosen. The predefined expression and methylation data 
are based on log2(TPM + 1) and Beta-value, respectively.

ChIP‑Seq analysis for HAND2
This study uses the ChIP-Atlas public database (https:// 
chip- atlas. org/), which analyses ChIP-Seq, DNase-Seq, 
ATAC-Seq, and Bisulfite-Seq data to find targets of the 
selected transcription factor. An accurate relationship 
between transcription factors (TFs) and their target 
genes and the effect of their regulatory activity (activa-
tor or repressor) should be established to define a distinct 
transcriptional regulatory network. The parameter for 
this analysis is refined through the average score based 
on Model-based  Analysis of  ChIP-Seq (MACS) above 
499 and the ± 1 kb distance from the transcription start 
site (TSS) [13, 14].

Functional and pathway enrichment analysis, protein–
protein interaction (PPI) network
Gene ontology analysis (GO) is a proper standard 
method for annotating genes for identifying biological 
processes (BP), cellular components (CC), and molec-
ular function (MF). In order to analyze the selected 
genes for functional enrichment, GO enrichment and 
KEGG pathway analysis were performed using ShinyGO 
(http:// bioin forma tics. sdsta te. edu/ go/). Furthermore, the 
STRING database (https:// string- db. org) was used for 
protein–protein interaction (PPI) analysis to investigate 
the molecular mechanisms.

Statistical analyses
In this study, the methylation levels were measured based 
on the M-value. The M-value method performs efficiently 
in Detection Rate (DR) and True Positive Rate (TPR) for 
both highly methylated and unmethylated CpG sites [11]. 
Correlation analysis was performed using Pearson’s cor-
relation to measure the strength of the linear relation-
ship between two variables [15]. It should be declared to 
unify the data, and this study utilized the COAD data for 
investigation.

Results
Identification of DNA differentially methylated regions 
and differentially expressed genes in colon cancer tissues 
and cell lines
Five datasets (GSE17648, GSE25062, GSE29490, 
GSE47071, and GSE47592), including 272 tumoral sam-
ples and 151 normal controls, were downloaded to 
identify differentially methylated regions. The hyper-
methylated regions were indicated by generating a Venn 
diagram of five datasets. Altogether, two hundred and 
fifty-two common hypermethylated regions were defined 
(Fig. 2-A, Supplement 1).

http://www.bioinfo-zs.com/smartapp/
http://GEPIA2.cancer-pku.cn/
http://GEPIA2.cancer-pku.cn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://depmap.org/
https://chip-atlas.org/
https://chip-atlas.org/
http://bioinformatics.sdstate.edu/go/
https://string-db.org
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Afterward, the common hypermethylated genes 
obtained from the GEO database were compared to 
SMART database hypermethylated genes through 
another Venn diagram.  Two hundred two  signifi-
cant hypermethylated regions  (genes) were obtained 
(Fig. 2-B, Supplement 2).

Ultimately, hypermethylated genes were compared 
to the significantly downregulated genes to identify the 
hypermethylated and downregulated genes simultane-
ously. HPSE2, SDC2, SPG20, RSPO2, ZNF667, SFRP2, 
CHST10, HAND2, NPY, ZNF677, FIGN, GPM6A, 
AMPH, D4S234E, ADHFE1, CNTN1, TRPC6, GRIK3, 
NRXN3, GFRA1, FLT4, JAM3, UCHL1, ATP8B2, 
MAL, CNR1, THBD, PHOX2A, EDNRB, KIF5A, NPR3, 
SOX17, NTRK3, VIPR2, CD34, GRASP, CDO1, INA, 
JAM2, RYR2, GAS7, PDE8B, SFRP1, and PRSS1 were  
significantly hypermethylated and downregulated in 
COAD samples (Fig. 2-C, Supplement 3). The HAND2 
gene was selected in this study for further investiga-
tion because the  potential role of HAND2 in CRC is 
not well understood.

The correlation of HAND2 methylation with its expression
Correlation analysis is a common method to examine 
the relationship between specific gene methylation 
and expression [16]. In this study, Pearson’s correla-
tion was calculated between the HAND2 methylation 
and expression. Interestingly, the aggregated (mean of 
all probes) Pearson’s correlation (Pearson’s correlation 
coefficient = -0.44, p = 6.6e-14 for COAD) conveyed 
that HAND2 significantly downregulated in CRC (288 
colon cancer) and has a reverse correlation with the 
methylation status of CpG islands (Supplementary 
Fig. 1).

The HAND2 methylation and expression in CRC cell lines
The DepMap database was investigated to consolidate the 
correlation between HAND2 methylation and expression 
hypothesis. Interestingly, the data available on the Dep-
Map database (https:// depmap. org/) for cancerous cell 
lines conveyed that HAND2 is hypermethylated in CRC 
cell lines, simultaneously downregulated. Furthermore, 
the Pearson correlation coefficient test revealed a negative 
correlation (Pearson’s correlation coefficient = -0.3035, 
p = 0.030) between the HADN2 expression and methyla-
tion (Supplement 4, Supplementary Fig. 3).

Identifying the HAND2 downstream genes, signaling 
pathways, and the interaction with other proteins
Using the ChIP-Atlas database, potential HAND2 tar-
gets were identified by an average score above 499 and 
the ± 1 kb distance from the transcription start site (TSS). 
The number of refined target genes was 104. Afterward, 
obtained genes were analyzed with ShinyGO for enrich-
ment analysis (Fig. 3 and Supplement 5).

The final results of the biological process of HAND2 
target genes conveyed that disruption in HAND2 expres-
sion could dysregulate ERK1 and ERK2 signaling pathways. 
Notably, the HAND2 downstream genes conveyed that 
HAND2 is a critical transcription factor for maintaining 
cell homeostasis. Interestingly, it was shown that HAND2 
could directly bind to ERK and reduce the phosphorylation 
of ERK [17]. In this study, the results showed that HAND2 
downstream genes could regulate ERK1 and ERK2 cascade.

On the other hand, by utilizing the String database, 
the interaction network of HAND2 revealed that it has 
numerous potential interactions with critical proteins, 
including ADSS, ELSPBP1, GATA4, HAND1, MEF2C, 
NFATC1, NKX2-5, TBX5, TCF3, and PHOX2A, which 

Fig. 2 Multistep Venn Diagram for Obtaining Hypermethylated and Downregulated Genes. A The Venn diagram among five GEO methylation 
datasets. B The Venn diagram between the result of hypermethylated GEO genes and the SMART database hypermethylated genes. C The Venn 
diagram of hypermethylated genes and GEPIA2 downregulated genes

https://depmap.org/
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all of them are capable of binding DNA. Pathway enrich-
ment analysis (KEGG) and functional enrichment 
analysis (GO) were applied to elucidate the biological 
functions of the putative interaction proteins related to 
HAND2. Enriched results were subjected to multiple 
testing adjustments with a threshold value FDR (q-value) 
less than 0.05. To better exhibit functional consequence, 
only the top twenty significant enriched GO terms are 
shown in Fig.  4. The BP enrichment analysis manifests 
that HAND2 misregulation could perturb Cardiac ven-
tricle morphogenesis (FDR = 3.22E-10), Cardiac ventri-
cle formation (FDR = 1.77E-09), and Cardiac chamber 
morphogenesis (FDR = 2.61E-09). The KEGG enrich-
ment analysis reveals that the misregulation of HAND2 
could impact the CGMP-PKG signaling pathway, Cellular 
senescence, and Signaling pathways regulating the pluri-
potency of stem cells.

The expression pattern of HAND2 antisense1 long non‑coding 
RNA and its correlation with CpG island methylation
Previous investigations revealed that HAND2 has an 
antisense long non-coding RNA [18]. The expression 

data of 275 COAD and 308 normal samples, analyzed 
by the GEPIA2, revealed that the HAND2 and HAND2-
AS1 were significantly downregulated in COAD samples 
compared to normal samples. The p-value cutoff was 
set to less than 0.01. (Fig.  5-A and Fig.  5-B) Afterward, 
the Pearson’s correlation test revealed that the expres-
sion of HAND2 and its long non-coding RNA antisense, 
HAND2-AS1, are positively correlated (Pearson’s correla-
tion coefficient = 0.96, p < 0.001) (Fig. 5-C).

Another Pearson’s correlation test revealed that the 
expression of HAND2-AS1 had a significant (Pearson’s 
correlation coefficient = -0.41, p = 3.4e-13 for COAD) 
reverse correlation with the methylation status of CpG 
islands (mean of all probes) (Fig.  5-D, Supplementary 
Fig.  2). This evidence led to deduced that HAND2-AS1 
could be under the control of DNA methylation, which 
hypermethylation of CpG islands affects the expression 
of HAND2-AS1. Aligning with our hypothesis, previ-
ous studies on ovarian carcinoma [19] and endometrioid 
endometrial carcinoma [20] conveyed that HAND2-AS1 
expression could negatively correlate with its promoter 
CpG island methylation.

Fig. 3 The interactive biological process of the HAND2 target genes. This figure shows that dysregulated expression of HAND2 could have a 
mal-impact on cell homeostasis, for instance, the ERK1/2 cascade
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Discussion
Multiple lines of evidence proved that most of the CpG 
contents of DNA (approximately 70%) in vertebrates 
are located in the promoters, called CpG islands; nev-
ertheless, CpG density itself does not influence gene 
expression, and the regulation of gene expression is 
dependent on the methylation of cytosine contents 
[21]. In general, DNA methylations are recognized by 
methyl-CpG binding domain proteins (MBDs), lead-
ing to recruits of histone deacetylase and gene silenc-
ing [22]. Studies demonstrated that cancer cells have a 
different methylome profile compared to normal cells. 
Current hypotheses are proposed that epigenetic dis-
ruptions are starting the processes of cancer creation 

[23]. Consequently, the studies focusing on epigenetic 
alterations are beneficial to understanding cancer’s 
biology more precisely.

This study utilized a multifaceted approach to assess 
the consequence of DNA methylation in colorectal can-
cer. The statistical population for studying DNA meth-
ylation consists of 273 samples for cancerous tissues 
and 181 for normal controls, which were analyzed from 
different GEO datasets. Another resource for analyzing 
DNA methylation data was the SMART database, which 
includes 288 cancerous and 34 normal COAD samples. 
Furthermore, the gene expression data of 275 samples of 
cancerous tissues and 349 normal controls, which were 
analyzed by the GEPIA2 database, was used in this study. 

A

B E

D

C

Fig. 4 The HAND2 interactions and Gene Ontology. A The protein–protein Interaction network of HAND2. Gene Ontologies are represented as 
general function categories (B) biological process, (C) cellular component, (D) molecular function, and (E) KEGG
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Afterward, multistep Venn diagrams were constructed 
to reveal the intersections between the hypermethylated 
and the downregulated genes. HAND2 is selected as an 
eligible candidate for further investigations because the 
role of HAND2 in CRC is not well understood.

HAND2 is a basic helix-loop-helix (bHLH) protein that 
forms homo- or hetero-dimers with other bHLH part-
ners, such as HAND1. The constructed dimers could 
regulate gene expression by binding to enhancer boxes 
(E-boxes) [24]. HAND2 is well-known for its function in 
myocardial differentiation and is suggested to regulate 
the establishment of myocardial epithelial identity con-
comitant with GATA5 [25]. Multiple lines of evidence 
conveyed the aberrant expression and hypermethylation 
of HAND2 in various cancers. Prummel et al. expressed 
that loss of HAND2 disrupted mesothelium formation 
with reduced progenitor cells and perturbed migra-
tion, which leads to mesothelioma tumor formation 
[26]. In addition, the methylation pattern of the HAND2 
gene was investigated in endometrial cancer, and it was 
revealed that the alterations in HAND2 DNA methyla-
tion commonly occur in endometrial cancer and could be 
utilized as a biomarker for early detection and a predictor 
of treatment response [27]. Also, aberrated HAND2 DNA 
methylation was observed in cervical cancer [28]. This 

evidence expounds the critical role of HAND2 silencing 
in cancer initiations.

In this study, different methylation and expression data 
for COAD were downloaded from different databases. 
HAND2 downregulation and hypermethylation were 
commonly observed in COAD. Pearson’s correlation 
conveyed that HAND2 significantly (R = -0.44, p = 6.6e-
14) hypermethylated and downregulated in the TCGA 
COAD samples. Also, the data obtained from the Dep-
Map database shows a significant negative correlation 
(Pearson’s Correlation Coefficient = -0.3035, p = 0.030) 
between the HAND2 methylation and expression in colo-
rectal cancer cell line data. A recent study conveyed that 
HAND2 hypermethylation in CRC occurred more prev-
alently than other classic alterations. It was proved that 
HAND2 methylation is relevant to gene silencing [17]. 
Also, a pan-cancer analysis using TCGA data proved that 
methylation-induced gene expression silencing has devel-
oped across all thirty-three cancer types [29]. It could be 
deduced from previous studies that HAND2 methylation 
may be crucial in early carcinogenesis, not only a dull 
epigenetic event. However, it is suggested that the exact 
mechanism should be investigated.

Another notable finding of this study expressed that 
downstream genes of HAND2, including DAB2IP, 

Fig. 5 The Expression of HAND2 and HAND2-AS1 in COAD samples. The plots are depicted by the GEPIA2 database. A HAND2 and (B) HAND2-AS1 
expression COAD samples. Red boxes are for tumoral samples, and gray boxes are for normal samples. C Pearson’s correlation between HAND2 and 
HAND2-AS1 expression. D The correlation between HAND2-AS1 expression and CpG island methylation
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EMILIN1, CHRNA9, and DMD, are pivotal in regulat-
ing ERK1/2 signaling. Multiple lines of evidence dem-
onstrated that ERK1/2 misregulation is fundamental for 
the development and progression of cancer [30]. ERK1/2 
signaling can regulate BCL-2 proteins [31], which regu-
late numerous vital processes such as cell cycle pro-
gression, migration, and survival dysregulation that 
are  cancer’s hallmarks [32]. The positive correlation of 
HAND2 downregulation with MAPK/ERK signaling per-
turbation was reported recently [17]. Furthermore, this 
study showed that HAND2 could indirectly regulate the 
ERK1/2 cascade through its downstream target genes. 
Accordingly, the suppression of HAND2 may be impli-
cated in the misregulation of ERK1/2 signaling.

Meanwhile, HAND2 has an antisense long non-cod-
ing RNA that is downregulated in CRC. HAND2-AS1 is 
downregulated in numerous cancer, including bladder, 
gastric, breast, prostate, ovarian, and colorectal. Intrigu-
ingly, the evidence demonstrated that HAND2-AS1 was 
downregulated by promoter hypermethylation in vari-
ous types of cancer [19, 20]. This key lncRNA acts as a 
sponge and competitive endogenous RNA with extensive 
targets, participating in proliferation, migration, inva-
sion, apoptosis, and stemness [18]. Goa et  al. studied 
HAND2-AS1 in cervical cancer and demonstrated that 
microRNA-21-5p targets HAND2-AS1. They postu-
lated that HAND2-AS1 efficiently regulates miR-21-5p/
TIMP3/VEGFA axis [33]. Another valuable study in blad-
der cancer conveyed that the oncogene microRNA-146 is 
sponged by HAND2-AS1 [34]. This study demonstrated 
the correlation between the expression of HAND2 and 
HAND2-AS1, which was aligned with the previous stud-
ies. Also, evidence indicated that HAND2-AS1 expression 
might be under the control of DNA methylation, and fur-
ther investigations are needed to prove this hypothesis.

Latterly, precision medicine considers each person’s 
genetic and environmental factors in treating or pre-
venting disease, particularly cancer management. One of 
the most focused approaches is circulating tumor DNA 
(ctDNA) released from cancer cells into the bloodstream, 
harboring tumor-specific genetic and epigenetic altera-
tions. ctDNA analysis is beneficial for treatment and 
recurrence evaluation with minimum invasiveness [35].

Whereas ctDNA methylation could be more cancer-
specific, HAND2 DNA methylation may be a promising 
biomarker for detecting CRC in the early stage; further-
more, the probable recurrence of CRC.

Conclusion
To conclude, we investigated and introduced public-
available databases for the researcher with less computer 
science. We introduced the HAND2 DNA methylation 

that occurs in the early stage of CRC, leading to the 
downregulation of HAND2 and HAND2-AS1 expression. 
According to this In silico study and other In  vitro and 
In  vivo studies, downregulation of these critical genes 
leads to cancer formation in concert with other factors. 
This evidence has numerous consequences, such as per-
turbation of HAND2 downstream, increased stability 
of HAND2-AS1 targets, activation of ERK1/2 signaling 
pathways, and cancer formation. Further studies, particu-
larly In vivo and fellow up studies, are recommended.
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