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Abstract 

Medium-intensity activities comprise the major proportion of many sorts of sports. The energy consumption of 
athletes has been a research emphasis for the purpose of improving both training efficiency and competition perfor-
mance. However, the evidence based on large-scale gene screen has been rarely performed. This is a bioinformatic 
study revealing the key factors contributed to the metabolic difference between subjects with different endurance 
activity capacities. A dataset comprised of high- (HCR) and low-capacity running (LCR) rats was used. Differentially 
expressed genes (DEGs) were identified and analysed. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) pathway enrichment was obtained. The DEGs’ protein–protein interaction (PPI) network was 
built, and the enriched terms of the PPI network were also analysed. Our findings showed that the GO terms were 
enriched in lipid metabolism-related terms. The KEGG signalling pathway analysis enriched in the ether lipid metabo-
lism. Plb1, Acad1, Cd2bp2, and Pla2g7 were identified as the hub genes. This study provides a theoretical foundation 
showing lipid metabolism plays an important role in the performance of endurance activities. Plb1, Acad1, and Pla2g7 
may be the key genes involved. The training plan and diet for athletes can be designed based on above results and 
expecting a better competitive performance.

Keywords  Bioinformatics, Microarray, Gene expression, Aerobic activity, Athlete

Introduction
Competitive athletic specialities are highly involved in 
oxygen consumption and metabolism. The performance 
of athletes is relied on the metabolic capabilities. Dif-
ferent sports have noticeable difference in oxygen con-
sumption patterns. Maximum Oxygen Consumption 
(VO2 Max, ml/min/kg) refers to the maximum oxygen 
consumption while an individual is under maximal exer-
cise. It is an indicator reflecting cardiorespiratory fitness 
and endurance capacity in exercise performance. Mishra 

et  al. indicated that the football players (67.6700) have 
the highest VO2 Max, followed by basketball (65.5550), 
volleyball (63.2667) and hockey players (62.3858) [1]. 
The tennis and badminton players have lower VO2 Max, 
which are 50.69 and 50.20 respectively [2]. Noticeably, 
although some moderate-intensity sports such as tennis 
and badminton show lower VO2 Max, they still reach 
the maximum fat oxidation ranging from 45 to 65% VO2 
Max [3]. Additionally, a series of terms comprehensively 
evaluate the pulmonary function capacities, such as 
vital capacity (VC), forced vital capacity (FVC), forced 
expiratory volume in one second (FEV1), and maximum 
voluntary ventilation (MVV). VC and FVC are defined 
as the maximal inhalation/exhalation volume in either 
relaxed or forced manner, respectively. MVV is the maxi-
mal volume of air that an individual can inhale/exhale by 

*Correspondence:
Jie Bai
baijie1981@stu.woosuk.ac.kr
Woosuk University, 443 Samnye‑Ro, Samrye‑Eup, Wanju‑Gun, 
Jeollabuk‑Do, Wonju, Korea

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-023-01106-9&domain=pdf


Page 2 of 11Yan and Bai ﻿BMC Genomic Data           (2023) 24:10 

voluntary effort in one minute. FEV1 represents the max-
imal amount of air can forcibly exhale during the first 
second after a maximal inhalation. They are important 
measurements of pulmonary function. Usually a higher 
value indicates a better pulmonary function, or from 
another perspective, a more intensive activity engage-
ment. Mazic et  al. [4] investigated the VC, FVC, FEV1, 
and MVV of 493 top athletes in 15 different sports dis-
ciplines. It was found that basketball players, water polo 
players, and rowers all exhibited better VC, FVC, FEV1 
than healthy inactive controls. When compared to con-
trols, football and volleyball players showed lower VC 
and FVC. Boxing, kayaking, rugby, handball, taekwondo, 
and tennis all had reduced peak expiratory flow. These 
results indicate that the performance of football, basket-
ball, and volleyball could be the subjects that are influ-
enced mostly by oxygen metabolic capability. Despite 
of not being included in these subjects, tennis was indi-
cated in another research that the FVC, FEV1, and MVV 
ratios were higher in tennis players than in the seden-
tary control individuals [5]. Collectively, these evidence 
raise needs of understanding the metabolic mechanism 
of aerobic-relied sports, which could be beneficial to 
the training and competition. However, the key factors 
at gene level influencing athlete’s metabolism have been 
rarely studied. This bioinformatic study can help to reveal 
the key node of improving the metabolic capabilities and 
thus the performance. The results can be used to design a 
more scientific diet and training strategy.

High-capacity running (HCR) and low-capacity run-
ning (LCR) rats are an ideal animal model for studying 
the interaction between aerobic capacities and chronic 
disease. They are artificial selection for intrinsic aerobic 
endurance running capacity, which is described in detail 
in a previous report [6]. Briefly, the HCR lines have 171% 
longer maximal running distance until exhaustion than 
the LCR lines after six generations of selection.. In this 
bioinformatic study, HCR and LCR rats at generation 
18 were adopted. We assume they have different gene 
expression levels which led to huge aerobic capacities 
between HCR and LCR rats.

Microarray technology provides a high through-
put method that can analyse tens of thousands of gene 
expression patterns in one test [7]. It is a powerful tool 
for comparison of bulk gene expression between condi-
tions. Open-source databases such as the Gene Expres-
sion Omnibus (GEO) database [8] can be used to upload 
and share microarray dataset. Kivelä et al. [9] were using 
HCR and LCR rat model to study connections between 
low aerobic exercise capacity and complex metabolic dis-
eases. They briefly displayed a preliminary microarray 
screen for the genome expression profiles with aerobic 
endurance capacity and metabolic disease risk factors. 

This study was conducted based on selected Kivelä’s data 
on gene expression patterns affected by rat strains (HCR 
or LCR), and further analysed the in-depth understand-
ing of key genes and signalling pathways involved in per-
formance of aerobic exercise. Datasets were downloaded 
containing gene expression of HCR and LCR rats. Differ-
entially expressed genes (DEGs) were identified, and the 
hub genes and critical terms involved were investigated 
using Gene Ontology (GO), Kyoto Encyclopaedia of 
Genes and Genomes (KEGG), and protein–protein inter-
action (PPI) network analyses. In summary, 31 DEGs and 
4 hub genes were identified. The lipid metabolism may be 
a key factor in improving athlete’s performance in endur-
ance exercise.

Materials and methods
Microarray data information
GSE17190 gene expression profiles were obtained using 
the platform Illumina ratRef-12 v1.0 expression beadchip 
(Illumina, San Diego, US) [9] from a public functional 
genomics data repository GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo) [8]. To screen HCR and LCR rats, 
endurance running ability was measured on a treadmill, 
and the total distance covered throughout the test was 
utilised to calculate maximum aerobic exercise capac-
ity. Rats with the maximum running capacity from each 
generation were bred together to create the HCR strain, 
whereas rats with the lowest running capacity were bred 
together to create the LCR strain. 24 female rats (12 HCR 
and 12 LCR) from generation 18 was used in the study. 
Detailed information about the animals can be found in 
the reference [9], and all webtools and software used in 
this study can be found in the Appendix.

Data preprocessing and identification of DEGs
The preprocessing consists of several steps. In the raw 
data, the commercial probe serial numbers were con-
verted into official gene symbols. Then uploaded onto 
the NetworkAnalyst 3.0 (https://​www.​netwo​rkana​lyst.​ca) 
[10], which is a visual analytics platform for comprehen-
sive gene expression profiling and meta-analysis, for fur-
ther preprocessing. Genes with variance percentile rank 
lower than 15, abundance lower than 4, or unannotated 
were discarded. After that, log2 transformation on the 
gene expression levels was performed for standardisa-
tion. The Limma package was then utilised to identify the 
up-regulated and down-regulated DEGs between HCR 
and LCR rats. The Benjamini–Hochberg test was also 
used to adjust the p-value. Finally, the DEG cut-off cri-
terion was set to log2 fold change |log2FC|> 0.5 with an 
adjusted P < 0.05.

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.networkanalyst.ca


Page 3 of 11Yan and Bai ﻿BMC Genomic Data           (2023) 24:10 	

GO and pathway enrichment analyses
The g:Profiler (http://​biit.​cs.​ut.​ee/​gprof​iler/) is a publicly 
accessible web service for analysing and altering gene lists 
derived from high-throughput genomic data [11]. The 
g:GOSt on g:Profiler was used to do GO enrichment and 
KEGG pathway enrichment analysis (based on KEGG 
Biological Pathway database [12]) of DEGs in this study. 
P < 0.05 and the custom-made g:SCS algorithm [11] were 
used as cut-off criterion. This combination gives a tighter 
threshold to significant results hence more reliable, as it 
considers the set structure underlying gene sets anno-
tated to terms of each organism [11]. Biological Processes 
(BP), Cellular Component (CC), and Molecular Function 
(MF) are all included in the GO analysis.

PPI network construction
The STRING (https://​string-​db.​org) database [13] was 
used to recover the predicted associations between pro-
teins encoded by DEGs and other proteins in order to 
understand the molecule mechanism and study the inter-
actions between dynamic compression and chondrogen-
esis, as well as between proteins encoded by DEGs and 
other proteins. Since the number of identified DEGs is 
relatively low, PPI significance is defined as a confidence 
score of > 0.4, which is a range of medium to high con-
fidence providing a balance between false positive and 
missing information. The false positive results can be 
identified by the following wet lab experiments. To vis-
ualise a PPI network, the interaction data was uploaded 
into the Cytoscape programme (version 3.8.0). In the 
PPI network, nodes represent proteins, and edges repre-
sent interactions. Their interaction is constructed based 
on the identified biological facts stored in the STRING 
database. The isolated proteins were excluded and the 
main network was preserved. The degree distribution 
was calculated by calculating the number of connections 
between the network’s distinct proteins.

PPI network function analysis
The g:Profiler was used to further analyse GO terms and 
pathway enrichment in the main PPI network found by 
the Cytoscape. This can provide a more accurate infor-
mation about the function of key genes.

Results
Data preprocessing and identification of DEGs
After normalisation, the gene expression data is shown in 
Fig.  1. In HCR rats, a total of 31 DEGs were identified, 
with 17 (54.84%) up-regulated genes and 14 (45.16%) 
down-regulated genes compared to LCR rats. The vol-
cano map (Fig.  2) shows the differential expression sta-
tus of all discovered genes while highlighting DEGs that 

are greater than the chosen cut-off value. Figure 3 shows 
the cluster heatmap of DGEs. To cluster the genes and 
generate the dendrograms, Euclidean distance was used. 
There are significant changes in DEG expression between 
the HCR and LCR groups, indicating that the DEGs are 
trustworthy and appropriate for further investigation. 
Table 1 lists the top ten most substantially up-regulated 
and down-regulated genes.

GO and Pathway Enrichment Analyses
The biological function of DEGs was determined using 
GO enrichment and KEGG pathway enrichment studies. 
Lipid metabolic process, cellular lipid catabolic process, 
and cellular lipid metabolic process were the biological 
process with the greatest significant enrichment in GO 
terms. The cellular component with the highest signifi-
cant enrichment was specific granule membrane, orga-
nelle outer membrane, and outer membrane, although 
there was no obvious statistical difference shown. The 
greatest significant enrichment in molecular function 
was calcium-independent phospholipase A2 activity and 
oxidoreductase activity, acting on the CH-CH group 
of donors. The ether lipid metabolism was shown to be 
associated to the difference of aerobic exercise capabil-
ity in the KEGG pathway enrichment, without statistical 
significance. Figure 4 and Table 2 show the whole list of 
enhanced GO terms and KEGG pathways.

PPI network construction
The STRING database created a PPI network comprising 
all DEGs (Fig.  5) with 4 nodes and 3 edges. The major-
ity of proteins were isolated and thus excluded from the 
network. The Plb1, Acad1, Cd2bp2, and Pla2g7 were 
screened as hub genes. The degree of Plb1 and Acad11 
were 2 and Cd2bp2 and Pla2g7 were 1. Plb1, Acad1, 
Cd2bp2, and Pla2g7 play a significant role in duration of 
aerobatic exercise.

PPI network function analysis
The Fig.  6 and Table  3 summarised the GO terms and 
KEGG pathway enriched in the PPI main network. The 
biological process with the most significant enrichment 
in GO terms were cellular lipid catabolic process, phos-
phatidylcholine catabolic process, and lipid metabolic 
process. In cellular component, low-density lipoprotein 
particle, high-density lipoprotein particle, and plasma 
lipoprotein particle were identified without significant 
statistical difference. In terms of molecular function, the 
most significant enrichment was calcium-independent 
phospholipase A2 activity, phospholipase A2 activity, and 
phospholipase activity. The ether lipid metabolism was 
enriched in the KEGG pathway enrichment (Fig.  6 and 
Table 3).

http://biit.cs.ut.ee/gprofiler/
https://string-db.org
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Discussion
Competitive athletic specialities are facing huge energy 
consumption during training and competition. Carbo-
hydrate and fat contributions to energy generation vary 
depending on exercise duration and intensity, training 
state, gender, and so forth. Football, basketball, volley-
ball, tennis, badminton, and others has traditionally been 
thought of being an intermittent activity, with bursts of 
high intensity movement interspersed with extended 
periods of medium-intensity activities (e.g. walking, jog-
ging, etc.). Thus, professional players must therefore 
improve both anaerobic and aerobic capacities in order 
to prepare for competition. However, the medium-inten-
sity activities occupy the majority time in a competitive 
game, player’s frequent movement ensures a good loca-
tion for performing the last critical high intensity skills. 
This leads to the requirement on understanding the key 
factors improving the capability of endurance exercise. 
The evidence at gene level can be fundamental to provide 

an insight to metabolism and guidance to a better train-
ing/diet strategy.

This bioinformatic study found that compared to 
the LCR rats, the HCR rats had highly enriched GO 
terms regarding lipid metabolism, including lipid meta-
bolic process, cellular lipid catabolic process, cellular 
lipid metabolic process, and phosphatidylcholine cata-
bolic process. The KEGG signalling pathway analysis 
also showed the ether lipid metabolism, which is a lipid 
metabolism-related pathway, enriched in the HCR rats. 
Lipid is an important energy source during exercise. 
They are utilised in forms of circulating free fatty acids 
(FFAs) bound to albumin, triglycerides stored in very-
low-density lipoprotein, and intramuscular triglycer-
ide stores [14]. Exercise intensity influences substrate 
choice. Lipid is the primary fuel at low exercise intensi-
ties (under 40% VO2 Max), but as intensity increases, 
the body shifts to carbohydrate (CHO). Between 45 and 
65% VO2 Max, maximum fat oxidation occurs and over 

Fig. 1  This is a figure. Schemes follow the same formatting
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this point the fuel preference balance switches toward 
carbohydrate. Endurance activities increase the energy 
utilisation from fat while sparing carbohydrate sources 
[3, 14]. A study investigated influence on plasma lipid 
parameters by high quality physical training in 11 groups 
of athletic specialities, including football, basketball, vol-
leyball, boxing, wrestling, judo, sailing, skiing (slalom), 
track (two groups), throwing, and jumping. The results 
demonstrated that endurance sports, such as football, 
basketball, volleyball, short- and long-distance run-
ning showed higher high-density lipoprotein (HDL) and 
lipoprotein ratio factor (RF) values, compared to those 
strength sports such as wrestling, boxing, skiing (slalom), 
and throwing-jumping [15]. Another research studied 71 
male athletes (25 football players, 14 volleyball players 
and 32 healthy sedentary subjects). Results showed that 
both football and volleyball players had considerably less 
body fat than the control group. Football players had the 
lowest body fat percentage [2]. Interestingly, there is evi-
dence showing the capability of using lipid as energy is 
different in genders. A mice model study indicated that 
females had considerably increased gene expression in 
genes involved in skeletal muscle fatty acid oxidation. 
Female mice have a stronger endurance exercise capac-
ity and a larger ability to mobilise and use fatty acids for 
energy [16]. However, we are unable to compare the gene 

expression difference in genders in this bioinformatic 
study as all rat participants were female. Collectively, the 
performance of aerobic exercise and training are highly 
relevant to the lipid metabolic ability and efficiency.

Plb1 is a protein coding gene and related to phospho-
lipases and lipid metabolism. As FFAs are an impor-
tance energy source during exercise, a sufficient FFAs 
pool is critical for energy supply. Currently most of 
the reports of Plb1 focus on microbial species [17, 18]. 
Wright et al. [18] used yeast for studying FFA produc-
tion. The yeast had high FFA production but the dele-
tion of phospholipase genes Plb1 and Plb2 resulted in a 
46% decrease in FFA levels and 105% increase in phos-
pholipid levels. The decrease of FFA levels and increase 
of phospholipid levels strongly suggested that Plb1 is 
pivotal in FFAs formation and the FFAs were mainly 
generated through phospholipid hydrolysis [19]. How-
ever, it also indicated that the over expression of Plb1 
didn’t witness a significant increase in FFAs, which sug-
gested that phospholipase activity may not be a major 
limiting step in FFA production. There is also evidence 
showing the phospholipases are an important part of 
the virulence of pathogenic fungi [20]. So far, there 
lacks studies on mammals. Further research would help 
us understand the function of Plb1 in human and other 
animals.

Fig. 2  All genes found in the microarray are shown as a volcano. A gene is represented by each dot. Down- (blue) and up-regulated genes (red) are 
distinguished by colours. The log2-base fold change is on the X-axis, while the log10-base corrected P-value is on the Y-axis
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Acad1 is also known as medium-chain acyl-CoA dehy-
drogenase (Acadm), an enzyme that catalyses the first 
step of β-oxidation and responsible for the breakdown of 
medium-chain fatty acids in the mitochondria [21]. Leg 
blood flow increases dramatically at the beginning of and 
throughout exercise, from around 0.3 L/min at rest to 5–6 
L/min at moderate exercise intensities and up to 9 –12 

L/min at 100% VO2 Max, which brings more FFAs and 
glucose [22]. Fatty acids are a primary source of energy 
for heart and oxidative skeletal muscle. Once within the 
myocyte, fatty acids are directed to either lipid metabo-
lite production or mitochondrial β-oxidation. Intra-
muscular lipids can accumulate when fatty acid intake 
exceeds the rate of β-oxidation. On a mouse model, 

Fig. 3  Cluster heatmap depicts DEG-based hierarchical clustering analysis findings. Each column is a sample, and each row represents a DEG. The 
colour represents the relative degree of gene expression (log2 transformed). Green denotes lower gene expression levels, whereas red suggests 
greater levels

Table 1  The top 10 most significantly up-regulated and down-regulated DEGs

Up-regulated DEGs Log2FC P-value Down-regulated 
DEGs

Log2FC P-value

RT1-A2 1.452 1.25 × 10–5 Cd2bp2 -1.2635 5.58 × 10–5

Mrps10 1.2156 2.97 × 10–9 Ptgr2 -1.2445 2.84 × 10–7

Eef2k 1.2102 1.92 × 10–4 Retsat -1.2134 1.75 × 10–5

Igf2 1.1968 8.76 × 10–5 Hbb-b1 -0.9316 8.96 × 10–4

Egr1 1.0557 4.32 × 10–4 Acad11 -0.70689 3.85 × 10–6

Neu2 0.87004 9.49 × 10–5 Plb1 -0.68037 7.22 × 10–6

Plekhf2 0.8694 4.88 × 10–5 Nfe2l1 -0.57617 2.82 × 10–5

Akr1b10 0.85584 3.88 × 10–9 Aqp7 -0.5407 4.89 × 10–4

Ifit1 0.76393 5.62 × 10–6 Zfp317 -0.53468 3.56 × 10–7

Rfc2 0.75845 3.53 × 10–7 Tspo -0.53396 9.32 × 10–6
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Acadm knockdown remarkably enhanced lipid accu-
mulation [21]. In a study using biopsy specimens of 74 
patients with nonalcoholic fatty liver disease (NAFLD), 
the expression of all genes (including Acad1) involved 
in the metabolism of fatty acids and iron were signifi-
cantly downregulated as the stage and grade of NAFLD 
progressed [23]. It is shown that the Phosphatidylinosi-
tol 3-kinase (PI3K) signaling pathway plays an impor-
tant role in the cellular lipid metabolism regulation. The 
PI3KR3 is a subunit of PI3K, it was increased after fasting 
and was downregulated in a high-fat diet (HFD) mouse 
model of fatty liver, which suggests a strong relation-
ship between PI3KR3 and lipid metabolism. The overex-
pression of PIK3R3 upregulated the protein and mRNA 
expression levels of Acad1 and resulted in enhanced 
fatty acid β-oxidation and reduced fatty liver in  vivo. 
Conversely, knockdown of PIK3R3 downregulated pro-
tein and mRNA expression levels of Acad1 which led to 

impaired hepatic fatty acid β-oxidation in cell culture and 
in vivo [24]. In terms of genders, it is shown that women 
have a lower respiratory exchange ratio (RER) compared 
with men, indicating higher lipid oxidation and can oxi-
dize more fat during moderate intensity endurance exer-
cise [25]. In summary, the Acad1 and PI3KR3 both are 
important candidates in lipid metabolism. They function 
in the body synergistically. A higher expression of these 
two genes may contribute to a more efficient energy gain 
from the lipocatabolic process.

There are limited reports on the function of Cd2bp2 
and Pla2g7 in lipid metabolism. It has been known that 
the Cd2bp2 (adaptor protein CD2-binding protein 2) 
is a gene involved in oxidative phosphorylation, gluco-
neogenesis, lipid metabolism, signal transduction [26] 
and T-cell activation and immunology [27]. However, 
based on current literature, the role of Cd2bp2 largely 
remains unclear. Pla2g7 (platelet-activating factor 

Fig. 4  GO enrichment and KEGG pathway enrichment analysis. Each bubble represents a term. The height of the bubbles stands for the 
significance of enrichment. The horizontal distance stands for the similarity of term subtrees. Bubble size stands for term size (gene counts). The 
X-axis represents the group of functional terms and coloured by data sources, and the Y-axis lays out adjusted p-value in negative log10 scale

Table 2  Significantly enriched GO terms of DEGs

Category GO ID Description Gene Count P-value

BP GO:0006629 lipid metabolic process 10 1.75 × 10–3

BP GO:0044242 cellular lipid catabolic process 5 7.44 × 10–3

BP GO:0044255 cellular lipid metabolic process 8 1.73 × 10–2

BP GO:0034754 cellular hormone metabolic process 4 1.95 × 10–2

BP GO:0044281 small molecule metabolic process 10 2.06 × 10–2

BP GO:0042572 retinol metabolic process 3 3.26 × 10–2

BP GO:0120254 olefinic compound metabolic process 4 3.76 × 10–2

BP GO:0016042 lipid catabolic process 5 4.88 × 10–2

CC GO:0035579 specific granule membrane 1 3.05 × 10–1

CC GO:0031968 organelle outer membrane 3 4.39 × 10–1

CC GO:0019867 outer membrane 3 4.39 × 10–1

MF GO:0047499 calcium-independent phospholipase A2 activity 2 1.75 × 10–2

MF GO:0016627 oxidoreductase activity, acting on the CH-CH group of 
donors

2 1.95 × 10–2

KEGG KEGG:00565 Ether lipid metabolism 2 5.86 × 10–4
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acetylhydrolase) is well recognised for degrading plate-
let-activating factor, a phospholipid mediator of platelet 
aggregation and a powerful inflammatory stimulator and 
also a participant in lipid metabolism. It functions at the 
intersection of metabolism and immunity [28]. In human, 
Pla2g7 expression is increased in activated macrophages 
and atherosclerotic plaque foam cells [29]. It has also 
been identified as a key gene involved in coronary heart 

disease due to dysregulation of phospholipid metabolism 
[30]. In mice, obesity and a high-fat diet increased Pla2g7 
expression, but caloric restriction reduced the expression. 
Pla2g7 regulates pathways that contribute to local and 
systemic metabolic integrity, immunological modulation, 
and inflammation through immunometabolic control 
in diverse tissues [28]. Similarly, another study reported 
the Pla2g7 had lower expression in humans undergoing 

Fig. 5  PPI network of all DEGs. In the main network, the degree of Plb1 and Acad11 were 2 and Cd2bp2 and Pla2g7 were 1

Fig. 6  GO enrichment and KEGG pathway enrichment analysis of PPI main network. Each bubble represents a term. The height of the bubbles 
stands for the significance of enrichment. The horizontal distance stands for the similarity of term subtrees. Bubble size stands for term size (gene 
counts). The X-axis represents the group of functional terms and coloured by data sources, and the Y-axis lays out adjusted p-value in negative 
log10 scale
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caloric restriction (CR). The CR-induced low expression 
of Pla2g7 can decrease glucose consumption, lead to bet-
ter adipose tissue metabolism, lower inflammation, and 
reduced thymic lipoatrophy [31]. The Cd2bp2 and Pla2g7 
may be two new interesting targets and worthy of further 
investigations.

Based on above results, lipid metabolism is a critical 
point to the athletes participating in endurance exercise. 
We raise suggestions for improving their performance. 
The fat, in the form of our bodily reserves, provides a vir-
tually limitless supply of energy. Improving our capacity 
to transfer it into the muscle and oxidise it during activ-
ity is a vital adaptation to training. Even the most highly 
trained athletes have not reached their maximum fat oxi-
dation capacity during exercise, which may be improved 
even more by eating a high-fat meal before to the activ-
ity. Although fat oxidation has limited capability as a fuel 
source for high-intensity activities, if fat supplements or 
other items could improve fat utilisation at more mod-
erate exercise intensities, it might provide a mechanism 
to ’spare’ muscle glycogen reserves for the high-intensity 
stages of sport. Research suggests that diets containing 
32% to 55% fat can boost endurance capacity compared 
to diets containing 15% fat [32]. Another strategy is ’fat 
adaptation’ diet, a diet in which well-trained endurance 
athletes take a high-fat, low-CHO diet for up to 2 weeks 
while continuing their regular training, followed by CHO 
restoration (consuming a high-CHO diet and tapering 
for 1 – 3 days before a big endurance event). This "dietary 
periodization" approach boosts whole-body and mus-
cle fat oxidation while decreasing muscle glycogenolysis 

during submaximal exercise as compared to an isoener-
getic CHO diet over the same intervention period [33]. 
Except from diet, scientific training methods are also 
indispensable. Besides, the difference of gene expression 
levels is non-negligible. It could potentially affect the 
capability of lipid metabolism of athletes. Those athletes 
who innately have higher expression level of Plb1 and 
Acad1 and lower level of Pla2g7 may have more efficient 
lipid energy usage ability and thus better performance in 
endurance exercise. The role of Cd2bp2 is worthy to be 
further investigated.

Although this study has identified some key factors and 
genes affecting the performance in endurance exercise 
through bioinformatic methods, there still are some limi-
tations. Above findings are database and algorism-based, 
they have not been verified by lab-based verification 
experiment. The bioinformatic tools are largely reliable 
but few false positive or false negative results may be 
inevitable due to the chosen thresholds. We are planning 
a following verification experiment in the near future to 
further support our findings. Additionally, wild type con-
trol groups are missing, as they are not included in the 
original dataset. However, the bioinformatic databases 
are running in a manner of voluntary sharing, limited 
datasets match our criteria. For example, some animals 
were treated with drugs or underwent extra conditions. 
The dataset utilised in this manuscript is the most match-
ing one, despite it is not the very latest one. Rats have 
genetic similarity to human beings, but they still could 
lead to different results in the same condition as human. 
Using rats instead of human for study is a consideration 

Table 3  Significantly enriched GO terms of PPI main network

Category GO ID Description Gene Count P-value

BP GO:0044242 cellular lipid catabolic process 3 4.58 × 10–4

BP GO:0034638 phosphatidylcholine catabolic process 2 6.27 × 10–4

BP GO:0016042 lipid catabolic process 3 1.48 × 10–3

BP GO:0046475 glycerophospholipid catabolic process 2 2.60 × 10–3

BP GO:0009395 phospholipid catabolic process 2 7.12 × 10–3

BP GO:0046470 phosphatidylcholine metabolic process 2 1.18 × 10–2

BP GO:0046503 glycerolipid catabolic process 2 1.22 × 10–2

BP GO:0034440 lipid oxidation 3 3.75 × 10–2

BP GO:0044255 cellular lipid metabolic process 3 4.33 × 10–2

CC GO:0034362 low-density lipoprotein particle 1 2.00 × 10–1

CC GO:0034364 high-density lipoprotein particle 1 4.74 × 10–1

CC GO:0034358 plasma lipoprotein particle 1 6.88 × 10–1

MF GO:0047499 calcium-independent phospholipase A2 activity 2 2.20 × 10–4

MF GO:0004623 phospholipase A2 activity 2 3.64 × 10–3

MF GO:0004620 phospholipase activity 2 2.85 × 10–2

MF GO:0016298 lipase activity 2 4.25 × 10–2

KEGG KEGG:00565 Ether lipid metabolism 2 5.86 × 10–4
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of ethics and expense. The results we have in this study 
may not fully represent those of human beings.

Conclusions
In this study we used a set of gene microarray data to 
identify the RNA expression difference between HCR 
and LCR rats. It was found that the major difference in 
biological process is the HCR rats has better lipid meta-
bolic capabilities, which may result in better efficiency 
of energy gain than the LCR rats. The KEGG signalling 
pathway analysis enriched in the ether lipid metabo-
lism. Four hub genes including Plb1, Acad1, Cd2bp2, and 
Pla2g7 were identified. We suggest a diet strategy con-
tains sufficient fat intake can improve the performance 
in endurance exercise by maximising the usage of lipid 
energy. Innate difference of gene expression levels may 
also affect the performance of athletes.
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