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Abstract 

Background  Previous reports revealed that a history of major depressive disorder (MDD) increased the risk of Alz-
heimer’s disease (AD). The immune disorder is associated with MDD and AD pathophysiology. We aimed to identify 
differentially expressed immune-related genes (DEIRGs) that are involved in the pathogenesis of MDD and AD.

Methods  We downloaded mRNA expression profiles (GSE76826 and GSE5281) from the Gene Expression Omnibus 
(GEO) database. The R software was used to identify DEIRGs for the two diseases separately. Functional enrichment 
analysis and PPI network of DEIRGs were performed. Finally, the relationship between shared DEIRGs and immune 
infiltrates of AD and MDD were analyzed, respectively.

Results  A total of 121 DEIRGs linking AD and MDD were identified. These genes were significantly enriched in 
immune-related pathways, such as the JAK-STAT signaling pathway, regulation of chemotaxis, chemotaxis, cytokine-
cytokine receptor interaction, and primary immunodeficiency. Furthermore, three shared DEIRGs (IL1R1, CHGB, and 
NRG1) were identified. Correlation analysis between DEIRGs and immune cells revealed that IL1R1 and NRG1 had a 
negative or positive correlation with some immune cells both in AD and MDD.

Conclusion  Both DEIRGs and immune cell infiltrations play a vital role in the pathogenesis of AD and MDD. Our 
findings indicated that there are common genes and biological processes between MDD and AD, which provides a 
theoretical basis for the study of the comorbidity of MDD and AD.
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Introduction
Major depressive disorder (MDD) is a common neu-
ropsychiatric disorder, with high suicide mortality 
and morbidity [1]. The loss of interest and persistent 
depression are the major clinical manifestations of 
MDD [2]. This disease impacts approximately 163 mil-
lion people worldwide [3]. Unfortunately, the potential 
pathophysiological mechanisms are still unclear. The 
etiology of MDD is complex, and the interaction of 
intestinal microbes, immunity, neuroendocrine, genet-
ics, psychosocial environment and other factors are 
associated with the pathogenesis of MDD [4, 5]. Emerg-
ing evidence showed that immune disorder, specifi-
cally inflammatory responses, is related to symptoms of 
MMD [6]. It has been reported that depression involves 
changes in multiple aspects of the immune system that 
may promote the progression of various psychiatric 
disorders, including MDD [7]. Another neurodegen-
erative disorder, Alzheimer’s disease (AD), is the most 
common form of neurodegenerative dementia in old 
age [8]. Although the exact pathogenesis of AD is not 
well understood, researchers have reported that the 
interplay of genetic and environmental factors may be 
involved in the initiation of AD pathogenesis [9, 10]. 
The immune system is now considered an important 
role in AD. Recent studies have revealed the active 
role of brain innate immunity in AD pathogenesis 
progression [11, 12]. Furthermore, the genome-wide 
association studies and pathway analyses revealed the 
important role of the neuroinflammation and innate 
immune system in AD pathogenesis [13–15]. A recent 
study highlighted that the ability to modulate target 
neuroinflammation and neuroimmune interactions is a 
promising opportunity in the search for optimal thera-
pies for AD [16]. The peripheral immune changes are 
associated with cognitive dysfunction, and Tfh and 
IL-21 may be developed as novel circulatory biomark-
ers for AD [17].

Recent reports have revealed that there is a strong 
relationship between MDD and AD [18, 19]. For exam-
ple, a systematic analysis result revealed shared path-
ways and biological processes between MDD and AD 
and offered a hint for the comorbidity of MDD and 

AD [20]. Depression could act as a risk factor for the 
late development of AD [21]. The long-term depres-
sive symptoms contribute to mild cognitive impairment 
turns into AD [22, 23]. Besides, neurodegenerative 
phenomena were also found in the hippocampus of 
MDD patients [24]. Furthermore, recent reports have 
revealed that the cascades and molecular mechanisms 
of MDD, including chronic neuroinflammation, impair-
ment of neurotrophin signaling, and immune dysregu-
lation, are also implicated in the pathogenesis of AD 
[25–28]. These findings implied that immune dysregu-
lation may be the common pathogenesis of MDD and 
AD. Therefore, the study of immune responses, inflam-
matory processes, and their association with each 
other, is essential for a deeper understanding of AD and 
MDD pathogenesis [29]. However, few researchers have 
reported the immune-related genes (IRGs) that are 
implicated in both disorders.

In the present study, we identified the IRGs related to 
MDD and AD via bioinformatics methods. And we per-
formed the functional enrichment analysis via Metas-
cape. Moreover, the relationship between shared IRGs 
and immune cell infiltrates was assessed to better under-
stand the common immune mechanism of MDD and AD.

Materials and methods
Collection of transcriptome data from GEO
The GEOquery package was used to download the 
GSE76826, GSE5281, GSE98793, and GSE132903 data-
sets from the Gene Expression Omnibus (GEO) [30]. The 
GSE76826 dataset contains 12 healthy individuals and 20 
MDD patients. The GSE5281 dataset contains 74 healthy 
individuals and 87 AD patients. The GSE98793 dataset 
contains 64 MDD patients with generalized anxiety dis-
order and 64 healthy individuals. GSE132903 contains 
97 AD patients and 98 healthy individuals. GSE76826 
and GSE5281 were used as test cohorts. GSE98793 and 
GSE132903 were used as validation cohorts. The detailed 
sample information was presented in Table 1.

Identification of differentially expressed IRGs (DEIRGs) 
in AD and MDD
First, the “limma” package of R software was used to 
identify differentially expressed genes in GSE76826 and 

Table 1  GEO microarray datasets

GEO ID Platform Control group Disease group Source Application

GSE76826 GPL170177 12 healthy individuals 20 MDD patients Blood Analysis

GSE5281 GPL570 74 healthy individuals 87 AD patients Brain tissue Analysis

GSE98793 GPL570 64 healthy individuals 64 MDD patients Blood Verification

GSE132903 GPL10558 98 healthy individuals 97 AD patients Brain tissue Verification



Page 3 of 13Song et al. BMC Genomic Data           (2023) 24:22 	

GSE5281 datasets based on p < 0.05 and ∣logFC∣ ≥ 0.5. 
Then, a total of 1793 IRGs were collected from the 
ImmPort database (https://​www.​immpo​rt.​org/​shared/​
home). The DEGs intersected with the IRGs, and then 
the DEIRGs were obtained. The heatmaps of DEIRGs 
in MDD and AD were drawn via the ComplexHeatmap 
package of R software.

Functional enrichment and protein–protein interaction 
(PPI) network analysis
We applied the Metascape platform (http://​metas​cape.​
org) to the potential signaling pathways and biological 
processes of DEIRGs significantly associated with AD 
and MD [31]. The DEIRGs were input into the Metascape 
platform for KEGG and GO enrichment analysis and the 
parameter selected was “Homo sapiens” and “p < 0.05” 
[32].

Receiver operating characteristic analysis (ROC)
The “pROC” package of R was applied to perform the 
ROC curve analysis to assess the diagnostic value of 
shared DEIRGs [33].

Gene set enrichment analysis (GSEA)
GSEA was carried out to identify differences in the 
enrichment of pathways in shared DEIRGs between nor-
mal and disease groups. The “clusterProfiler”, “enrich-
plot”, “pathwork”, and “DOSE” packages of R were used 
to perform GSEA. The gene set of “h.all.v7.3.symbols” 
was downloaded from the MsigDB database and used as 
a reference gene set. P < 0.05 was considered statistically 
significant.

Assessment of immune cell infiltration
The microenvironment Cell Populations-counter (MCP-
Counter) is a bioinformatics tool that assesses the pro-
portion of different immune cells based on specific 
molecular markers [34]. We used the MCPCounter pack-
age of R to assess the immune cell infiltration of each 
group from GSE76826 and GSE5281 datasets, respec-
tively. Then, the population abundance of 10 types of 
immune cells in the healthy and diseased groups was 
visualized in violin plots. Spearman correlation analysis 
was further performed on shared DEIRGs and 10 types of 
immune cells, and the result of the correlation between 
immune cells and genes were visualized in the lollipop 
diagram.

Results
Identification of DEIRGs
After data preprocessing, a total of 74 DEIRGs were iden-
tified from the GSE5281 dataset, of which 28 genes were 
downregulated and 46 genes were upregulated in the AD 

group (Fig. 1). A total of 50 DEIRGs were identified from 
the GSE76826 dataset, of which 28 genes were downreg-
ulated and 22 genes were upregulated in the MDD group 
(Fig. 2).

Functional enrichment analysis of DEIRGs
As shown in Fig.  3, these 121 DEIRGs were mainly 
enriched in primary immunodeficiency, regulation of cell 
activation, response to a bacterium, cytokine-cytokine 
receptor interaction, chemotaxis, cell chemotaxis, regu-
lation of chemotaxis, and JAK-STAT signaling pathway, 
etc. The findings implied that DEIRGs were significantly 
enriched in immune-related pathways, which have been 
associated with AD and MDD.

The PPI network analysis
Through the Metascape platform, all DEIRGs were linked 
to the whole protein interaction network, of which 50 
genes (blue nodes) were derived from the MDD group 
and 74 genes (red nodes) were derived from the AD 
group (Fig.  4A). As shown in Fig.  4B-C, the eight dif-
ferent colors represent the eight module substructures 
identified in the molecular complex detection (MCODE) 
network.

ROC curve analysis of shared DEIRGs
As shown in Fig.  5A, three shared DEIRGs (IL1R1, 
CHGB, and NRG1) were identified via the Venn tool. 
Furthermore, the ROC analysis indicated that IL1R1 
(AUC = 0.744), CHGB (AUC = 0.825), and NRG1 
(AUC = 0.69) exhibited good diagnostic values for the 
healthy and AD samples (Fig. 5B). As shown in Fig. 5C, 
IL1R1 (AUC = 0.787), CHGB (AUC = 0.746), and 
NRG1 (AUC = 0.858) exhibited good diagnostic val-
ues for the healthy and MDD samples. Furthermore, 
we used GSE98793 and GSE132903 datasets to vali-
date these results (Fig.  6). IL1R1 (AUC = 0.643), CHGB 
(AUC = 0.772), and NRG1 (AUC = 0.69) had good diag-
nostic values for AD patients in the GSE132903 cohort 
(Fig.  6A). IL1R1 (AUC = 0.637), CHGB (AUC = 0.61), 
and NRG1 (AUC = 0.662) had good diagnostic value for 
MDD patients in the GSE98793 cohort (Fig.  6B). These 
results indicated that IL1R1, CHGB, and NRG1 had the 
potential diagnostic value in the diagnosis of AD and 
MDD patients.

GSEA identified DEIRGs‑related pathways
Single-gene GSEA was carried out to investigate how 
DEIRGs are involved in the underlying mechanisms 
of AD. As shown in Fig.  7A, glycosphingolipid bio-
synthesis ganglio series (NES = 1.56, P = 0.028), cell 
cycle (NES = 1.51, P = 0.013), oxidative phosphoryla-
tion (NES = 1.63, P = 0.016), T cell receptor signaling 

https://www.immport.org/shared/home
https://www.immport.org/shared/home
http://metascape.org
http://metascape.org
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Fig. 1  Identification of DEIRGs in the GSE5281 dataset. Heatmap of DEIRGs in AD and control samples
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pathway (NES = 1.37, P = 0.035), and Parkinson’s dis-
ease (NES = 1.65, P = 0.008) were significantly enriched 
in the CHGB high-expressed phenotype. As shown 
in Fig.  7B, cytokine cytokine receptor interaction 
(NES = 1.63, P < 0.001), leukocyte transendothelial migra-
tion (NES = 1.86, P < 0.001), apoptosis (NES = 1.55, 
P = 0.027), natural killer cell-mediated cytotoxicity 
(NES = 1.56, P = 0.006), intestinal immune network for 
IGA production (NES = 1.53, P = 0.03), chemokine sign-
aling pathway (NES = 1.51, P = 0.002), NOD-like receptor 
signaling pathway (NES = 1.47, P = 0.035), and JAK-STAT 
signaling pathway (NES = 1.46, P = 0.032) were signifi-
cantly enriched in the IL1R1 high-expressed phenotype. 

As shown in Fig.  7C, primary immunodeficiency 
(NES = -1.31, P = 0.15), neuroactive ligand-receptor 
interaction (NES = -1.38, p = 0.06), and drug metabolism 
other enzymes (NES = -1.53, P = 0.026) were enriched in 
the NRG1 low-expressed phenotype.

We also performed single gene GSEA to explore the 
potential mechanism of MDD. As shown in Fig.  8A, 
primary immunodeficiency (NES = -1.5, P = 0.049) 
and intestinal immune network for IGA production 
(NES = -1.51, P = 0.043) were enriched in the CHGB 
high-expressed phenotype, while chemokine signaling 
pathway (NES = 1.34, P = 0.035) and Alzheimer’s dis-
ease (NES = 1.57, P = 0.017) were enriched in the CHGB 

Fig. 2  Identification of DEIRGs in the GSE76826 dataset. Heatmap of DEIRGs in MDD and control samples
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Fig. 3  Functional enrichment analysis of DEIRGs using Metascape. A Heatmap of the top 20 enriched terms across targets associated with AD and 
MDD, colored based on the p-value. B Network of the top 20 enriched terms colored based on cluster ID
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low-expressed phenotype. As shown in Fig.  8B, MAPK 
signaling pathway (NES = 1.42, P = 0.018), neuroac-
tive ligand-receptor interaction (NES = 1.25, P = 0.045), 
acute myeloid leukemia (NES = 1.51, P = 0.029), toll-
like receptor signaling pathway (NES = 1.51, P = 0.025), 
and NOD-like receptor signaling pathway (NES = 1.66, 
P = 0.008) were enriched in the IL1R1 high-expressed 
phenotype. As shown in Fig.  8C, primary immunode-
ficiency (NES = -1.57, P = 0.028), small cell lung can-
cer (NES = -1.45, P = 0.009), and phosphatidylinositol 

signaling system (NES = -1.4, P = 0.037) were enriched in 
the NRG1 low-expressed phenotype. These findings sug-
gested that the three shared genes may participate in the 
development of AD and MDD by impacting the immu-
nologic processes.

The landscape of immune infiltration in AD and MDD
In the present study, we used MCPCounter to assess 
the population abundance of two stromal (fibroblasts 
and endothelial cells) and eight immunes (neutrophils, 

Fig. 4  The protein–protein interaction (PPI) network analysis. A PPI network of the DEIRGs from AD and MDD. Red nodes were identified from the 
GSE5281 dataset, and blue nodes were identified from the GSE76826 dataset. B All lists are merged and Colored by Cluster (Full connection). C All 
lists are merged and Colored by Cluster (Keep MCODE nodes only)
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myeloid dendritic cells, monocytic lineage, NK cells, 
B lineage, cytotoxic lymphocytes, CD8 T cells, and T 
cells) cells in AD, MDD and control groups. As shown in 
Fig. 9A, we found the differences in immune infiltrating 
components between AD and control groups. Our find-
ings indicated that the abundance of NK cells, mono-
cytic lineage, fibroblasts, and endothelial cell population 
in the AD group were higher than that in the control 
group, suggesting the immune disorder occurred in the 
AD group. The correlation analysis was performed to 
further explore the relationship between shared DEIRGs 
and immune cells. As shown in Fig.  9B, CHGB expres-
sion was negatively correlated with endothelial cells, 

monocytic lineage, T cells, NK cells, fibroblasts, myeloid 
dendritic cells, B lineage, cytotoxic lymphocytes, neutro-
phils, and CD8 T cells (all p < 0.01). IL1R1 was positively 
correlated with endothelial cells (p < 0.01), fibroblasts 
(p < 0.01), monocytic lineage (p < 0.01), T cells (p < 0.01), 
NK cells (p < 0.01), neutrophils (p < 0.05), and myeloid 
dendritic cells (p < 0.05) (Fig.  9C). NRG1 was positively 
correlated with B lineage (p < 0.01), myeloid dendritic 
cells (p < 0.01), cytotoxic lymphocytes (p < 0.01), CD8 T 
cells (p < 0.01), NK cells (p < 0.01), T cells (p < 0.01), and 
neutrophils (p < 0.01) (Fig. 9D).

As shown in Fig.  10A, we found the differences in 
T cells, B lineage, and neutrophils between MDD and 

Fig. 5  Identification of shared DEIRGs in AD and MDD. A Venn diagram of DEIRGs between AD and MDD. B ROC curve of DEIRGs in AD. C ROC 
curve of DEIRGs in MDD

Fig. 6  Validation of shared DEIRGs in AD and MDD. B ROC curve of DEIRGs in GSE132903 dataset. C ROC curve of DEIRGs in GSE98793 dataset
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control groups, suggesting that immune cell infiltra-
tions play a vital role in the pathogenesis of MDD. 
CHGB does not correlate with immune cells (Fig. 10B). 
IL1R1 was positively correlated with neutrophils 
(p < 0.01) and endothelial cells (p < 0.05), but nega-
tively correlated with T cells (p < 0.01), CD8 T cells 
(p < 0.05), cytotoxic lymphocytes (p < 0.05), and B lin-
eage (p < 0.05) (Fig.  10C). NRG1 was positively cor-
related with monocytic lineage (p < 0.01) and myeloid 
dendritic cells (p < 0.05), but NRG1 was negatively cor-
related with CD8 T cells (p < 0.05), T cells (p < 0.05), 

and B lineage (p < 0.05) (Fig. 10D). These results showed 
that IL1R1 and NRG1 were correlated with immune cell 
infiltrates both in AD and MDD.

Discussion
AD and MDD are both common in older adults and often 
occur together [35]. Previous reports revealed that prior 
depression increases the risk of dementia; however, their 
interconnectedness is complex and not well understood. 
In addition, both MDD and AD are affected by genetic 
factors [36, 37], and shared genetic risk factors may 

Fig. 7  Single gene GSEA of CHGB (A), IL1R1 (B), and NRG1 (C) in AD

Fig. 8  Single gene GSEA of CHGB (A), IL1R1 (B), and NRG1 (C) in MDD
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explain some of the associations between these diseases 
[38]. Immune system disorders are considered risk fac-
tors in a variety of neurological disorders, including AD, 
MDD, and Parkinson’s diseases [29]. In recent years, 
some researchers have identified biomarkers associ-
ated with immune infiltration for AD or MDD patients 
by bioinformatics analysis. For example, four immune-
related genes were identified as diagnostic biomarkers of 
MDD and were associated with immune infiltration [39]. 
A recent study has identified and verified six immune-
related genes in AD patients [40]. Although a recent 
study identified five hub genes (DYNCIHI, MAPRE3, 
TTBK2, ITGBI, and WASL) that could act as biomark-
ers for the diagnosis and treatment of MDD and AD 
[41]. However, the mechanisms underpinning the role of 
IRGs in AD and MDD remain unclear. Our study aimed 
to identify potential shared IRGs and correlated immune 
cell infiltrations between AD and MDD. In our study, 
for the first time, we identified 3 shared DEIRGs (IL1R1, 
CHGB, and NRG1) between MDD and AD by integrated 

analyses of GEO datasets. Functional enrichment analysis 
revealed that MDD and AD shared some of the common 
pathways: primary immunodeficiency, cytokine-cytokine 
receptor interaction, and JAK-STAT signaling pathway, 
etc. Furthermore, correlation analysis revealed that both 
IL1R1 and NRG1 expression are significantly associated 
with neutrophils, endothelial cells, and myeloid dendritic 
cell infiltrations in AD and MDD.

Interleukin-1 receptor-like 1 (IL1R1) is an immune-
related gene and has been involved in the pathology 
of multiple sclerosis and experimental autoimmune 
encephalomyelitis [42]. IL1R1 was higher in the epilepsy 
group than in the control group [43]. A previous study 
indicated that mRNA expression of IL1R1 was signifi-
cantly up-regulated in the lymphocytes of patients with 
MDD [44]. Furthermore, a growing amount of evidence 
indicated that inactivation of IL1R1 signaling in the 
experimental models of central nervous system diseases, 
including multiple sclerosis, Parkinson’s disease, AD, 
and amyotrophic lateral sclerosis, resulting in decreased 

Fig. 9  The landscape of immune cell infiltration between control and AD groups. A The violin plots indicate the abundance of immune cell 
populations in control and AD groups. Lollipop diagram of a correlation between CHGB (B), IL1R1 (C), NRG1 (D) expression, and immune cell 
infiltration level
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neuroinflammation and delayed disease progression 
[45]. Consistent with these previous studies, our findings 
indicated that IL1R1 expression was up-regulated both 
in MDD and AD patients. Thus, IL1R1 may be a shared 
genetic risk for MDD and AD.

Chromogranin B (CHGB) is a member of the chro-
mogranin gene family and has been identified as a poten-
tial biomarker related to the risk of schizophrenia [46, 
47]. It has been reported that CHGB may be important 
for the regulation of synaptic transmission to promote 
the occurrence and progression of AD [48]. And CHGB is 
a potential biomarker for human hippocampal pathways 
[49]. Based on these studies, we speculated that CHGB 
may be involved in the pathogenesis of AD and MDD.

Neuregulin-1 (NRG1) is a paracrine growth factor and 
has been involved in synaptic plasticity and neural devel-
opment, and plays a vital role in psychiatric diseases, 
such as bipolar disorder, schizophrenia, and depression 

[50, 51]. NRG1 promotes hippocampal long-term 
depression induction in adult mice [52]. Nedd4l-medi-
ated downregulation of NRG1 in the medial prefron-
tal cortex induced depression-like phenotypes mice in 
chronic social defeat stress [53]. Moreover, NRG1 plays 
a vital role in the development and plasticity of the brain. 
For example, pretreatment with NRG1 protects neuronal 
cells against damage via inhibiting CoCl2-induced accu-
mulation of p53 stability [54]. NRG1 improves neuro-
pathology and cognitive deficits in AD mice [55]. NRG1 
may be implicated in the pathophysiology of AD, and 
regulation of NRG1 level may represent a novel target in 
AD [56]. It has been demonstrated that the NRG1 signal-
ing pathway may impact the pathological process of AD, 
and it may serve as a potential target for the prevention 
and treatment of AD [57]. Based on these studies, NRG1 
is a possible shared gene for MDD and AD.

Fig. 10  The landscape of immune cell infiltration between control and MDD groups. A The violin plots indicate the abundance of immune cell 
populations in control and MDD groups. Lollipop diagram of a correlation between CHGB (B), IL1R1 (C), NRG1 (D) expression, and immune cell 
infiltration level
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Immune cell infiltration plays an important role in AD 
and MDD. For example, increased neutrophil-to-lym-
phocyte at admission was indicated to be associated with 
post-stoke depression [58]. Endothelial mitochondrial 
dysfunction contributes to the progression of neurovas-
cular dysfunction in dementia and AD [59]. Our corre-
lation analysis revealed that the expression of IL1R1 and 
NRG1 had a negative or positive correlation with some 
immune cells (neutrophils, endothelial cells, and myeloid 
dendritic cell infiltrations) both in AD and MDD.

However, our current study has some limitations. First, 
for the diagnosis of MDD and AD patients, the sample 
tissue sources are different. Future studies need to use 
the same sample source (e.g., blood, tissue samples and/
or cell lines) to verify the expression of shared genes. 
Second, larger numbers of clinical samples are needed to 
validate the expression of shared genes.

Conclusion
In conclusion, the present study was focused on the iden-
tification of DEIRGs in AD and MDD, and three shared 
genes (IL1R1, CHGB, and NRG1) had a good diagnostic 
value both in MDD and AD. Furthermore, IL1R1 and 
NRG1 have correlated with immune infiltrates both in 
AD and MDD, which may be used as novel targets for 
immunotherapy both in MDD and AD patients.
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