
R E S E A R C H Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available
in this article, unless otherwise stated in a credit line to the data.

Sun et al. BMC Genomic Data (2023) 24:35
https://doi.org/10.1186/s12863-023-01134-5

BMC Genomic Data

*Correspondence:
Shuying Sun
ssun5211@yahoo.com
1Department of Mathematics, Texas State University, San Marcos, TX, USA
2Carnegie Mellon University, Pittsburgh, PA, USA
3Massachusetts Institute of Technology, Cambridge, MA, USA
4Clements High School, Sugar Land, TX, USA
5Texas State University, San Marcos, TX, USA
6Texas A & M University, College Station, TX, USA

Abstract
Background  A haplotype is a set of DNA variants inherited together from one parent or chromosome. Haplotype
information is useful for studying genetic variation and disease association. Haplotype assembly (HA) is a process of
obtaining haplotypes using DNA sequencing data. Currently, there are many HA methods with their own strengths
and weaknesses. This study focused on comparing six HA methods or algorithms: HapCUT2, MixSIH, PEATH,
WhatsHap, SDhaP, and MAtCHap using two NA12878 datasets named hg19 and hg38. The 6 HA algorithms were run
on chromosome 10 of these two datasets, each with 3 filtering levels based on sequencing depth (DP1, DP15, and
DP30). Their outputs were then compared.

Result  Run time (CPU time) was compared to assess the efficiency of 6 HA methods. HapCUT2 was the fastest HA
for 6 datasets, with run time consistently under 2 min. In addition, WhatsHap was relatively fast, and its run time was
21 min or less for all 6 datasets. The other 4 HA algorithms’ run time varied across different datasets and coverage
levels. To assess their accuracy, pairwise comparisons were conducted for each pair of the six packages by generating
their disagreement rates for both haplotype blocks and Single Nucleotide Variants (SNVs). The authors also compared
them using switch distance (error), i.e., the number of positions where two chromosomes of a certain phase must
be switched to match with the known haplotype. HapCUT2, PEATH, MixSIH, and MAtCHap generated output files
with similar numbers of blocks and SNVs, and they had relatively similar performance. WhatsHap generated a much
larger number of SNVs in the hg19 DP1 output, which caused it to have high disagreement percentages with other
methods. However, for the hg38 data, WhatsHap had similar performance as the other 4 algorithms, except SDhaP.
The comparison analysis showed that SDhaP had a much larger disagreement rate when it was compared with the
other algorithms in all 6 datasets.

Conclusion  The comparative analysis is important because each algorithm is different. The findings of this study
provide a deeper understanding of the performance of currently available HA algorithms and useful input for other
users.

Pairwise comparative analysis of six haplotype
assembly methods based on users’ experience
Shuying Sun1*, Flora Cheng2, Daphne Han2, Sarah Wei3, Alice Zhong4, Sherwin Massoudian5 and Alison B. Johnson6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12863-023-01134-5&domain=pdf&date_stamp=2023-6-26

Page 2 of 20Sun et al. BMC Genomic Data (2023) 24:35

Introduction
Haplotype information can be used to study a population
and generate markers and maps as a means of under-
standing how genetic variation evolves and contributes to
phenotypes. Certain haplotypes may be associated with
diseases or traits in a population [1, 2]. With the constant
development of new DNA sequencing technologies in the
past two decades, it has become possible to reconstruct
haplotypes for genetic studies using sequencing data.
The reconstruction of haplotypes from DNA sequencing
reads is called haplotype assembly (HA). Figure 1 showed
a hypothetical example of haplotype assembly, that is,
reconstructing haplotypes of two single nucleotide vari-
ants SNVs (or positions) using DNA sequencing reads. In
this figure, there were 6 different DNA sequencing reads.
Sequencing reads 1 and 5 only covered one SNV, so they
could not be used directly to identify haplotypes. Reads
2 and 4 were single-end reads that were long enough to
cover two SNVs and could be used to infer unknown hap-
lotypes. Reads 3 and 6 were paired-end reads that cov-
ered two SNVs, so they could be used to infer haplotypes
as well.

HA is important in order to understand and interpret
genetic variants, as well as these variants’ association
with diseases in certain groups of individuals [3]. There-
fore, there have been numerous HA methods developed
over the last 10 to 15 years as mentioned in recent review
papers [4–7]. These methods used different approaches.
Some of them (e.g., HapCUT2, MixSIH, PEATH, and
ProbHap) were developed based on probability models
(i.e., they were probability-based) [1, 3, 8–20], whereas
some (e.g., WhatsHap and SDhaP, and GenHap) focused
on addressing a minimum error correction (MEC) prob-
lem [21–23]. With the development of these methods
and their own unique features, the precision of haplotype
assembly has steadily improved over the years. How-
ever, there were still challenges in haplotype assembly
for different users and researchers who tried to develop
new HA methods. First, because each algorithm had
its own advantages and disadvantages, users might not

know which one to choose. Second, users might find it
difficult to figure out how to get an HA algorithm to run
properly. Third, users might not understand input and
output files easily due to the lack of good user manuals.
Finally, most methods were only compared with 2 or 3
other algorithms, and few studies compared a wide range
of HA methods. Because of the above challenges, users
might not fully understand the algorithms they used, as
well as the advantages and disadvantages of their respec-
tive performances. Therefore, it is important to compare
these algorithms to help users know the HA problem bet-
ter. A comparison study can also help other researchers
to understand this topic, and thus develop more accurate
and efficient HA algorithms.

In this paper, the authors compared 6 HA methods
(or software packages): HapCUT2 [1], MixSIH [14],
PEATH [16], WhatsHap [22], SDhaP [21], and MAtC-
Hap [24]. Table 1 showed the web pages, languages used
by the 6 HA methods, and software versions (or instal-
lation dates). One commonly used programming lan-
guage amongst these 6 HA algorithms was C + + or C.
MixSIH also used Ruby in addition to C++, whereas
WhatsHap and HapCUT2 used Python. Different from
other HA algorithms, MAtCHap used R and Perl. Hap-
CUT2, WhatsHap, and SDhaP also relied on additional
software in order to successfully complete haplotype
assembly. HapCUT2 required extractHAIRS (Extract
HAplotype Informative Reads) and htslib. WhatsHap
relied on the Conda package. SDhaP required the instal-
lation of ATLAS and LAPACK. Further detailed infor-
mation about these HA methods can be found in their
webpages. In addition, these 6 methods were the rep-
resentatives of the following three approaches: using a
probability model (HapCUT2, MixSIH, and PEATH),
addressing a MEC problem (WhatsHap and SDhaP),
and solving a maximization problem (MAtCHap). More
detailed methodological and analytical comparisons were
summarized in later sections. The 6 HA methods were
compared using the run time (i.e., CPU time), haplotype
block, SNV number per block, and switch distance (or
error) rate. Datasets, comparison methods, and findings
were shown in different sections.

Comparison method
This section included the description of data to be used,
the workflow of 6 HA algorithms, a pairwise compari-
son analysis method (i.e., the analytical part), as well as
a methodological comparison of the 6 HA algorithms
(i.e., the conceptual part). Note, the methodologi-
cal comparison of the 6 HA algorithms was also a part
of the comparison results, which was supposed to be
included in the Results section. However, since this part
did not involve any analytical results regarding each HA
algorithm’s performance, the authors included them in Fig. 1  Example of haplotype assembly using DNA sequencing reads

Page 3 of 20Sun et al. BMC Genomic Data (2023) 24:35

this section. Next, analysis datasets would be described,
which included the publicly available sequencing data
and known haplotypes.

DNA sequencing data and “gold standard” (or known)
haplotypes of NA12878
To compare the 6 HA methods, DNA sequencing data-
sets of the sample named NA12878 were used in this
study. NA12878’s genome was commonly used to study
haplotype assembly in previous research. NA12878
was a female Utah resident with Northern and Western
European ancestry [25] and a sample (HG001) from the
1000 Genomes Project. The NA12878 sample has been
sequenced many times using a variety of sequencing
technologies [25–27]. Different datasets have become
available for this sample, which included integrated
variant call sets, exome, low coverage whole genome
sequencing (WGS), PCR-free high coverage sequencing,
HD genotype chip, and targeted exons. The technologies
used for sequencing NA12878 included Hi-C [28], fos-
mid-based [29], 10X genomics linked-read [30], PacBio
SMRT [31], 454-sequencing, and Illumina HiSeq 2500
[32].

For the sake of convenience, two versions of the aligned
sequencing data were used. These two datasets were
publicly available in the Binary Alignment Map (BAM)
format and were called ENA-hg19 and ENA-hg38 data.
ENA-hg19 and ENA-hg38 mean that the aligned datasets
were downloaded from the European Nucleotide Archive
(ENA) [27], and the sequencing reads were aligned to the
hg19 and hg38 reference genome respectively. The ENA-
hg19 dataset included 2 × 100 bp paired-end reads gener-
ated using the Illumina HiSeq 2000 with > 30X coverage.
The ENA-hg38 dataset included 2 × 150 bp paired-end
reads generated using the Illumina NovaSeq 6000 with

> 30X coverage. More detailed information can be found
at the ENA web page [27]. The ftp sites of these datasets
have been listed in the Availability of Data and Materials
section. For the sake of simplification, they were called
hg19 and hg38 data in the later sections.

The hg38 version of NA12878 true (or known) hap-
lotype dataset was downloaded from the International
Genome Sample Resource (IGSR) [26]. The ftp site of this
dataset was listed in the Availability of Data and Mate-
rials section. To the best of the authors’ knowledge, this
dataset can be used as a “gold standard” (or a set of “high
confidence” haplotypes of NA12878) to compare different
HA algorithms. To simplify the analysis, the authors only
used chromosome 10 (chr10) sequencing data. For chr10,
based on the hg38 reference genome, there were 133 mil-
lion (133,797,422) positions. Out of the total 133 million
positions, there were only 3.6 million (3,632,297) SNV
positions in the hg38 version known haplotypes. Among
these 3.6 million potential SNV positions, 3.4 million
(3,455,455) positions were homozygous reference alleles
(i.e., “0|0”), and the other positions were alternative allele
homozygous sites (67,126 “1|1” positions) or heterozy-
gous sites (53,462 “0|1” and 56,354 “1|0” positions). For
all the 3.6 million (3,632,297) SNV positions, 3,591,460
positions were lifted over or converted to the hg19 ref-
erence genome. For this conversion, the following three
types of positions were removed: positions that could
not be converted to hg19, positions that were mapped
to other chromosomes but not chr10, and positions that
were mapped to more than one place on hg19 chr10.
These 3.6 million (3,632,297) hg38 SNV positions and
3.5 million (3,591,460) hg19 SNV positions were used for
further analysis later. Note, in the NA12878 “gold stan-
dard” haplotype dataset, all positions were likely to be
single nucleotide polymorphisms (SNPs) as they were
typically inferred as “high confidence” positions. How-
ever, the authors still called these positions SNVs in case
that some of them might not be validated SNPs yet. For
the rest of this paper, the term SNV was used as it was
still unknown whether the variants inferred by each HA
algorithm were SNPs or not.

The two datasets, hg19 and hg38, and the known hap-
lotype data (or “gold standard”) described above were
used in order to compare the 6 HA methods. To study
the impact of sequencing depth (DP) or coverage, the
input datasets were filtered based on 3 levels: DP1, DP15,
and DP30. The specified number after the term DP was
the number of reads that cover each position or base (i.e.,
≥ 1X, ≥ 15X, and ≥ 30X). The number of DNA fragments
in each dataset was shown in Table 2. This table shows
that as the filtering level increases from DP1 to DP30, the
DNA fragment number decreases significantly because
low-coverage or low-quality sequencing reads were
removed.

Table 1  Webpages and languages used by 6 HA algorithms
Method Language Webpage Ver-

sion (or
Date)

HapCUT2 C, Python https://github.com/vibansal/
HapCUT2

07/2020
installed

MixSIH C++, Ruby https://github.com/hmatsu1226/
MixSIH
https://sites.google.com/site/
hmatsu1226/software/mixsih

Version
1.0.0

PEATH C++ https://github.com/jcna99/PEATH 07/2020
installed

WhatsHap C++,
Python

https://WhatsHap.readthedocs.io/
en/latest/index.html

Version
0.18

SDhaP C https://sourceforge.net/projects/
SDhaP/files/

07/2020
installed

MAtCHap R, Perl https://sourceforge.net/projects/
MAtCHap/.

Version
1.0

The columns (left to right) represent haplotype assembly method, programming
language(s), webpages, and versions (or installation dates)

https://github.com/vibansal/HapCUT2
https://github.com/vibansal/HapCUT2
https://github.com/hmatsu1226/MixSIH
https://github.com/hmatsu1226/MixSIH
https://sites.google.com/site/hmatsu1226/software/mixsih
https://sites.google.com/site/hmatsu1226/software/mixsih
https://github.com/jcna99/PEATH
https://WhatsHap.readthedocs.io/en/latest/index.html
https://WhatsHap.readthedocs.io/en/latest/index.html
https://sourceforge.net/projects/SDhaP/files/
https://sourceforge.net/projects/SDhaP/files/
https://sourceforge.net/projects/MAtCHap/
https://sourceforge.net/projects/MAtCHap/

Page 4 of 20Sun et al. BMC Genomic Data (2023) 24:35

Note that, a SNP or SNV with just 1X coverage was not
a valid or meaningful calling. By setting DP1 (1X), the
purpose was not to identify a specific SNP (or SNV) or
haplotype with just 1X. Instead, it was to see how well
different algorithms would perform and how well they
agreed with each other when users did not do any filter-
ing based on coverage. Users might not know what cover-
age level should be used to do the filtering, and whenever
there was a filtering, some SNPs (SNVs) could be filtered
out. Therefore, all algorithms were compared with DP1
(1X), DP15 (15X), and DP30 (30X) to show users what
they might expect if they analyzed a new dataset by
themselves.

Workflow of 6 HA methods
Figure 2 showed the workflow of 6 HA methods (or algo-
rithms). This workflow was summarized based on the
authors’ experience of using these HA methods. It began
with the NA12878 BAM file, which was sorted using the
samtools. The chr10 was then extracted from the BAM
file to create a sorted SAM file, which was then converted
back to a sorted BAM file, and finally to a BIM Collabo-
ration Format (BCF) file. Next, bcftools were used to
convert a BCF file to a VCF file. Since WhatsHap only
required a VCF file and a BAM file (meaning it does
not use a DNA sequencing fragment file), it can be run
right after the VCF file was generated. For the other HA
algorithms, a fragment file was required. By using the

tool extractHAIRS (a script provided on HapCUT2 web
page), a fragment file could be generated from the VCF
file, which allowed HapCUT2, MixSIH, PEATH, MAtC-
Hap, and SDhaP to have the required input format to run.

The authors used DNA sequencing data of the sample
NA12878, that is, the hg19 and hg38 data, and then fil-
tered them based on 3 different sequencing depth levels
(DP1, DP15, and DP30). They ran the six HA software
packages, HapCUT2, MixSIH, PEATH, WhatsHap,
SDhaP, and MAtCHap. The original output files were
then reformatted, using Perl and R scripts, to obtain the
SNV and block summary values. These values included
the number of SNVs, the number of haplotype blocks,
mean number of SNVs per block, as well as the maxi-
mum, minimum, and quartiles for the number of SNVs
per block. The results between the various runs were
then compared to find differences or disagreements.

Pairwise comparison analysis method (i.e., analytical
comparison)
The key purpose of this study was to conduct com-
parative analysis. Before any pairwise comparisons, the
authors used a “gold standard” (i.e., a set of known haplo-
types) for both hg19 and hg38 datasets that were publicly
available. The analysis was done by cross comparing the
haplotype output file from each HA with the so-called
“gold standard” haplotype file. This comparison was done
to see how many SNVs inferred by each HA overlapped
with the positions in the “gold standard”. The authors first
showed the non-pairwise comparison result and then
explained why they did the pairwise comparison in the
Results section.

After running the 6 HA algorithms on 6 datasets (hg19
and hg38, each with 3 filtering levels: DP1, DP15, and
DP30), the raw output files were obtained, see examples

Table 2  Numbers of DNA fragments of hg19 and hg38 data
based on 3 depth levels

hg19 hg38
DP1 966,935 787,932

DP15 924,996 785,698

DP30 451,625 570,691

Fig. 2  The workflow of 6 HA algorithms. This workflow is about converting BAM files to generate the required input format for each software package

Page 5 of 20Sun et al. BMC Genomic Data (2023) 24:35

of raw output files in the Table 1 in the Supplementary
Material 1. HapCUT2, MixSIH, PEATH, and SDhaP had
a similar output format. The first column in this supple-
mental table was the SNV index in the input VCF file.
The second and third columns were the haplotypes on
two chromosomes. The other columns were detailed
explanations. The MAtCHap and WhatsHap raw outputs
were VCF files. These output files were then compared
using run time, haplotype block, SNV, and switch error.

The authors did pairwise comparison for haplotype
blocks, SNVs, and switch error rates by performing
analysis on each pair of HA methods. That is, one HA
was used as a reference or standard (called HA1), and
the secondary HA (called HA2) was compared to the
HA1. This pairwise comparison was done block by block
as shown in Table 3. An agreement was reported if the
number of SNVs in a particular block matched, and if it
did, the comparison algorithm then checked if the alleles
matched or not (see the 5th column, “hap.match”). In the
end, each comparison generated both block and SNV
disagreement counts, which were converted to percent-
ages to compare various HA algorithms that had different
blocks and SNVs.

For switch errors, the authors compared each pair of
HA algorithms and used one as the standard or refer-
ence (i.e., HA1). They checked two haplotypes block by
block and reported the number of switches needed to
make the alleles of the secondary HA (i.e., HA2) match
the reference HA’s alleles (see the last column of Table 3).
The comparison function ultimately reported the total
number of switches, as well as other statistics such as the
blocks with no switches, with switches, and with no com-
parisons due to different numbers of SNVs. In order to
compare based on the switch distance metric thoroughly,
the authors zoomed in to compare all HA methods from
different perspectives by defining the following 12 spe-
cific metrics.

1.	 blk.w.0sw: Total number of blocks (blks) that 2 HAs
agreed with each other, i.e., no switch (sw = 0).

2.	 blk.w.NAsw: Total number of blocks whose SNV
numbers did not match (sw = “NA”). That is, the
switch distance could not be checked.

3.	 blk.w.sw: Total number of disagreement blocks with
switch counted (sw > 0).

4.	 snv.in.blk.w.0sw: Total number of SNVs in blocks
with 0 switches (sw = 0).

5.	 snv.in.blk.w.NAsw: Total number of SNVs in blocks
with NA switches (sw = “NA”).

6.	 snv.in.blk.w.sw: Total number of SNVs in blocks with
switches (sw > 0).

7.	 snv.per.blk.w.0sw: Average number of SNVs in blocks
with 0 switches (sw = 0).

8.	 snv.per.blk.w.NAsw: Average number of SNVs in
blocks with NA switches (sw= “NA”).

9.	 snv.per.blk.w.sw: Average number of SNVs in blocks
with switches (sw > 0).

10.	total.sw: Total number of switches for all
disagreement blocks with an equal number of SNVs
in 2 HA methods.

11.	snv.by.sw: snv/sw, it was for blocks with sw > 0 (not
for ALL disagreement blocks).

12.	sw.per.blk: sw/blk, it was for blocks with sw > 0 (not
for ALL disagreement blocks).

Methodological comparison (i.e., the conceptual
comparison)
Below is the methodological or conceptual comparison of
the 6 HA methods based on the following aspects: mod-
els and features, input files, and comparison metrics.

Models and features
The 6 HA methods utilized a variety of statistical mod-
els or algorithms as shown in Table 4. HapCUT2 used
a maximum likelihood-based model. It was designed to
work across a wide array of sequencing technologies [1].
MixSIH used a probabilistic mixture model where each
fragment was emitted independently of other fragments
[14]. PEATH utilized a probabilistic evolutionary algo-
rithm that used a fitness function to identify candidates
for optimization [16]. WhatsHap and SDhaP focused on
addressing the MEC problem. WhatsHap considered
HA as a weighted minimum error correction (wMEC)
problem with read coverage as the only fixed parameter.
It solved the wMEC problem using dynamic program-
ming to find a partition of DNA sequencing reads [22].
SDhaP attempted to find the optimal solution for the
MEC problem [21]. It approached HA as a correlation-
clustering problem and aimed to solve low-rank semidef-
inite programming optimization problems. MAtCHap’s
model was based on the maximum allele co-occurrence.
It aimed to reconstruct haplotype structures of all cover-
ages with a high accuracy [24].

Table 3  A simple example of comparing two HA algorithms
block.ID HA1.SNV.num HA2.SNV.

num
SNV.
match

hap.
match

switch.
count

1 2 1 - - NA

2 7 4 - - NA

3 4 4 match - 1

4 23 9 - - NA

5 2 2 match match 0

6 2 2 match match 0
The columns are block ID, number of SNVs in HA1, number of SNVs in HA2, SNV
match flag, haplotype match flag, and switch count. “-” means SNV numbers
or haplotypes of HA1 and HA2 do not match. In the switch count column, NA
means no need to check switch distance because those HA1 and HA2’s SNV
numbers do not match. The number (e.g., 0 or 1) in the last column means the
number of switches needed

Page 6 of 20Sun et al. BMC Genomic Data (2023) 24:35

Assumptions were often made to ensure the modeling
environment was under control and stable. HapCUT2
assumed that the read fragments were independent and
the heterozygous sites were known in advance [1]. Mix-
SIH assumed that the sequence error rate was not depen-
dent on fragments or positions and mixture probabilities
were equal [14]. The PEATH method assumed that all
input variables were independent. WhatsHap assumed
that the allele with the higher alignment score was sup-
ported by sequencing reads [22]. It also assumed that
recombination events had the same chance to occur at
any given position [22].

The 6 HA methods often considered different fea-
tures in their models. The following features were com-
monly used by at least 2 of the 6 HA methods as shown
in Table 4: Sequencing Error (Seq Error), Sequencing
Coverage (Seq Cov), Sequencing Read Length (Read
Len), and Objective Function (Obj Fun). Below is the
summary for each of them. Sequencing errors are mis-
takes of reading specific bases due to the limitations of
sequencing technologies. PEATH and SDhaP considered
sequencing errors in their models. PEATH attempted to
identify the minimal sum of the quality-weighted errors
from two haplotypes, and this was done using the Phred
quality scores and probability of sequencing errors [16].
Sequencing coverage is the number of reads covering a
specific base. Five methods, except PEATH, incorporated
sequencing coverage in their models. HapCUT2’s switch
error rates decreased as sequencing coverage increased
[1], and this appeared to be the case with MAtCHap, as
the switch + mismatch error rate decreased as the cover-
age increased [24]. MAtCHap also concluded that its run
time generally increased as coverage increased, although
the change in run time was not as significant as that of

other algorithms [24]. Read length is the number of bases
sequenced from a DNA fragment. 3 papers had read
length as an evaluation method: HapCUT2, WhatsHap,
and MixSIH. The HapCUT2 paper showed that the run
time was dependent on the read length [1]. However,
WhatsHap showed that the run time was not affected by
the read lengths, which made it more suitable for larger
sequencing datasets [22].

HA algorithms often use different objective functions.
One of the most common objective functions was the
likelihood function, which was implemented in the Mix-
SIH and HapCUT2 methods [1, 14]. Another common
objective function was the MEC, which was used by both
WhatsHap and SDhaP. WhatsHap was developed as a
fixed-parameter tractable algorithm to solve the wMEC
problem, where read coverage was the only fixed param-
eter [22]. SDhaP focused on finding an optimal solution
to the MEC problem [21]. MAtCHap implemented the
maximum allele co-occurrence objective function [24].
Finally, PEATH used the fitness function, which can iden-
tify good candidates for an optimization problem [16].

Input
Every HA algorithm had its own input format to recon-
struct haplotypes, and these inputs varied as shown in
Table 5. Three algorithms required matrices as input
files, which differed from algorithm to algorithm. PEATH
required two matrices as its input. The first was a quality
score matrix, and the second was a sequence read matrix
[16]. MAtCHap and SDhaP required one matrix. MAtC-
Hap required one fragment matrix where the number of
rows represented the reads, and the number of columns
represented the heterozygous variants [24]. For SDhaP,
the reads were arranged into a matrix according to their

Table 4  Models, assumptions, and features of 6 HA algorithms
Method Model or algorithms Assumptions Seq

Error
Seq
Cov

Read Len Obj
Fun

HapCUT2 maximum likelihood-based Heterozygous sites known in advance; allele
count independent

X X X

MixSIH probabilistic mixture model sequence error rate independent of fragments
and positions; mixture probabilities are equal
(pm(0) = pm(1) = 0.5)

X X X

PEATH probabilistic evolutionary
algorithm

All input variables are independent, no copy
number variation

X X

WhatsHap Fixed-parameter trac-
table algorithm, dynamic
programming

Allele with higher alignment score is assumed to
be supported by the read, variants are sorted by
position, recombination events equally likely at
any position

X X X

SDhaP MEC X X X

MAtCHap maximum allele
co-occurrence

X X

The second column is the model or algorithm used by each HA method. The third column is the assumption used by each HA algorithm. The fourth to seventh
columns are features or factors that were considered by the authors of each HA method. These features/factors are sequencing error (Seq Error), sequencing
coverage or depth (Seq Cov), sequencing read length (Read Len), and objective function (Obj Fun). “X” in each column means that the HA method in that row
incorporates that feature or metric. Some cells in the assumption column are left blank, which means that no clear assumptions can be found in the corresponding
papers.

Page 7 of 20Sun et al. BMC Genomic Data (2023) 24:35

positions on the chromosome. These matrices were cal-
culated by each HA algorithm. Users did not need to pro-
vide the matrices by themselves.

Another common input format was VCF and BAM.
At least 2 algorithms such as HapCUT2 and Whats-
Hap required two input files, VCF and BAM, containing
information on haplotype fragments and heterozygous
variants [1, 22]. In addition to the input specifications
mentioned above, there were also a few that were less
commonly used among these papers. For example, Mix-
SIH required aligned SNP fragment files for its input,
and these fragments were retrieved through extraction
from heterozygous alleles in aligned DNA fragments
[14]. WhatsHap, along with VCF and BAM files, required
sequencing reads from the individual sample [22]. Note,
the input information was summarized based on what
was stated in the 6 HA papers. In fact, when running

these algorithms, the authors found that, except Whats-
Hap, the other 5 HA algorithms all required a similar
DNA fragment file with some minor changes as shown
in Fig. 2.

Comparison metrics
When comparing the 6 HA methods, the authors found
that these methods used different metrics to compare
with other algorithms. Then only commonly used ones
were selected to compare different HA methods as listed
in Table 6. Of all metrics, switch error rate and run time
were used by all 6 HA methods, and MAtCHap used the
greatest number of metrics. WhatsHap looked at three
kinds of errors: flip errors, switch errors, and ambiguity
errors. It also combined those three errors to find its total
error. All HA methods used the switch error rate, and
HapCUT2 and MAtCHap looked at the mismatch error
rate. In addition, MAtCHap calculated its own total error
rate by adding switch and mismatch errors.

Results
Run time
The run time of all 6 HA algorithms on 6 datasets (hg19
and hg38, each with 3 DP levels) was shown in Table 7;
Fig. 3. Note, the run time was the CPU time used in
executing each process, see detailed explanations in the
Discussion. Table 7; Fig. 3 provided the same informa-
tion, but they showed different details and perspectives.
Table 7 gave specific run time, while Fig. 3 showed over-
all patterns. When comparing the run time of the 6 HA
algorithms based on both hg19 and hg38 data’s 3 cover-
age levels, Table 7; Fig. 3 showed that the fastest HA was
HapCUT2 for both hg19 and hg38 data. HapCUT2’s run
time was consistently under 2 min. SDhaP took longer
when running hg19 data than hg38 data (1042 ~ 2534 min

Table 5  Input files of 6 HA algorithms as stated in their papers or
user manuals
Method VCF BAM Matrix Input
HapCUT2 X X Haplotype fragments (BAM

files) and a list of heterozygous
variants (VCF)

MixSIH Aligned SNP fragments

PEATH X Two n by m matrices: M and
Q (M = sequence read matrix;
Q = quality score matrix)

WhatsHap X X VCF file with variants of an
individual and a BAM file with
sequencing reads from that
same individual

SDhaP X Reads were arranged into an
m by n matrix according to
positions on chromosome

MAtCHap X Uses one n by m fragment
matrix where each row (n) rep-
resents reads and each column
(m) represents the information
of a heterozygous variant

The columns (from left to right) are HA methods, commonly used input formats
(VCF file, BAM file, and Matrix), and input description. Each “X” represents the
input format(s) that the given software package uses. The last column is a more
detailed description of different input formats used in each algorithm

Table 6  Comparison metrics
Method Switch Error Mismatch

Error
MEC Run

time
HapCUT2 X X X

MixSIH X X

PEATH X X X

WhatsHap X X

SDhaP X X X

MAtCHap X X X
The columns are (in order from left to right) haplotype assembly method,
switch error, mismatch error, MEC, and run time. HA algorithms that use one
of the four comparison metrics are marked with an “X”. Cells that are left blank
mean that the specific algorithm in a row does not use this comparison metric

Table 7  Run time of the 6 HA algorithms on hg19 and hg38
data
no.HI hg19 DP1 DP15 DP30
HapCUT2 0m0.020s 1m27.862s 0m50.749s

MixSIH 166m53.561s 167m55.217s 60m32.406s

PEATH 9m9.623s 9m17.898s 6m55.111s

WhatsHap 21m47.595s 18m32.676s 7m47.223s

SDhaP 1042m19.795s 2534m53.175s 2395m2.418s

MAtCHap 145m32.562s 74m7.937s 2m5.477s

no.HI hg38 DP1 DP15 DP30
HapCUT2 1m38.330s 1m27.657s 1m15.984s

MixSIH 533m21.192s 521m52.663s 323m4.853s

PEATH 881m41.440s 851m6.780s 291m25.599s

WhatsHap 13m18.916s 13m23.951s 9m34.321s

SDhaP 243m21.180s 385m9.746s 107m9.087s

MAtCHap 47m46.312s 42m7.180s 23m57.059s
In each cell, “m” means minute; “s” means second. For example, “0m0.020s”
means 0 min and 0.02 s. “no.HI” in the first column means that homozygous
variants and indel sites were not included.

Page 8 of 20Sun et al. BMC Genomic Data (2023) 24:35

for hg19 vs. 107 ~ 385 min for hg38). In fact, SDhaP was
the slowest HA for hg19 but was near the average for
hg38. Meanwhile, MixSIH and PEATH took longer when
using hg38 data than hg19 data. Surprisingly, PEATH
was the slowest HA for hg38, but it was one of the fast-
est ones (behind HapCUT2) for hg19. It took < 10 min
for hg19 but 291 ~ 881 min for hg38. In general, Fig. 3
showed that the DP30 runs (blue bars) took significantly
less time than DP1 (green bars) and DP15 (yellow bars).
This difference might be because the input dataset of
DP30 was much smaller after filtering based on cover-
age, i.e., with a much smaller number of DNA fragments
as shown in Table 2. As the DP increased, the run time
decreased (maybe because the dataset became smaller)
or did not change much, but there were some outliers
including SDhaP’s run time on both the hg19 and hg38
datasets.

When running the 6 HA algorithms across the hg19
and hg38 data, there seemed to be a longer run time for

the hg38 dataset, especially for MixSIH and PEATH, but
not for SDhaP. This longer time could be because hg38
sequencing reads were longer (2 × 150 bp paired-end)
than the hg19 sequencing reads (2 × 100 bp paired-end).
The run time increased from 1 to 2 s (HapCUT2) to
800 min (PEATH, DP1). Some outliers of the run time
included WhatsHap (DP1 and DP15), MAtCHap (DP1
and DP15), and SDhaP, where the hg38 data run time was
around 8 to 700 min faster than the hg19 data.

Summary of block (blk) and SNV numbers
Table 8 showed the summary of block and SNV num-
bers for the hg19 and hg38 at the DP1 level. Each row
had the summary of the number of SNV per block for all
haplotype blocks inferred by one HA. This table showed
that for the hg19 DP1 data, WhatsHap inferred about
50% more SNV positions (178,534 vs. 115,000). It had
a much smaller number of blocks (10,132 vs. 32,000),
but its blocks were generally longer than the other HA

Fig. 3  Run time of the 6 HA algorithms on hg19 and hg38 data. The vertical axis is in minutes

Page 9 of 20Sun et al. BMC Genomic Data (2023) 24:35

algorithms. WhatsHap’s longest block had 5,194 SNVs,
while other HA algorithms’ longest blocks had only 770
SNVs. In the hg38 DP1 data, the total number of SNVs,
blocks, and SNVs per block summary of WhatsHap was
very similar to most other HA methods. In the hg38 DP1
data, PEATH and MAtCHap’s block lengths and num-
bers of SNVs were similar except for a small number of
extremely long blocks. PEATH and MAtCHap’s longest
blocks had 6,999 SNVs, but other HA methods’ longest
blocks only had 2,100 ~ 2,400 SNVs. Similar outlying
patterns of WhatsHap, PEATH, and MAtCHap could
be found in hg19 and hg38’s DP15 and DP30 data, see
Table 2 in Supplementary Material 1.

Comparing with the “gold standard”
In order to compare the 6 HA algorithms, the authors
first compared the chromosome positions from the
known haplotypes with the SNV positions in the haplo-
types inferred by each HA algorithm. That is, the com-
parison was first conducted with the so-called “gold
standard,” i.e., a set of “high confidence” haplotypes of
NA12878. The basic rationale was that if some (or many)
SNV or chromosome positions inferred by these HA
algorithms were not in the positions listed in the “gold
standard” or known haplotypes, then it would not be
meaningful to compare the haplotypes inferred by each
HA with the so-called “gold standard” haplotypes. For
example, HapCUT2 inferred 100 SNVs (or positions) in
its output, and only 50 of them overlapped with the “gold
standard” (or known haplotype) positions. It would not
be meaningful to use the “gold standard” as a reference.

Table 9 showed that when the coverage increased
(from 1X to 30X), some SNPs (or SNVs) with low cov-
erage (e.g., < 10X) were filtered out from the haplotypes

inferred by each HA method. Therefore, the SNP num-
ber decreased as the coverage filtering level increased.
The decrease in the SNP (SNV) number in Table 9 could
also be explained by Table 2, which showed that the num-
ber of DNA fragments (or sequencing reads) decreased
as the filtering coverage level increased (from 1X to 15X
and then to 30X).

By comparing based on the SNV positions only, as
shown in Table 9, the authors found that for the hg19
data, except WhatsHap, only 37–38% (for DP1 and DP15)
and 18% (for DP30) of SNVs in the other 5 HA algorithms
overlapped with the known haplotype positions or SNVs.
For the hg38 data, the overlap was much larger, 81–84%.
There were still about 20% of SNV positions (roughly
about 20,000 SNVs) that were not in the “gold standard”
or known haplotypes. Therefore, it was not proper to
compare their haplotypes with known ones.

Pairwise comparison based on SNV and block
As shown in Table 8, the WhatsHap output for the
hg19 DP1 data contained 178,523 SNVs, around 50%
more than the other HA algorithms, which made it an
“improper” or “unbalanced” comparison. In order to have
a “proper” pairwise comparison, the authors filtered the
WhatsHap output to only contain chromosome positions
found in the PEATH and MAtCHap output files. These
two algorithms were used because they had identical
115,813 SNV positions, and HapCUT2 and MixSIH had
a similar number of SNVs. Pairwise comparisons were
then conducted by including both the unfiltered and fil-
tered WhatsHap (WhatsHap.Filter or WhatsHap.F) out-
put with the other HA algorithms.

Table 10 was the pairwise comparison of 6 HA algo-
rithms plus WhatsHap.Filter. Each row showed the

Table 8  Block and SNV number summary of the hg19 and hg38 DP1 data
hg19.DP1.no.HI filterSNV

(no”-“)
Block (no “-“) Min Q1 Median Mean Q3 Max

HapCUT2 115,215 32,150 2 2 2 3.58 4 770

MixSIH 115,790 32,252 2 2 2 3.59 4 770

PEATH 115,813 31,355 2 2 2 3.69 4 770

WhatsHap 178,523 10,132 2 2 2 17.6 9 5194

SDhaP 115,813 32,252 2 2 2 3.59 4 770

MAtCHap 115,813 31,355 2 2 2 3.69 4 770

hg38 DP1.no.HI filterSNV
(no”-“)

Block (no “-“) Min Q1 Median Mean Q3 Max

HapCUT2 100,686 21,710 2 2 2 4.64 5 2187

MixSIH 100,807 21,726 2 2 3 4.64 5 2190

PEATH 100,810 19,660 2 2 3 5.13 4 6988

WhatsHap 100,785 21,654 2 2 3 4.65 5 2479

SDhaP 100,810 21,726 2 2 3 4.64 5 2190

MAtCHap 100,810 19,660 2 2 3 5.13 4 6988
The top 7 rows are for the hg19 DP1 data. The bottom 7 rows are for the hg38 DP1 data. The first 3 columns are the HA names, total number of SNVs (after “-” being
removed), and total number of haplotype blocks. “no.HI” in the first column means that homozygous variants and indel sites were not included. Columns 4 to 9 show
a summary of the number of SNVs per block for all blocks listed in the third column. “Min” means minimum. “Max” means maximum. “Q1” is the 25th percentile. “Q3”
is the 75th percentile

Page 10 of 20Sun et al. BMC Genomic Data (2023) 24:35

pairwise comparison result with that row’s HA as the
reference (HA1). For example, the second row in the top
panel was HapCUT2. That is, the authors used its output
as a reference, i.e., HA1. Then, the other HA algorithms
listed in different columns were called HA2, where each
HA2 was compared with HA1 to see how many blocks
of HA2 (in the column) differ from HA1 (in the row).
The comparison results were shown in the top panel
(block disagreement), then the total number of SNVs was
counted in these disagreement blocks. These comparison
results were shown in the bottom panel (SNV disagree-
ment). The authors conducted this type of pairwise com-
parison for hg19 and hg38’s DP1, DP15, and DP30 data.
In total, there were 6 comparison tables, each with two
panels, one for block disagreement and one for SNV dis-
agreement as shown in Table 10. In order to avoid show-
ing all these tables, the authors provided all pairwise
comparison tables in Supplementary Material 2, which
was an EXCEL file for hg19 and hg38 data and each with
3 sheets for DP1, DP15, and DP30 respectively.

Regarding the WhatsHap.Filter results, 115,745 out of
178,523 SNVs (after removing blocks with 1 SNV) were
left. That is, WhatsHap and other HA algorithms had
many common SNVs after the filter (selection). The fil-
tered output was different from HapCUT2 in 2,362 out of
8,149 (i.e., 28.99%) blocks. These 2,362 blocks consisted
of 94,685 SNVs. That is, on average, there were approxi-
mately 40 SNVs on each of these blocks. Thus, the output
generated by WhatsHap usually had disagreements with
other HA algorithms on long or large blocks. The authors
also found that both the SNV and block disagreements
were much lower for the WhatsHap.Filter output than
those for the unfiltered output as shown in Table 10.

To demonstrate the patterns in Table 10 clearly, bar
plots were made, see Figs. 4 and 5. In these bar plots,

in the bottom along the x-axis, 6 HA algorithms plus
WhatsHap.Filter were shown as HA1, and the rainbow-
colored bars were for each of the other HA algorithms,
i.e., HA2, to compare. Figure 4 showed a few key patterns.
First, the hg38 data (bottom 3 plots) showed that all 6
HA algorithms had much better agreement rates than
the hg19 data (top 3 plots). Second, for both hg19 and
hg38, comparisons with SDhaP as HA2 seemed to have
the highest block disagreement rate, see the outstand-
ing blue bars in Fig. 4. Third, for the hg19 data, Whats-
Hap, WhatsHap.Filter, and SDhaP had the highest block
disagreement rate when used as HA1, see the x-axis for
tall bar clusters in the top panel. However, for the hg38
data, only SDhaP generally had high disagreement rates,
see the blue bars in the bottom 3 plots in Fig. 4. Pairwise
comparisons were based on the total number of disagree-
ment SNVs. Figure 5 showed similar patterns as Fig. 4.
That is, for most comparisons, both hg19 and hg38 fol-
lowed the same trend across three DP levels and had
similar results, with hg19 having marginally higher SNV
disagreement than hg38 (hg19 had around 10–20% while
hg38 had less than 10% on average). With WhatsHap and
WhatsHap.Filter as HA1, there was a much larger SNV
disagreement rate than all other comparisons in the hg19
data, but not the hg38 data. Disagreement with SDhaP as
HA2 was again the largest, see the blue bars in Figs. 4 and
5.

Similar to the pairwise comparison based on the block
and SNV disagreement, the authors did the pairwise
comparison using switch errors. As stated in the com-
parison analysis, 12 different but related switch-distance
metrics were used to compare those HA algorithms. For
each metric, the pairwise comparison results were plot-
ted. Some of them had similar patterns and information.
To avoid showing redundant figures, only 2 of these 12

Table 9  Comparing SNVs in 6 HA algorithms with positions in known haplotypes
HA methods hg19.DP1 overlap hg19.DP15 overlap hg19.DP30 overlap
HapCUT2 115,215 43,868 (38.07%) 96,357 35,930 (37.29%) 18,824 3517 (18.68%)

MixSIH 115,790 44,210 (38.18%) 96,818 36,211 (37.40%) 18,885 3542 (18.76%)

PEATH 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

WhatsHap 178,523 97,865 (54.82%) 152,769 84,094 (55.05%) 24,628 7788 (31.62%)

WhatsHap.Filter 115,745 44,198 (38.19%) 96,783 36,204 (37.41%) 18,864 3540 (18.77%)

SDhaP.100,595 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

MAtCHap 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

HA methods hg38.DP1 overlap hg38.DP15 overlap hg38.DP30 overlap
HapCUT2 100,686 84,197 (83.62%) 99,572 83,851 (84.21%) 63,970 52,185 (81.58%)

MixSIH 100,807 84,239 (83.56%) 99,675 83,887 (84.16%) 64,023 52,203 (81.54%)

PEATH 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)

WhatsHap 100,785 84,332 (83.68%) 99,648 83,983 (84.28%) 63,999 52,265 (81.67%)

WhatsHap.Filter 100,625 84,199 (83.68%) 99,487 83,846 (84.28%) 63,917 52,186 (81.65%)

SDhaP 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)

MAtCHap 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)
The columns are HA methods, numbers of SNVs obtained based on 3 DP level input data, and the corresponding overlap with 3,591,460 SNVs (for the hg19 data) and
with 3,632,297 SNVs (for the hg38 data) in known haplotypes

Page 11 of 20Sun et al. BMC Genomic Data (2023) 24:35

metrics were shown. These two metrics were total.sw
and blk.w.0sw as shown in Figs. 6 and 7 respectively. The
bar plot layout (order and color) in these figures was the
same as the one in Figs. 4 and 5. The bar plots of all 12
metrics were shown in Supplementary Material 3 (a PDF
of 13 pages).

Pairwise comparison based on switch distance
Figure 6 was for the metric total.sw. It showed the total
number of switches a specific HA2 algorithm needed
to match the HA1 haplotypes. This figure showed a few
striking patterns. First, all 6 HA algorithms seemed to
agree with each other better in the hg38 data than in the
hg19 data. Second, for both hg19 and hg38 data, compar-
isons with SDhaP as HA2 showed the greatest difference
(see blue bars that represent high disagreements), that is,
more switches were needed. Third, for hg19, with Whats-
Hap.Filter and SDhaP as HA1, there were more switches
(tall bar clusters). For hg38, only SDhaP had the largest

number of switches (blue bars). Fourth, for the hg19 data,
when WhatsHap was used as the HA1, the number of
switches needed was the smallest (see the short bars
above WhatsHap). This might be because WhatsHap had
long blocks, while the other HA method (i.e., HA2) did
not have those long blocks to compare with. Thus, it had
a small number of switches needed. This could be seen
in Fig. 7, which showed low bars above WhatsHap. How-
ever, for the WhatsHap.Filter, after removing those SNVs
not inferred by other HA algorithms, its haplotype block
structures were altered, and then many switches were
needed. Fifth, for hg19 data, DP1 and DP15 plots were
very similar in size. The switches required for DP30 were
much smaller, see low bars in Fig. 6 for total switches.

Figure 7 was for the metric blk.w.0sw. This figure
showed the total number of blocks with 0 switches.
That is, the figure showed the number of blocks where
those HA algorithms agreed with each other. This figure
showed a few patterns. First, for the hg19 data, the blocks

Table 10  Pairwise comparison based on block and SNV disagreements of hg19 DP1 data
Block-Disagree HapCUT2 MixSIH PEATH WhatsHap WhatsHap.

Filter
SDhaP MAtCHap

HapCUT2
(32,150 blocks)

0 459/32,150
(1.43%)

188/32,150
(0.58%)

1690/32,150
(5.26%)

1690/32,150
(5.26%)

4860/32,150
(15.12%)

494/32,150
(1.54%)

MixSIH
(32,252 blocks)

885/32,252
(2.74%)

0 655/32,252
(2.03%)

1924/32,252
(5.97%)

1924/32,252
(5.97%)

5109/32,252
(15.84%)

664/32,252
(2.06%)

PEATH
(31,355 blocks)

1005/31,355
(3.21%)

976/31,355
(3.11%)

0 2032/31,355
(6.48%)

2032/31,355
(6.48%)

5215/31,355
(16.63%)

838/31,355
(2.67%)

WhatsHap
(10,132 blocks)

6353/10,132
(62.70%)

6344/10,132
(62.61%)

6328/10,132
(62.46%)

0 6602/10,132
(65.16%)

6347/10,132
(62.64%)

WhatsHap.Filter
(8149 blocks)

2362/8149
(28.99%)

2258/8149
(27.71%)

2227/8149
(27.33%)

- 0 2824/8149
(34.65%)

2255/8149
(27.67%)

SDhaP
(32,252 blocks)

5207/32,252
(16.14%)

5121/32,252
(15.88%)

5109/32,252
(15.84%)

5702/32,252
(17.68%)

5702/32,252
(17.68%)

0 5129/32,252
(15.90%)

MAtCHap
(31,355 blocks)

1274/31,355
(4.06%)

954/31,355
(3.04%)

838/31,355
(2.67%)

2105/31,355
(6.71%)

2105/31,355
(6.71%)

5246/31,355
(16.73%)

0

SNV- Disagree HapCUT2 MixSIH PEATH WhatsHap WhatsHap.
Filter

SDhaP MAtCHap

HapCUT2
(115,215 SNVs)

0 8881/115,215
(7.71%)

6190/115,215
(5.36%)

15,960/115,215
(13.85%)

15,960/115,215
(13.65%)

27,098/115,215
(23.52%)

9224/115,215
(8.01%)

MixSIH
(115,790 SNVs)

11,034/115,790
(9.53%)

0 10,153/115,790
(8.60%)

17,307/115,790
(14.95%)

17,307/115,790
(14.95%)

28,183/115,790
(24.34%)

10,240/115,790
(8.84%)

PEATH
(115,813 SNVs)

12,872/115,813
(11.11%)

13,671/115,813
(11.80%)

0 19,263/115,813
(16.63%)

19,263/115,813
(16.63%)

31,494/115,813
(27.19%)

12,508/115,813
(10.80%)

WhatsHap
(178,523 SNVs)

165,569/178,523
(92.74%)

165,603/178,523
(92.76%)

165,582/178,523
(92.75%)

0 166,693/178,523
(93.37%)

165,661/178,523
(92.80%)

WhatsHap.Filter
(115,745 SNVs)

94,685/115,745
(81.80%)

93,576/115,745
(80.85%)

93,258/115,745
(80.57%)

- 0 96,750/115,745
(83.59%)

93,491/115,745
(80.77%)

SDhaP
(115,813 SNVs)

28,693/115,813
(24.78%)

28,261/115,813
(24.40%)

28,253/115,813
(24.40%)

31,441/115,813
(27.15%)

31,441/115,813
(27.15%)

0 28,452/115,813
(24.57%)

MAtCHap
(115,813 SNVs)

15,417/115,813
(13.31%)

13,563/115,813
(11.71%)

12,508/115,813
(10.80%)

19,750/115,813
(17.05%)

19,750/115,813
(17.05%)

31,801/115,813
(27.46%)

0

Each cell consists of the count and percentages of blocks (top panel) and SNVs (bottom panel) that two HA methods disagree with. “-” means that the authors do
not compare WhatsHap with WhatsHap.Filter.

Page 12 of 20Sun et al. BMC Genomic Data (2023) 24:35

with 0 switches were consistently around 30,000 for
DP1, 25,000 for DP15, and 5,000 for DP30, except when
WhatsHap & WhatsHap.Filter was HA1 (see low bars).
Second, for hg38, 6 HA algorithms’ block numbers were
consistent with around 20,000 for DP1, 20,000 for DP15,
and 15,000 for DP30. Third, the patterns for hg19 DP30
and hg38 DP1, DP15, and DP30’s numbers of blocks
with 0 switches were similar. That is, 6 HA methods per-
formed similarly when the DP level was high (i.e., DP30),
and when the datasets had long reads (i.e., hg38 data).

WhatsHap had a much smaller number of blocks with-
out switches (sw = 0) and with switches (sw > 0) (Figs. 6
and 7). This was because it had a significantly larger aver-
age number of SNVs per block that could not be checked
due to different numbers of SNVs. In general, the number
of SNV per block with switches was about 3 for hg19 and
4 for hg38. On average, for those blocks in which 2 HA

methods disagreed with each other, 1 to 2 switches were
necessary per short block.

Overall, HapCUT2, MixSIH, PEATH, and MAtCHap
had relatively low disagreement percentages for both
hg19 and hg38 datasets with different filtering levels. This
conclusion can be made based on the pairwise compari-
son analyses of haplotype blocks, SNVs, and switch error
rates. However, both SDhaP and WhatsHap resulted in
much higher disagreement percentages with the other
algorithms in the hg19 data. For hg38, WhatsHap had a
similar performance when it was compared with Hap-
CUT2, MixSIH, PEATH, and MAtCHap. SDhaP still per-
formed differently.

Discussion
Coverage of DNA sequencing data
According to the original data sources (web pages) from
which both the hg19 and hg38 datasets were downloaded,

Fig. 4  Bar plots of hg19 and hg38 block disagreement for pairwise comparisons of 6 algorithms. The vertical axis is the percentage of blocks that disagree
between two HA algorithms (HA1 and HA2).

Page 13 of 20Sun et al. BMC Genomic Data (2023) 24:35

the sequencing coverage levels were at least 30X for both
datasets. Examination of the chr10 data revealed that
hg38 datasets had larger or better sequencing coverages.
The hg19 datasets had a 25X median and 26.13X mean
coverage, but hg38 datasets had a 33X median and 34.4X
mean coverage. As for the hg19 data, 73.58% of the sites
had more than 20X coverage; while for the hg38 data,
97.15% of the sites had more than 20X coverage. In addi-
tion to the sequencing-read-length difference, the cover-
age difference might be one of the reasons that those 6
HA algorithms performed differently.

With and without homozygous variants and indels
included
For all 6 HA algorithms, except MAtCHap, they could
be run with or without homozygous variants and indels
included. MAtCHap was developed to be run only on
data with homozygous variants and indels removed.
Therefore, the authors decided to run and report the

results of all 6 HA algorithms with the homozygous
variants and indels removed in this paper. Note that the
authors did check the other 5 HA algorithms’ (except
MAtCHap) outputs of these two versions: with and
without homozygous variants and indels included. They
found that these two versions were either identical or
similar except some slight differences especially for Mix-
SIH and SDhaP’s different runs, when examining the
summary of the SNV and block numbers, as well as the
pairwise comparison results. When there were some
differences in the pairwise comparison, the comparison
result based on no homozygous variants and indels was
better and had lower disagreement rates.

SDhaP
When running SDhaP, the authors found that it had
an upper limit (700,000) for the number of lines in the
input file as shown in its “SDhaP.c” script file. Thus, the
NA12878 DNA fragment data must be split into two

Fig. 5  Bar plots of hg19 and hg38 SNV disagreement of 6 HA algorithms. The vertical axis is the percentage of SNVs that are in those disagreement blocks

Page 14 of 20Sun et al. BMC Genomic Data (2023) 24:35

parts in order to use SDhaP. The authors found the loca-
tion with the largest position difference that would still
satisfy the limiting condition of SDhaP to split the input
into two parts (e.g., 100,595 was used in the hg19 DP1
data). SDhaP’s running time was then reported as the
total time of running these two parts. Note that users
should also be aware that the SNV positions in SDhaP
output were 0-based. These positions should be changed
to be 1-based before comparing SDhaP with other HA
algorithms. Furthermore, SDhaP tended to infer alleles
as homozygous even though homozygous SNVs were
removed from the input data. This might be one of the
reasons that SDhaP disagreed with other HA algorithms.
Other reasons contributing to SDhaP’s disagreement
with other HA algorithms might be sequencing qual-
ity or coverage, uncertainty in the data, and limitations
of the algorithm itself, as all HA algorithms had certain
weaknesses.

Ordering outputs
When checking the output files of 6 HA algorithms,
the authors found that they were either sorted by SNV
chromosome position or block number. Depending on
how the file was sorted, this could affect the number of
SNVs that were out of order. That is, the chromosome
positions of SNVs in one specific block were not neces-
sarily smaller than those in the next block. For example,
block 1 had SNVs “1,2,5,” and block 2 had SNVs “3,7.”
If the HA algorithm outputted files that were sorted by
SNV position, the SNVs in these two blocks would read
“1,2,3,5,7,” but the block IDs would be out of order, read-
ing “1,1,2,1,2.” If the HA algorithm outputs were sorted
by block ID and then SNV position, the block IDs would
read “1,1,1,2,2,” but the SNVs would be out of order,
reading “1,2,5,3,7.” The output for each of the 6 HA algo-
rithms was ordered to have one file sorted by SNVs and
another sorted by block ID. The authors found that the
pairwise comparisons of their R and Perl scripts gave the
same results, regardless of how the input file was sorted,

Fig. 6  Bar plots of the total switches (total.sw) between each pair of algorithms

Page 15 of 20Sun et al. BMC Genomic Data (2023) 24:35

but HA users should be very careful when examining the
output of each HA algorithm. Additionally, the authors
determined how each HA algorithm ordered its output
by sorting and checking the output positions generated
by all HA algorithms. The fact was that HapCUT2, Mix-
SIH, and SDhaP’s output files were sorted by block ID
(that is, their SNVs can be out of order), while Whats-
Hap’s was sorted by SNV position (that is, their block IDs
could be out of order). Finally, PEATH and MAtCHap
gave the cleanest outputs with both SNVs and block IDs
well ordered.

Limitations of this paper
There are a few limitations in this paper. First, haplotype
assembly can be alignment-based or assembly-based
[6]. In this paper, only alignment-based methods were
compared. Second, some HA methods were developed
for both diploid and polyploid haplotyping. The authors
chose to use human data and only consider diploid hap-
lotype assembly. Third, haplotype assembly can be done

for both bulk sequencing and single cell sequencing data.
Only the publicly available bulk sequencing datasets were
used in this study. Fourth, although the authors have
originally tried to run more than 20 different algorithms,
only some of them could be run properly and compared
for different practical reasons. Finally, many haplotype
assembly methods or algorithms were developed [1, 10,
13, 14, 16, 21–24, 31, 33–43]. In particular, there were
some methods developed for single-cell sequencing
data [35, 39] or with a focus on long reads [33, 42–44].
However, there remain different challenges in haplo-
type assembly for repetitive regions, in scaling haplotype
reconstruction efforts for routine applications, in valida-
tion, in benchmarking, and in annotation [7]. These have
not been addressed in this paper. Instead, the authors
narrowed down the research focus to simplify the study
because haplotype assembly was indeed a complex
research problem. Despite these limitations, this research
work offered some useful and important inputs and per-
spectives to other users or bioinformaticians.

Fig. 7  Bar plots of the number of blocks with zero switches (blk.w.0sw)

Page 16 of 20Sun et al. BMC Genomic Data (2023) 24:35

NA12878 known haplotypes or the so-called “gold
standard”
The NA12878 known (or true) haplotypes were obtained
through various steps and processes as stated in Fig. 1 of
Lowy-Gallego et al. 2019 [45]. These steps and processes
were summarized below to help readers know their qual-
ity levels and understand how these haplotypes were
obtained. Only Illumina sequence data with reads longer
than 70 bp for WGS and 68 bp for whole exome sequenc-
ing (WES) data were used and aligned to GRCh38. The
FASTQ files were converted to BAM files during the
alignment process in which base quality scores were
recalibrated and any duplicates were marked. The WGS
and WES BAM files then underwent different methods of
quality control. The BAM files were then used for variant
identification using three established methods: GATK
UnifiedGenotyper for WGS data, bcftools for both WGS
and WES data, and Freebayes for WGS and WES data.
This process produced 4 initial call sets that went under
variant filtering. Each call set was normalized, and then
various tools were used to decompose complex variants
and re-sort and unify the remaining variants. Multiallelic
sites were also discarded. Each of the 4 call sets was then
processed into variant call format (VCF) files to generate
consensus call sets. Eventually, the call set was filtered
using a VariantScoreRecalibration method and phased
using Beagle and SHAPEIT, producing the phased VCF
files. VCF files with genomic likelihoods were divided
into single files and then split into chunks that were pro-
cessed in Beagle. Then, using SHAPEIT2, the genotypes
and haplotypes were phased onto a highly accurate scaf-
fold. The scaffold was also created by SHAPEIT2 using
available array data from Illumina Omni 2.5 or Affyme-
trix 0.6 data from the 1000 Genomes Project.

About comparing with a “gold standard”
To provide a valid comparison, the authors have used
a “gold standard,” i.e., a set of “high confidence” known
(or inferred) haplotypes of NA12878. “High confidence”
often means “high coverage” and/or “high quality.” That
is, a lot of uncertain positions (SNVs) with low sequenc-
ing coverages or qualities were not included in the final
“gold standard.” In fact, there was more than one ver-
sion of the “gold standard,” although the authors only
used one version in this paper. The one used in this paper
was better than the one that was not mentioned. They
all had only about 30 ~ 40% of positions overlapped with
the SNV positions inferred for the hg19 DP1 data. The
authors chose to use the current one because it was the
best NA12878 haplotype data that could be found so far.
This “gold standard” haplotype dataset had about 80%
of overlap with the SNV positions inferred by each HA
method in the hg38 DP1 data. The low overlap percent-
ages (30 ~ 40% for hg19 DP1 data and 80% for hg38 DP1

data) were due to various reasons. First, no matter how
accurate a sequencing method was, a sequencing dataset
could still have some errors, and some genomic regions
(or positions) could be sequenced with uncertainty or
low quality. Second, SNV calling and haplotype assembly
have been very complex problems that involve multiple
steps and processes as stated in Lowy-Gallego et al. 2019
[45]. The whole process underwent many different meth-
ods and steps of quality control to ensure a “high confi-
dence.” As shown in Table 9, even filtering only based on
one factor (DNA sequencing coverage), the number of
remaining positions decreased significantly. Thus, only a
certain percentage of positions (definitely not 100%) were
included in the final “high confidence” true haplotypes
(or “gold standard”). Therefore, if the haplotypes inferred
by each HA were compared with the “high confidence
gold standard” haplotypes, many SNVs would have to be
removed from the inferred haplotypes. Then, the “block
structure” from each HA would be destroyed. This kind
of comparison was not meaningful for this study. There-
fore, the authors focused on pairwise comparisons in this
paper to provide HA users with some new perspectives
and results.

Strengths and weaknesses of 6 HA algorithms
All 6 HA methods had certain strengths, weaknesses,
and unique features. Below were a few typical ones. First,
HapCUT2, MixSIH, PEATH, and MAtCHap were all
probability-based methods. This might be the main rea-
son they performed similarly. Second, HapCUT2 could
work across various sequencing technologies: fosmid-
based dilution pool, 10X genomics linked-read, PacBio
SMRT, and Hi-C. Other HA algorithms might not be
able to produce results for data on all aforementioned
sequencing types [1]. Third, HapCUT2 included extrac-
tHAIRs, a convenient tool available for other software
packages. WhatsHap was easy to use as it only required
one VCF file and one BAM file. It did not require a
fragment file to run. However, the version of Whats-
Hap that was used in this study required Python 3.6
or above, which could be installed directly by running
pip (a Python command) or conda (a Miniconda com-
mand). Some inexperienced users might find it difficult
to get these packages installed properly in a Linux server.
Fourth, as for the run time, HapCUT2 and WhatsHap
had stable performance across 6 datasets; but MixSIH,
PEATH, and SDhaP had more variation. HapCUT2
and WhatsHap were not affected by read length. They
can deal with the increasing read lengths with future
sequencing technologies. Fifth, the strength of SDhaP
was that it can do both diploid and polyploid haplotype
assembly [21] although this study did not compare poly-
ploid HA algorithms. Polyploid haplotyping is more chal-
lenging than diploid haplotyping as the complexity of the

Page 17 of 20Sun et al. BMC Genomic Data (2023) 24:35

problem increases drastically for polyploid genomes [7].
Sixth, WhatsHap and SDhaP were MEC-based methods.
Motazedi et al.’s simulation study showed that this type of
method had an inherent problem because MEC was sen-
sitive to local similarities between homologues [46]. This
sensitivity led to approximately identical MEC scores for
several different HA algorithms, causing a suboptimal
solution to be reported. Other authors mentioned similar
problems of MEC-based methods too [33, 44]. Seventh,
both the authors of this paper and the PEATH authors
found that some SNV positions in the SDhaP outputs
were homozygous while these positions were indeed het-
erozygous in the gold standard dataset [16]. In addition,
PEATH authors also mentioned that although SDhaP had
certain advantages, its results had a large variance [16].

About run time and settings
All HA algorithms were run with a similar command
line “time HA.algorithm input output”. The input and
output settings were summarized in Table 11. This table
showed that an additional parameter was used for Mix-
SIH, i.e., “-a 0.05”, which was required by this algorithm,
and this setting was close to the default value (0.1). No
other parameters were set up for the other 5 algorithms.
The Unix command “time” was used to obtain the CPU
time of each job. This command provided three differ-
ent time measurements: Real, User, and System. The Real
time is wall clock time, that is, the time from the begin-
ning to the end of the call including time used by other
processes and time the process spends blocked. The User
time is the actual CPU time used in executing the pro-
cess. The System time is the amount of CPU time spent
in the kernel within the process. All these measurements
were recorded when running 6 algorithms on both hg19
and hg38 data as shown in the Supplementary Mate-
rial 4 (an Excel file with two sheets, one for hg19 and
one for hg38 data). In general, the “User + System” time
should be the total CPU time. In this paper, only the
User time was reported as the CPU time in Table 7. The
System time was not included as part of the CPU time
in Table 7 because the amount of the System time was

so small (around 1 min or less) for all HA algorithms
except SDhaP’s hg19 DP15 and DP30 runs. A record of
low System time suggested the application was running
efficiently, but a record of high System time could be an
indicator of executing inefficiencies and possible issues
of a specific algorithm. Because SDhaP had an outlying
performance as documented in the previous subsection
“SDhaP”, its high System time (hg19 data) could be due
to some possible issues only related to itself. In addition,
whether including the System time or not would not
affect the key conclusion of comparing the running time.
Therefore, for the sake of consistency and simplicity, only
the actual CPU time used in executing each process (i.e.,
User time) was reported in Table 7.

All HA jobs were run sequentially without using paral-
lel computing settings. In addition, the run time was the
time that each HA algorithm used to reconstruct haplo-
types. The input preparation time (e.g., getting a DNA
fragment file or a VCF file as shown in Fig. 2) for each HA
algorithm was not included in the run time reported in
this paper. The input preparation time could range from
minutes to hours depending on the data size. Finally, the
authors of certain HA methods (e.g., WhatsHap) kept
improving their algorithms by adding new features over
the last several years. It is possible that other research-
ers used less (or more) time if they installed a different
version of a specific algorithm. For the sake of compari-
son, readers may check the algorithm version or software
installation time listed in the last column of Table 1.

About SNVs and haplotype blocks
The terms “SNVs” and “haplotype blocks” have been
commonly used in many recent haplotype assembly
papers. Before the existence of the next (or second) gen-
eration sequencing (NGS) and third generation (or single
cell) sequencing (TGS), the term “haplotype” was mainly
defined as the alleles of consecutive SNPs in the nearby
region on the same chromosome. The distance between
the first and last SNPs on a haplotype block could be as
large as several thousand bases to 100 thousand bases as
shown in Fig. 2 of Daly et al. 2001 [47]. The term hap-
lotype block was inherited or commonly used in the
new field of haplotype assembly. However, the length of
a haplotype block shown in the output of a haplotype
assembly algorithm could be just 100 bases or less. These
haplotype blocks consisted of some SNVs that were not
validated as SNPs yet. That is, with the development of
DNA sequencing technologies, the meaning of haplotype
blocks used in the haplotype assembly output somehow
has evolved or become slightly different from the original
one defined before the existence of NGS and TGS. These
terms were explained here for the sake of clarification.

Table 11  The specific input, output, and other key parameters
used to run each algorithm
Algorithm Input Output Other pa-

rameters
HapCUT2 --fragments DNA.frag-

ment.file
 --vcf variant.VCF.file

--output output.
file.txt

None

MixSIH Sorted DNA fragment file output.file name - a 0.05

PEATH DNA fragment file output.file name None

WhatsHap Sorted BAM file output.file name None

SDhaP DNA fragment file output.file name None

MAtCHap -F sorted.fragment.file
V variant.VCF.file

-L output.label
-O output.folder

None

Page 18 of 20Sun et al. BMC Genomic Data (2023) 24:35

The scientific value and the goal of this study
Comparative analysis of existing algorithms may not be
considered as innovative as a new HA algorithm, but it
can address recurring questions. The current situation
is that although many HA algorithms have been devel-
oped, bioinformaticians may not know which one to
use and how well these algorithms perform. The authors
were often asked these questions when attending con-
ferences. Therefore, in this paper, a comparison study
was conducted to answer some important questions
that involved challenging bioinformatic data analysis.
This study answered some questions that were not well
addressed before, and the findings shown in this paper
can help many users. This research work showed how
different HA methods might perform if other research-
ers analyzed a newly generated dataset (or a publicly
available dataset) that had no known haplotypes (i.e., the
so-called “gold standard”). This study has also offered
different perspectives for users to investigate with their
own data and explain what they might find (e.g., filter-
ing based on different coverage levels). The findings of
this study have not been reported by other authors yet.
Therefore, this research work is novel and useful. Two
practical examples of previous publications on compar-
ing a few SNP calling algorithms [48] and alignment algo-
rithms [49] have been cited many times by others. These
citations can show the scientific value of comparison
analysis. Therefore, this study is original and valuable.

Conclusion
In this paper, the pairwise comparative analysis of 6 HA
methods was conducted. Two publicly available sequenc-
ing datasets, hg19 and hg38 from one sample (NA12878),
were used for the comparative analysis. The aligned reads
were downloaded and then filtered using 3 sequencing
depth (DP) levels, DP1, DP15, and DP30 corresponding
to ≥ 1X, ≥ 15X, and ≥ 30X coverage. This filtering step
was done for each of the two datasets (hg19 and hg38).
The 6 HA algorithms were run on these 6 datasets and
their performances were then compared. The fastest HA
was HapCUT2 for both hg19 and hg38. Its run time was
consistently under 2 min. In addition, WhatsHap was
relatively fast, and its run time was 21 min or less for all
6 datasets. The other 4 HA algorithms’ run time varied
across different datasets and DP filtering levels. A pub-
licly available known haplotype dataset was used to com-
pare the SNV positions of these known haplotypes with
the SNV inferred in each of the 6 HA output files. The
finding was that < 40% of SNVs inferred in the hg19 out-
put overlapped with known haplotypes, and only 81–84%
of hg38 output overlapped with the SNV positions in the
known haplotypes. Then pairwise comparisons were con-
ducted to see how well the 6 HA methods agreed with
each other by comparing their haplotype blocks, SNVs,

and switch distances. The comparison results showed
that for hg19 data, HapCUT2, MixSIH, PEATH, and
MAtCHap had relatively large agreement levels, but
WhatsHap and SDhaP had outlying performances. For
the hg38 data, all algorithms, except SDhaP, performed
similarly. The pairwise comparison results based on the
sequencing datasets of the same sample could help users
to better understand current HA methods. This study
also provided useful insights on developing more accu-
rate and efficient methods.

List of abbreviations
BAM	� Binary Alignment Map
BCF	� BIM Collaboration Format
DP	� Depth (Sequencing depth)
ENA	� European Nucleotide Archive
HA	� Haplotype Assembly
NGS	� Next Generation Sequencing
TGS	� Third Generation Sequencing
SNV	� Single Nucleotide Variant
SNP	� Single Nucleotide Polymorphism
VCF	� Variant Call Format
WGS	� Whole Genome Sequencing
WES	� Whole Exome Sequencing

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12863-023-01134-5.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Acknowledgements
This project was made possible by the Mathworks summer program at Texas
State University (TXState). It was completed with the use of TXState’s facilities
and resources. The authors were particularly grateful for the help and support
from the colleagues at the High Performance Computing Cluster and the
Writing Center.

Author contributions
SS led the project, suggested all key original ideas, and provided important
code and script files. DH, SW, FC, and AZ all contributed to running the 6
algorithms, generating the output files, and conducting data analyses. AZ and
FC conducted the key pairwise comparison analysis of all 6 datasets (i.e., the
analysis part). DH and SW did the methodological comparison of 6 papers
(i.e., the conceptual comparison part). DH, SW, FC, and AZ all contributed
to data interpretation and the writing of this paper. These four students
contributed equally to this project. SM wrote a Perl script to help to reformat
the raw output file. He also helped with searching and downloading the
hg38 data and the known haplotypes. ABJ did the exploratory runs of more
than 20 haplotype assembly algorithms in the beginning. She completed
the original runs of the 6 algorithms on the hg19 DP1 data and conducted
the preliminary comparison analysis. SS gave suggestions over the course of
the project, wrote the paper, and extensively revised the paper. All authors
contributed their expertise and effort. All authors have read and approved the
final manuscript.

Funding
This project was supported by the Texas State University Research
Enhancement Program (an internal award for Dr. Sun). The funders did not
play any role in the study design, data analysis, interpretation of data, writing
the manuscript, or decision to publish.

http://dx.doi.org/10.1186/s12863-023-01134-5
http://dx.doi.org/10.1186/s12863-023-01134-5

Page 19 of 20Sun et al. BMC Genomic Data (2023) 24:35

Data availability
the original or raw datasets supporting the conclusions of this article were
publicly available with the ftp sites listed below. The datasets and analysis
results supporting the conclusions of this article were included within the
article and its supplementary materials.
The two DNA sequencing datasets (hg19 and hg38) were downloaded from
these web pages:
ENA-hg19: ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR262/ERR262997/
NA12878_S1.bam.
ENA-hg38: ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.
cram.
The known (or true) haplotype dataset of NA12878 was downloaded using
the following ftp address:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_
project/release/20190312_biallelic_SNV_and_INDEL/ALL.chr10.shapeit2_
integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
No ethics approval is required for the study. No permission is required to
access the data used in this study because the authors analyzed publicly
available datasets.

Consent for publication
Not applicable.

Received: 1 July 2022 / Accepted: 25 May 2023

References
1.	 Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly

for diverse sequencing technologies. Genome Res. 2017;27(5):801–12.
2.	 Sun S, Greenwood CM, Neal RM. Haplotype inference using a bayesian hid-

den Markov model. Genet Epidemiol. 2007;31(8):937–48.
3.	 Bansal V, Halpern AL, Axelrod N, Bafna V. An MCMC algorithm for hap-

lotype assembly from whole-genome sequence data. Genome Res.
2008;18(8):1336–46.

4.	 Rhee JK, Li H, Joung JG, Hwang KB, Zhang BT, Shin SY. Survey of computa-
tional haplotype determination methods for single individual. Genes Genom.
2016;38(1):1–12.

5.	 Choi Y, Chan AP, Kirkness E, Telenti A, Schork NJ. Comparison of phasing
strategies for whole human genomes. PLoS Genet. 2018;14(4):e1007308.

6.	 Zhang XT, Wu RX, Wang YB, Yu JX, Tang HB. Unzipping haplotypes in diploid
and polyploid genomes. Comput Struct Biotec. 2020;18:66–72.

7.	 Garg S. Computational methods for chromosome-scale haplotype recon-
struction. Genome Biol 2021, 22(1).

8.	 Ahn S, Vikalo H. Joint haplotype assembly and genotype calling via sequen-
tial Monte Carlo algorithm. BMC Bioinformatics. 2015;16:223.

9.	 Bansal V. Integrating read-based and population-based phasing for
dense and accurate haplotyping of individual genomes. Bioinformatics.
2019;35(14):i242–8.

10.	 Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel bayesian framework
for single individual polyplotyping using NGS data. PLoS Comput Biol.
2014;10(3):e1003502.

11.	 Efros A, Halperin E. Haplotype reconstruction using perfect phylogeny and
sequence data. BMC Bioinformatics 2012, 13.

12.	 He D, Han B, Eskin E. Hap-seq: an optimal algorithm for haplotype phasing
with imputation using sequencing data. J Comput Biol. 2013;20(2):80–92.

13.	 Kuleshov V. Probabilistic single-individual haplotyping. Bioinformatics.
2014;30(17):i379–385.

14.	 Matsumoto H, Kiryu H. MixSIH: a mixture model for single individual haplo-
typing. BMC Genomics. 2013;14(Suppl 2):5.

15.	 Matsumoto H, Kiryu H. Integrating dilution-based sequencing and
population genotypes for single individual haplotyping. BMC Genomics.
2014;15:733.

16.	 Na JC, Lee JC, Rhee JK, Shin SY. PEATH: single-individual haplotyping
by a probabilistic evolutionary algorithm with toggling. Bioinformatics.
2018;34(11):1801–7.

17.	 Yang WY, Hormozdiari F, Wang ZY, He D, Pasaniuc B, Eskin E. Leveraging reads
that span multiple single nucleotide polymorphisms for haplotype inference
from sequencing data. Bioinformatics. 2013;29(18):2245–52.

18.	 Zhang K, Zhi D. Joint haplotype phasing and genotype calling of mul-
tiple individuals using haplotype informative reads. Bioinformatics.
2013;29(19):2427–34.

19.	 Zhang Y. A dynamic bayesian Markov model for phasing and charac-
terizing haplotypes in next-generation sequencing. Bioinformatics.
2013;29(7):878–85.

20.	 Zhi DG, Wu JH, Liu NJ, Zhang K. Genotype calling from next-generation
sequencing data using haplotype information of reads. Bioinformatics.
2012;28(7):938–46.

21.	 Das S, Vikalo H. SDhaP: haplotype assembly for diploids and polyploids via
semi-definite programming. BMC Genomics. 2015;16:260.

22.	 Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW, Schon-
huth A. WhatsHap: Weighted Haplotype Assembly for Future-Generation
sequencing reads. J Comput Biol. 2015;22(6):498–509.

23.	 Tangherloni A, Spolaor S, Rundo L, Nobile MS, Cazzaniga P, Mauri G, Lio
P, Merelli I, Besozzi D. GenHap: a novel computational method based
on genetic algorithms for haplotype assembly. BMC Bioinformatics.
2019;20(Suppl 4):172.

24.	 Magi A. MAtCHap: an ultra fast algorithm for solving the single individual
haplotype assembly problem. bioRxiv 2019:24.

25.	 NA12878. : https://www.internationalgenome.org/data-portal/sample/
NA12878.

26.	 The International Genome Sample Resource. (IGSR): https://www.internation-
algenome.org/.

27.	 European Nucleotide Archive (ENA). : https://www.ebi.ac.uk/ena/.
28.	 Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,

Sanborn AL, Machol I, Omer AD, Lander ES, et al. A 3D map of the Human
Genome at Kilobase Resolution reveals principles of chromatin looping. Cell.
2014;159(7):1665–80.

29.	 Duitama J, McEwen GK, Huebsch T, Palczewski S, Schulz S, Verstrepen K, Suk
EK, Hoehe MR. Fosmid-based whole genome haplotyping of a HapMap trio
child: evaluation of single individual haplotyping techniques. Nucleic Acids
Res. 2012;40(5):2041–53.

30.	 Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM,
Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM, et al.
Haplotyping germline and cancer genomes with high-throughput linked-
read sequencing. Nat Biotechnol. 2016;34(3):303–.

31.	 Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stutz AM,
Stedman W, Anantharaman T, Hastie A, et al. Assembly and diploid architec-
ture of an individual human genome via single-molecule technologies. Nat
Methods. 2015;12(8):780–6.

32.	 Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M.
Integrating human sequence data sets provides a resource of benchmark
SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.

33.	 Beretta S, Patterson MD, Zaccaria S, Della Vedova G, Bonizzoni P. HapCHAT:
adaptive haplotype assembly for efficiently leveraging high coverage in long
reads. BMC Bioinformatics. 2018;19(1):252.

34.	 Hashemi A, Zhu B, Vikalo H. Sparse Tensor decomposition for Haplotype
Assembly of Diploids and Polyploids. BMC Genomics. 2018;19(Suppl 4):191.

35.	 Satas G, Raphael BJ. Haplotype phasing in single-cell DNA-sequencing data.
Bioinformatics. 2018;34(13):i211–7.

36.	 Majidian S, Kahaei MH. NGS based haplotype assembly using matrix comple-
tion. PLoS ONE 2019, 14(3).

37.	 Olyaee MH, Khanteymoori A, Khalifeh K. A chaotic viewpoint-based approach
to solve haplotype assembly using hypergraph model. PLoS ONE 2020,
15(10).

38.	 Sankararaman A, Vikalo H, Baccelli F. ComHapDet: a spatial community detec-
tion algorithm for haplotype assembly. BMC Genomics. 2020;21(Suppl 9):586.

39.	 Yan Z, Zhu X, Wang Y, Nie Y, Guan S, Kuo Y, Chang D, Li R, Qiao J, Yan L. scHap-
lotyper: haplotype construction and visualization for genetic diagnosis using
single cell DNA sequencing data. BMC Bioinformatics. 2020;21(1):41.

40.	 Zamani F, Olyaee MH, Khanteymoori A. NCMHap: a novel method for
haplotype reconstruction based on neutrosophic c-means clustering. BMC
Bioinformatics 2020, 21(1).

http://www.ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR262/ERR262997/NA12878_S1.bam
http://www.ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR262/ERR262997/NA12878_S1.bam
http://www.ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram
http://www.ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR323/ERR3239334/NA12878.final.cram
http://www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/ALL.chr10.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz
http://www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/ALL.chr10.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz
http://www.ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_INDEL/ALL.chr10.shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased.vcf.gz
https://www.internationalgenome.org/data-portal/sample/NA12878
https://www.internationalgenome.org/data-portal/sample/NA12878
https://www.internationalgenome.org/
https://www.internationalgenome.org/
https://www.ebi.ac.uk/ena/

Page 20 of 20Sun et al. BMC Genomic Data (2023) 24:35

41.	 Bendall ML, Gibson KM, Steiner MC, Rentia U, Perez-Losada M, Crandall KA.
HAPHPIPE: Haplotype Reconstruction and Phylodynamics for Deep sequenc-
ing of Intrahost viral populations. Mol Biol Evol. 2021;38(4):1677–90.

42.	 Luo X, Kang X, Schonhuth A. Phasebook: haplotype-aware de novo assembly
of diploid genomes from long reads. Genome Biol. 2021;22(1):299.

43.	 Luo X, Kang X, Schonhuth A. Strainline: full-length de novo viral haplotype
reconstruction from noisy long reads. Genome Biol. 2022;23(1):29.

44.	 Majidian S, Kahaei MH, de Ridder D. Minimum error correction-based
haplotype assembly: considerations for long read data. PLoS ONE.
2020;15(6):e0234470.

45.	 Lowy-Gallego E, Fairley S, Zheng-Bradley X, Ruffier M, Clarke L, Flicek P,
Genomes Project C. Variant calling on the GRCh38 assembly with the
data from phase three of the 1000 Genomes Project. Wellcome Open Res.
2019;4:50.

46.	 Motazedi E, Finkers R, Maliepaard C, de Ridder D. Exploiting next-generation
sequencing to solve the haplotyping puzzle in polyploids: a simulation study.
Brief Bioinform. 2018;19(3):387–403.

47.	 Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplo-
type structure in the human genome. Nat Genet. 2001;29(2):229–32.

48.	 Yu X, Sun S. Comparing a few SNP calling algorithms using low-coverage
sequencing data. BMC Bioinformatics. 2013;14:274.

49.	 Yu X, Guda K, Willis J, Veigl M, Wang Z, Markowitz S, Adams M, Sun S. How do
alignment programs perform on sequencing data with varying qualities and
from repetitive regions? BioData Min 2012, 5(6).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	﻿Pairwise comparative analysis of six haplotype assembly methods based on users’ experience
	﻿Abstract
	﻿Introduction
	﻿Comparison method
	﻿DNA sequencing data and “gold standard” (or known) haplotypes of NA12878
	﻿Workflow of 6 HA methods
	﻿Pairwise comparison analysis method (i.e., analytical comparison)
	﻿Methodological comparison (i.e., the conceptual comparison)
	﻿Models and features
	﻿Input
	﻿Comparison metrics

	﻿﻿Results
	﻿Run time
	﻿Summary of block (blk) and SNV numbers
	﻿Comparing with the “gold standard”
	﻿Pairwise comparison based on SNV and block
	﻿Pairwise comparison based on switch distance

	﻿Discussion
	﻿Coverage of DNA sequencing data
	﻿With and without homozygous variants and indels included
	﻿SDhaP
	﻿Ordering outputs
	﻿Limitations of this paper
	﻿NA12878 known haplotypes or the so-called “gold standard”
	﻿About comparing with a “gold standard”
	﻿Strengths and weaknesses of 6 HA algorithms

	﻿About run time and settings
	﻿About SNVs and haplotype blocks
	﻿The scientific value and the goal of this study

	﻿Conclusion
	﻿References

