
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Sun et al. BMC Genomic Data           (2023) 24:35 
https://doi.org/10.1186/s12863-023-01134-5

BMC Genomic Data

*Correspondence:
Shuying Sun
ssun5211@yahoo.com
1Department of Mathematics, Texas State University, San Marcos, TX, USA
2Carnegie Mellon University, Pittsburgh, PA, USA
3Massachusetts Institute of Technology, Cambridge, MA, USA
4Clements High School, Sugar Land, TX, USA
5Texas State University, San Marcos, TX, USA
6Texas A & M University, College Station, TX, USA

Abstract
Background  A haplotype is a set of DNA variants inherited together from one parent or chromosome. Haplotype 
information is useful for studying genetic variation and disease association. Haplotype assembly (HA) is a process of 
obtaining haplotypes using DNA sequencing data. Currently, there are many HA methods with their own strengths 
and weaknesses. This study focused on comparing six HA methods or algorithms: HapCUT2, MixSIH, PEATH, 
WhatsHap, SDhaP, and MAtCHap using two NA12878 datasets named hg19 and hg38. The 6 HA algorithms were run 
on chromosome 10 of these two datasets, each with 3 filtering levels based on sequencing depth (DP1, DP15, and 
DP30). Their outputs were then compared.

Result  Run time (CPU time) was compared to assess the efficiency of 6 HA methods. HapCUT2 was the fastest HA 
for 6 datasets, with run time consistently under 2 min. In addition, WhatsHap was relatively fast, and its run time was 
21 min or less for all 6 datasets. The other 4 HA algorithms’ run time varied across different datasets and coverage 
levels. To assess their accuracy, pairwise comparisons were conducted for each pair of the six packages by generating 
their disagreement rates for both haplotype blocks and Single Nucleotide Variants (SNVs). The authors also compared 
them using switch distance (error), i.e., the number of positions where two chromosomes of a certain phase must 
be switched to match with the known haplotype. HapCUT2, PEATH, MixSIH, and MAtCHap generated output files 
with similar numbers of blocks and SNVs, and they had relatively similar performance. WhatsHap generated a much 
larger number of SNVs in the hg19 DP1 output, which caused it to have high disagreement percentages with other 
methods. However, for the hg38 data, WhatsHap had similar performance as the other 4 algorithms, except SDhaP. 
The comparison analysis showed that SDhaP had a much larger disagreement rate when it was compared with the 
other algorithms in all 6 datasets.

Conclusion  The comparative analysis is important because each algorithm is different. The findings of this study 
provide a deeper understanding of the performance of currently available HA algorithms and useful input for other 
users.
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Introduction
Haplotype information can be used to study a population 
and generate markers and maps as a means of under-
standing how genetic variation evolves and contributes to 
phenotypes. Certain haplotypes may be associated with 
diseases or traits in a population [1, 2]. With the constant 
development of new DNA sequencing technologies in the 
past two decades, it has become possible to reconstruct 
haplotypes for genetic studies using sequencing data. 
The reconstruction of haplotypes from DNA sequencing 
reads is called haplotype assembly (HA). Figure 1 showed 
a hypothetical example of haplotype assembly, that is, 
reconstructing haplotypes of two single nucleotide vari-
ants SNVs (or positions) using DNA sequencing reads. In 
this figure, there were 6 different DNA sequencing reads. 
Sequencing reads 1 and 5 only covered one SNV, so they 
could not be used directly to identify haplotypes. Reads 
2 and 4 were single-end reads that were long enough to 
cover two SNVs and could be used to infer unknown hap-
lotypes. Reads 3 and 6 were paired-end reads that cov-
ered two SNVs, so they could be used to infer haplotypes 
as well.

HA is important in order to understand and interpret 
genetic variants, as well as these variants’ association 
with diseases in certain groups of individuals [3]. There-
fore, there have been numerous HA methods developed 
over the last 10 to 15 years as mentioned in recent review 
papers [4–7]. These methods used different approaches. 
Some of them (e.g., HapCUT2, MixSIH, PEATH, and 
ProbHap) were developed based on probability models 
(i.e., they were probability-based) [1, 3, 8–20], whereas 
some (e.g., WhatsHap and SDhaP, and GenHap) focused 
on addressing a minimum error correction (MEC) prob-
lem [21–23]. With the development of these methods 
and their own unique features, the precision of haplotype 
assembly has steadily improved over the years. How-
ever, there were still challenges in haplotype assembly 
for different users and researchers who tried to develop 
new HA methods. First, because each algorithm had 
its own advantages and disadvantages, users might not 

know which one to choose. Second, users might find it 
difficult to figure out how to get an HA algorithm to run 
properly. Third, users might not understand input and 
output files easily due to the lack of good user manuals. 
Finally, most methods were only compared with 2 or 3 
other algorithms, and few studies compared a wide range 
of HA methods. Because of the above challenges, users 
might not fully understand the algorithms they used, as 
well as the advantages and disadvantages of their respec-
tive performances. Therefore, it is important to compare 
these algorithms to help users know the HA problem bet-
ter. A comparison study can also help other researchers 
to understand this topic, and thus develop more accurate 
and efficient HA algorithms.

In this paper, the authors compared 6 HA methods 
(or software packages): HapCUT2 [1], MixSIH [14], 
PEATH [16], WhatsHap [22], SDhaP [21], and MAtC-
Hap [24]. Table 1 showed the web pages, languages used 
by the 6 HA methods, and software versions (or instal-
lation dates). One commonly used programming lan-
guage amongst these 6 HA algorithms was C + + or C. 
MixSIH also used Ruby in addition to C++, whereas 
WhatsHap and HapCUT2 used Python. Different from 
other HA algorithms, MAtCHap used R and Perl. Hap-
CUT2, WhatsHap, and SDhaP also relied on additional 
software in order to successfully complete haplotype 
assembly. HapCUT2 required extractHAIRS (Extract 
HAplotype Informative Reads) and htslib. WhatsHap 
relied on the Conda package. SDhaP required the instal-
lation of ATLAS and LAPACK. Further detailed infor-
mation about these HA methods can be found in their 
webpages. In addition, these 6 methods were the rep-
resentatives of the following three approaches: using a 
probability model (HapCUT2, MixSIH, and PEATH), 
addressing a MEC problem (WhatsHap and SDhaP), 
and solving a maximization problem (MAtCHap). More 
detailed methodological and analytical comparisons were 
summarized in later sections. The 6 HA methods were 
compared using the run time (i.e., CPU time), haplotype 
block, SNV number per block, and switch distance (or 
error) rate. Datasets, comparison methods, and findings 
were shown in different sections.

Comparison method
This section included the description of data to be used, 
the workflow of 6 HA algorithms, a pairwise compari-
son analysis method (i.e., the analytical part), as well as 
a methodological comparison of the 6 HA algorithms 
(i.e., the conceptual part). Note, the methodologi-
cal comparison of the 6 HA algorithms was also a part 
of the comparison results, which was supposed to be 
included in the Results section. However, since this part 
did not involve any analytical results regarding each HA 
algorithm’s performance, the authors included them in Fig. 1  Example of haplotype assembly using DNA sequencing reads
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this section. Next, analysis datasets would be described, 
which included the publicly available sequencing data 
and known haplotypes.

DNA sequencing data and “gold standard” (or known) 
haplotypes of NA12878
To compare the 6 HA methods, DNA sequencing data-
sets of the sample named NA12878 were used in this 
study. NA12878’s genome was commonly used to study 
haplotype assembly in previous research. NA12878 
was a female Utah resident with Northern and Western 
European ancestry [25] and a sample (HG001) from the 
1000 Genomes Project. The NA12878 sample has been 
sequenced many times using a variety of sequencing 
technologies [25–27]. Different datasets have become 
available for this sample, which included integrated 
variant call sets, exome, low coverage whole genome 
sequencing (WGS), PCR-free high coverage sequencing, 
HD genotype chip, and targeted exons. The technologies 
used for sequencing NA12878 included Hi-C [28], fos-
mid-based [29], 10X genomics linked-read [30], PacBio 
SMRT [31], 454-sequencing, and Illumina HiSeq 2500 
[32].

For the sake of convenience, two versions of the aligned 
sequencing data were used. These two datasets were 
publicly available in the Binary Alignment Map (BAM) 
format and were called ENA-hg19 and ENA-hg38 data. 
ENA-hg19 and ENA-hg38 mean that the aligned datasets 
were downloaded from the European Nucleotide Archive 
(ENA) [27], and the sequencing reads were aligned to the 
hg19 and hg38 reference genome respectively. The ENA-
hg19 dataset included 2 × 100 bp paired-end reads gener-
ated using the Illumina HiSeq 2000 with > 30X coverage. 
The ENA-hg38 dataset included 2 × 150  bp paired-end 
reads generated using the Illumina NovaSeq 6000 with 

> 30X coverage. More detailed information can be found 
at the ENA web page [27]. The ftp sites of these datasets 
have been listed in the Availability of Data and Materials 
section. For the sake of simplification, they were called 
hg19 and hg38 data in the later sections.

The hg38 version of NA12878 true (or known) hap-
lotype dataset was downloaded from the International 
Genome Sample Resource (IGSR) [26]. The ftp site of this 
dataset was listed in the Availability of Data and Mate-
rials section. To the best of the authors’ knowledge, this 
dataset can be used as a “gold standard” (or a set of “high 
confidence” haplotypes of NA12878) to compare different 
HA algorithms. To simplify the analysis, the authors only 
used chromosome 10 (chr10) sequencing data. For chr10, 
based on the hg38 reference genome, there were 133 mil-
lion (133,797,422) positions. Out of the total 133 million 
positions, there were only 3.6  million (3,632,297) SNV 
positions in the hg38 version known haplotypes. Among 
these 3.6  million potential SNV positions, 3.4  million 
(3,455,455) positions were homozygous reference alleles 
(i.e., “0|0”), and the other positions were alternative allele 
homozygous sites (67,126 “1|1” positions) or heterozy-
gous sites (53,462 “0|1” and 56,354 “1|0” positions). For 
all the 3.6  million (3,632,297) SNV positions, 3,591,460 
positions were lifted over or converted to the hg19 ref-
erence genome. For this conversion, the following three 
types of positions were removed: positions that could 
not be converted to hg19, positions that were mapped 
to other chromosomes but not chr10, and positions that 
were mapped to more than one place on hg19 chr10. 
These 3.6  million (3,632,297) hg38 SNV positions and 
3.5 million (3,591,460) hg19 SNV positions were used for 
further analysis later. Note, in the NA12878 “gold stan-
dard” haplotype dataset, all positions were likely to be 
single nucleotide polymorphisms (SNPs) as they were 
typically inferred as “high confidence” positions. How-
ever, the authors still called these positions SNVs in case 
that some of them might not be validated SNPs yet. For 
the rest of this paper, the term SNV was used as it was 
still unknown whether the variants inferred by each HA 
algorithm were SNPs or not.

The two datasets, hg19 and hg38, and the known hap-
lotype data (or “gold standard”) described above were 
used in order to compare the 6 HA methods. To study 
the impact of sequencing depth (DP) or coverage, the 
input datasets were filtered based on 3 levels: DP1, DP15, 
and DP30. The specified number after the term DP was 
the number of reads that cover each position or base (i.e., 
≥ 1X, ≥ 15X, and ≥ 30X). The number of DNA fragments 
in each dataset was shown in Table  2. This table shows 
that as the filtering level increases from DP1 to DP30, the 
DNA fragment number decreases significantly because 
low-coverage or low-quality sequencing reads were 
removed.

Table 1  Webpages and languages used by 6 HA algorithms
Method Language Webpage Ver-

sion (or 
Date)

HapCUT2 C, Python https://github.com/vibansal/
HapCUT2

07/2020 
installed

MixSIH C++, Ruby https://github.com/hmatsu1226/
MixSIH
https://sites.google.com/site/
hmatsu1226/software/mixsih

Version 
1.0.0

PEATH C++ https://github.com/jcna99/PEATH 07/2020 
installed

WhatsHap C++, 
Python

https://WhatsHap.readthedocs.io/
en/latest/index.html

Version 
0.18

SDhaP C https://sourceforge.net/projects/
SDhaP/files/

07/2020 
installed

MAtCHap R, Perl https://sourceforge.net/projects/
MAtCHap/.

Version 
1.0

The columns (left to right) represent haplotype assembly method, programming 
language(s), webpages, and versions (or installation dates)

https://github.com/vibansal/HapCUT2
https://github.com/vibansal/HapCUT2
https://github.com/hmatsu1226/MixSIH
https://github.com/hmatsu1226/MixSIH
https://sites.google.com/site/hmatsu1226/software/mixsih
https://sites.google.com/site/hmatsu1226/software/mixsih
https://github.com/jcna99/PEATH
https://WhatsHap.readthedocs.io/en/latest/index.html
https://WhatsHap.readthedocs.io/en/latest/index.html
https://sourceforge.net/projects/SDhaP/files/
https://sourceforge.net/projects/SDhaP/files/
https://sourceforge.net/projects/MAtCHap/
https://sourceforge.net/projects/MAtCHap/
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Note that, a SNP or SNV with just 1X coverage was not 
a valid or meaningful calling. By setting DP1 (1X), the 
purpose was not to identify a specific SNP (or SNV) or 
haplotype with just 1X. Instead, it was to see how well 
different algorithms would perform and how well they 
agreed with each other when users did not do any filter-
ing based on coverage. Users might not know what cover-
age level should be used to do the filtering, and whenever 
there was a filtering, some SNPs (SNVs) could be filtered 
out. Therefore, all algorithms were compared with DP1 
(1X), DP15 (15X), and DP30 (30X) to show users what 
they might expect if they analyzed a new dataset by 
themselves.

Workflow of 6 HA methods
Figure 2 showed the workflow of 6 HA methods (or algo-
rithms). This workflow was summarized based on the 
authors’ experience of using these HA methods. It began 
with the NA12878 BAM file, which was sorted using the 
samtools. The chr10 was then extracted from the BAM 
file to create a sorted SAM file, which was then converted 
back to a sorted BAM file, and finally to a BIM Collabo-
ration Format (BCF) file. Next, bcftools were used to 
convert a BCF file to a VCF file. Since WhatsHap only 
required a VCF file and a BAM file (meaning it does 
not use a DNA sequencing fragment file), it can be run 
right after the VCF file was generated. For the other HA 
algorithms, a fragment file was required. By using the 

tool extractHAIRS (a script provided on HapCUT2 web 
page), a fragment file could be generated from the VCF 
file, which allowed HapCUT2, MixSIH, PEATH, MAtC-
Hap, and SDhaP to have the required input format to run.

The authors used DNA sequencing data of the sample 
NA12878, that is, the hg19 and hg38 data, and then fil-
tered them based on 3 different sequencing depth levels 
(DP1, DP15, and DP30). They ran the six HA software 
packages, HapCUT2, MixSIH, PEATH, WhatsHap, 
SDhaP, and MAtCHap. The original output files were 
then reformatted, using Perl and R scripts, to obtain the 
SNV and block summary values. These values included 
the number of SNVs, the number of haplotype blocks, 
mean number of SNVs per block, as well as the maxi-
mum, minimum, and quartiles for the number of SNVs 
per block. The results between the various runs were 
then compared to find differences or disagreements.

Pairwise comparison analysis method (i.e., analytical 
comparison)
The key purpose of this study was to conduct com-
parative analysis. Before any pairwise comparisons, the 
authors used a “gold standard” (i.e., a set of known haplo-
types) for both hg19 and hg38 datasets that were publicly 
available. The analysis was done by cross comparing the 
haplotype output file from each HA with the so-called 
“gold standard” haplotype file. This comparison was done 
to see how many SNVs inferred by each HA overlapped 
with the positions in the “gold standard”. The authors first 
showed the non-pairwise comparison result and then 
explained why they did the pairwise comparison in the 
Results section.

After running the 6 HA algorithms on 6 datasets (hg19 
and hg38, each with 3 filtering levels: DP1, DP15, and 
DP30), the raw output files were obtained, see examples 

Table 2  Numbers of DNA fragments of hg19 and hg38 data 
based on 3 depth levels

hg19 hg38
DP1 966,935 787,932

DP15 924,996 785,698

DP30 451,625 570,691

Fig. 2  The workflow of 6 HA algorithms. This workflow is about converting BAM files to generate the required input format for each software package
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of raw output files in the Table  1 in the Supplementary 
Material 1. HapCUT2, MixSIH, PEATH, and SDhaP had 
a similar output format. The first column in this supple-
mental table was the SNV index in the input VCF file. 
The second and third columns were the haplotypes on 
two chromosomes. The other columns were detailed 
explanations. The MAtCHap and WhatsHap raw outputs 
were VCF files. These output files were then compared 
using run time, haplotype block, SNV, and switch error.

The authors did pairwise comparison for haplotype 
blocks, SNVs, and switch error rates by performing 
analysis on each pair of HA methods. That is, one HA 
was used as a reference or standard (called HA1), and 
the secondary HA (called HA2) was compared to the 
HA1. This pairwise comparison was done block by block 
as shown in Table  3. An agreement was reported if the 
number of SNVs in a particular block matched, and if it 
did, the comparison algorithm then checked if the alleles 
matched or not (see the 5th column, “hap.match”). In the 
end, each comparison generated both block and SNV 
disagreement counts, which were converted to percent-
ages to compare various HA algorithms that had different 
blocks and SNVs.

For switch errors, the authors compared each pair of 
HA algorithms and used one as the standard or refer-
ence (i.e., HA1). They checked two haplotypes block by 
block and reported the number of switches needed to 
make the alleles of the secondary HA (i.e., HA2) match 
the reference HA’s alleles (see the last column of Table 3). 
The comparison function ultimately reported the total 
number of switches, as well as other statistics such as the 
blocks with no switches, with switches, and with no com-
parisons due to different numbers of SNVs. In order to 
compare based on the switch distance metric thoroughly, 
the authors zoomed in to compare all HA methods from 
different perspectives by defining the following 12 spe-
cific metrics.

1.	 blk.w.0sw: Total number of blocks (blks) that 2 HAs 
agreed with each other, i.e., no switch (sw = 0).

2.	 blk.w.NAsw: Total number of blocks whose SNV 
numbers did not match (sw = “NA”). That is, the 
switch distance could not be checked.

3.	 blk.w.sw: Total number of disagreement blocks with 
switch counted (sw > 0).

4.	 snv.in.blk.w.0sw: Total number of SNVs in blocks 
with 0 switches (sw = 0).

5.	 snv.in.blk.w.NAsw: Total number of SNVs in blocks 
with NA switches (sw = “NA”).

6.	 snv.in.blk.w.sw: Total number of SNVs in blocks with 
switches (sw > 0).

7.	 snv.per.blk.w.0sw: Average number of SNVs in blocks 
with 0 switches (sw = 0).

8.	 snv.per.blk.w.NAsw: Average number of SNVs in 
blocks with NA switches (sw= “NA”).

9.	 snv.per.blk.w.sw: Average number of SNVs in blocks 
with switches (sw > 0).

10.	total.sw: Total number of switches for all 
disagreement blocks with an equal number of SNVs 
in 2 HA methods.

11.	snv.by.sw: snv/sw, it was for blocks with sw > 0 (not 
for ALL disagreement blocks).

12.	sw.per.blk: sw/blk, it was for blocks with sw > 0 (not 
for ALL disagreement blocks).

Methodological comparison (i.e., the conceptual 
comparison)
Below is the methodological or conceptual comparison of 
the 6 HA methods based on the following aspects: mod-
els and features, input files, and comparison metrics.

Models and features
The 6 HA methods utilized a variety of statistical mod-
els or algorithms as shown in Table  4. HapCUT2 used 
a maximum likelihood-based model. It was designed to 
work across a wide array of sequencing technologies [1]. 
MixSIH used a probabilistic mixture model where each 
fragment was emitted independently of other fragments 
[14]. PEATH utilized a probabilistic evolutionary algo-
rithm that used a fitness function to identify candidates 
for optimization [16]. WhatsHap and SDhaP focused on 
addressing the MEC problem. WhatsHap considered 
HA as a weighted minimum error correction (wMEC) 
problem with read coverage as the only fixed parameter. 
It solved the wMEC problem using dynamic program-
ming to find a partition of DNA sequencing reads [22]. 
SDhaP attempted to find the optimal solution for the 
MEC problem [21]. It approached HA as a correlation-
clustering problem and aimed to solve low-rank semidef-
inite programming optimization problems. MAtCHap’s 
model was based on the maximum allele co-occurrence. 
It aimed to reconstruct haplotype structures of all cover-
ages with a high accuracy [24].

Table 3   A simple example of comparing two HA algorithms
block.ID HA1.SNV.num HA2.SNV.

num
SNV.
match

hap.
match

switch.
count

1 2 1 - - NA

2 7 4 - - NA

3 4 4 match - 1

4 23 9 - - NA

5 2 2 match match 0

6 2 2 match match 0
The columns are block ID, number of SNVs in HA1, number of SNVs in HA2, SNV 
match flag, haplotype match flag, and switch count. “-” means SNV numbers 
or haplotypes of HA1 and HA2 do not match. In the switch count column, NA 
means no need to check switch distance because those HA1 and HA2’s SNV 
numbers do not match. The number (e.g., 0 or 1) in the last column means the 
number of switches needed
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Assumptions were often made to ensure the modeling 
environment was under control and stable. HapCUT2 
assumed that the read fragments were independent and 
the heterozygous sites were known in advance [1]. Mix-
SIH assumed that the sequence error rate was not depen-
dent on fragments or positions and mixture probabilities 
were equal [14]. The PEATH method assumed that all 
input variables were independent. WhatsHap assumed 
that the allele with the higher alignment score was sup-
ported by sequencing reads [22]. It also assumed that 
recombination events had the same chance to occur at 
any given position [22].

The 6 HA methods often considered different fea-
tures in their models. The following features were com-
monly used by at least 2 of the 6 HA methods as shown 
in Table  4: Sequencing Error (Seq Error), Sequencing 
Coverage (Seq Cov), Sequencing Read Length (Read 
Len), and Objective Function (Obj Fun). Below is the 
summary for each of them. Sequencing errors are mis-
takes of reading specific bases due to the limitations of 
sequencing technologies. PEATH and SDhaP considered 
sequencing errors in their models. PEATH attempted to 
identify the minimal sum of the quality-weighted errors 
from two haplotypes, and this was done using the Phred 
quality scores and probability of sequencing errors [16]. 
Sequencing coverage is the number of reads covering a 
specific base. Five methods, except PEATH, incorporated 
sequencing coverage in their models. HapCUT2’s switch 
error rates decreased as sequencing coverage increased 
[1], and this appeared to be the case with MAtCHap, as 
the switch + mismatch error rate decreased as the cover-
age increased [24]. MAtCHap also concluded that its run 
time generally increased as coverage increased, although 
the change in run time was not as significant as that of 

other algorithms [24]. Read length is the number of bases 
sequenced from a DNA fragment. 3 papers had read 
length as an evaluation method: HapCUT2, WhatsHap, 
and MixSIH. The HapCUT2 paper showed that the run 
time was dependent on the read length [1]. However, 
WhatsHap showed that the run time was not affected by 
the read lengths, which made it more suitable for larger 
sequencing datasets [22].

HA algorithms often use different objective functions. 
One of the most common objective functions was the 
likelihood function, which was implemented in the Mix-
SIH and HapCUT2 methods [1, 14]. Another common 
objective function was the MEC, which was used by both 
WhatsHap and SDhaP. WhatsHap was developed as a 
fixed-parameter tractable algorithm to solve the wMEC 
problem, where read coverage was the only fixed param-
eter [22]. SDhaP focused on finding an optimal solution 
to the MEC problem [21]. MAtCHap implemented the 
maximum allele co-occurrence objective function [24]. 
Finally, PEATH used the fitness function, which can iden-
tify good candidates for an optimization problem [16].

Input
Every HA algorithm had its own input format to recon-
struct haplotypes, and these inputs varied as shown in 
Table  5. Three algorithms required matrices as input 
files, which differed from algorithm to algorithm. PEATH 
required two matrices as its input. The first was a quality 
score matrix, and the second was a sequence read matrix 
[16]. MAtCHap and SDhaP required one matrix. MAtC-
Hap required one fragment matrix where the number of 
rows represented the reads, and the number of columns 
represented the heterozygous variants [24]. For SDhaP, 
the reads were arranged into a matrix according to their 

Table 4  Models, assumptions, and features of 6 HA algorithms
Method Model or algorithms Assumptions Seq

Error
Seq
Cov

Read Len Obj
Fun

HapCUT2 maximum likelihood-based Heterozygous sites known in advance; allele 
count independent

X X X

MixSIH probabilistic mixture model sequence error rate independent of fragments 
and positions; mixture probabilities are equal 
(pm(0) = pm(1) = 0.5 )

X X X

PEATH probabilistic evolutionary 
algorithm

All input variables are independent, no copy 
number variation

X X

WhatsHap Fixed-parameter trac-
table algorithm, dynamic 
programming

Allele with higher alignment score is assumed to 
be supported by the read, variants are sorted by 
position, recombination events equally likely at 
any position

X X X

SDhaP MEC X X X

MAtCHap maximum allele 
co-occurrence

X X

The second column is the model or algorithm used by each HA method. The third column is the assumption used by each HA algorithm. The fourth to seventh 
columns are features or factors that were considered by the authors of each HA method. These features/factors are sequencing error (Seq Error), sequencing 
coverage or depth (Seq Cov), sequencing read length (Read Len), and objective function (Obj Fun). “X” in each column means that the HA method in that row 
incorporates that feature or metric. Some cells in the assumption column are left blank, which means that no clear assumptions can be found in the corresponding 
papers.
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positions on the chromosome. These matrices were cal-
culated by each HA algorithm. Users did not need to pro-
vide the matrices by themselves.

Another common input format was VCF and BAM. 
At least 2 algorithms such as HapCUT2 and Whats-
Hap required two input files, VCF and BAM, containing 
information on haplotype fragments and heterozygous 
variants [1, 22]. In addition to the input specifications 
mentioned above, there were also a few that were less 
commonly used among these papers. For example, Mix-
SIH required aligned SNP fragment files for its input, 
and these fragments were retrieved through extraction 
from heterozygous alleles in aligned DNA fragments 
[14]. WhatsHap, along with VCF and BAM files, required 
sequencing reads from the individual sample [22]. Note, 
the input information was summarized based on what 
was stated in the 6 HA papers. In fact, when running 

these algorithms, the authors found that, except Whats-
Hap, the other 5 HA algorithms all required a similar 
DNA fragment file with some minor changes as shown 
in Fig. 2.

Comparison metrics
When comparing the 6 HA methods, the authors found 
that these methods used different metrics to compare 
with other algorithms. Then only commonly used ones 
were selected to compare different HA methods as listed 
in Table 6. Of all metrics, switch error rate and run time 
were used by all 6 HA methods, and MAtCHap used the 
greatest number of metrics. WhatsHap looked at three 
kinds of errors: flip errors, switch errors, and ambiguity 
errors. It also combined those three errors to find its total 
error. All HA methods used the switch error rate, and 
HapCUT2 and MAtCHap looked at the mismatch error 
rate. In addition, MAtCHap calculated its own total error 
rate by adding switch and mismatch errors.

Results
Run time
The run time of all 6 HA algorithms on 6 datasets (hg19 
and hg38, each with 3 DP levels) was shown in Table 7; 
Fig.  3. Note, the run time was the CPU time used in 
executing each process, see detailed explanations in the 
Discussion. Table  7; Fig.  3 provided the same informa-
tion, but they showed different details and perspectives. 
Table 7 gave specific run time, while Fig. 3 showed over-
all patterns. When comparing the run time of the 6 HA 
algorithms based on both hg19 and hg38 data’s 3 cover-
age levels, Table 7; Fig. 3 showed that the fastest HA was 
HapCUT2 for both hg19 and hg38 data. HapCUT2’s run 
time was consistently under 2  min. SDhaP took longer 
when running hg19 data than hg38 data (1042 ~ 2534 min 

Table 5  Input files of 6 HA algorithms as stated in their papers or 
user manuals
Method VCF BAM Matrix Input
HapCUT2 X X Haplotype fragments (BAM 

files) and a list of heterozygous 
variants (VCF)

MixSIH Aligned SNP fragments

PEATH X Two n by m matrices: M and 
Q (M = sequence read matrix; 
Q = quality score matrix)

WhatsHap X X VCF file with variants of an 
individual and a BAM file with 
sequencing reads from that 
same individual

SDhaP X Reads were arranged into an 
m by n matrix according to 
positions on chromosome

MAtCHap X Uses one n by m fragment 
matrix where each row (n) rep-
resents reads and each column 
(m) represents the information 
of a heterozygous variant

The columns (from left to right) are HA methods, commonly used input formats 
(VCF file, BAM file, and Matrix), and input description. Each “X” represents the 
input format(s) that the given software package uses. The last column is a more 
detailed description of different input formats used in each algorithm

Table 6  Comparison metrics
Method Switch Error Mismatch 

Error
MEC Run 

time
HapCUT2 X X X

MixSIH X X

PEATH X X X

WhatsHap X X

SDhaP X X X

MAtCHap X X X
The columns are (in order from left to right) haplotype assembly method, 
switch error, mismatch error, MEC, and run time. HA algorithms that use one 
of the four comparison metrics are marked with an “X”. Cells that are left blank 
mean that the specific algorithm in a row does not use this comparison metric

Table 7  Run time of the 6 HA algorithms on hg19 and hg38 
data
no.HI hg19 DP1 DP15 DP30
HapCUT2 0m0.020s 1m27.862s 0m50.749s

MixSIH 166m53.561s 167m55.217s 60m32.406s

PEATH 9m9.623s 9m17.898s 6m55.111s

WhatsHap 21m47.595s 18m32.676s 7m47.223s

SDhaP 1042m19.795s 2534m53.175s 2395m2.418s

MAtCHap 145m32.562s 74m7.937s 2m5.477s

no.HI hg38 DP1 DP15 DP30
HapCUT2 1m38.330s 1m27.657s 1m15.984s

MixSIH 533m21.192s 521m52.663s 323m4.853s

PEATH 881m41.440s 851m6.780s 291m25.599s

WhatsHap 13m18.916s 13m23.951s 9m34.321s

SDhaP 243m21.180s 385m9.746s 107m9.087s

MAtCHap 47m46.312s 42m7.180s 23m57.059s
In each cell, “m” means minute; “s” means second. For example, “0m0.020s” 
means 0  min and 0.02  s. “no.HI” in the first column means that homozygous 
variants and indel sites were not included.
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for hg19 vs. 107 ~ 385 min for hg38). In fact, SDhaP was 
the slowest HA for hg19 but was near the average for 
hg38. Meanwhile, MixSIH and PEATH took longer when 
using hg38 data than hg19 data. Surprisingly, PEATH 
was the slowest HA for hg38, but it was one of the fast-
est ones (behind HapCUT2) for hg19. It took < 10  min 
for hg19 but 291 ~ 881  min for hg38. In general, Fig.  3 
showed that the DP30 runs (blue bars) took significantly 
less time than DP1 (green bars) and DP15 (yellow bars). 
This difference might be because the input dataset of 
DP30 was much smaller after filtering based on cover-
age, i.e., with a much smaller number of DNA fragments 
as shown in Table 2. As the DP increased, the run time 
decreased (maybe because the dataset became smaller) 
or did not change much, but there were some outliers 
including SDhaP’s run time on both the hg19 and hg38 
datasets.

When running the 6 HA algorithms across the hg19 
and hg38 data, there seemed to be a longer run time for 

the hg38 dataset, especially for MixSIH and PEATH, but 
not for SDhaP. This longer time could be because hg38 
sequencing reads were longer (2 × 150  bp paired-end) 
than the hg19 sequencing reads (2 × 100 bp paired-end). 
The run time increased from 1 to 2  s (HapCUT2) to 
800  min (PEATH, DP1). Some outliers of the run time 
included WhatsHap (DP1 and DP15), MAtCHap (DP1 
and DP15), and SDhaP, where the hg38 data run time was 
around 8 to 700 min faster than the hg19 data.

Summary of block (blk) and SNV numbers
Table  8 showed the summary of block and SNV num-
bers for the hg19 and hg38 at the DP1 level. Each row 
had the summary of the number of SNV per block for all 
haplotype blocks inferred by one HA. This table showed 
that for the hg19 DP1 data, WhatsHap inferred about 
50% more SNV positions (178,534 vs. 115,000). It had 
a much smaller number of blocks (10,132 vs. 32,000), 
but its blocks were generally longer than the other HA 

Fig. 3  Run time of the 6 HA algorithms on hg19 and hg38 data. The vertical axis is in minutes
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algorithms. WhatsHap’s longest block had 5,194 SNVs, 
while other HA algorithms’ longest blocks had only 770 
SNVs. In the hg38 DP1 data, the total number of SNVs, 
blocks, and SNVs per block summary of WhatsHap was 
very similar to most other HA methods. In the hg38 DP1 
data, PEATH and MAtCHap’s block lengths and num-
bers of SNVs were similar except for a small number of 
extremely long blocks. PEATH and MAtCHap’s longest 
blocks had 6,999 SNVs, but other HA methods’ longest 
blocks only had 2,100 ~ 2,400 SNVs. Similar outlying 
patterns of WhatsHap, PEATH, and MAtCHap could 
be found in hg19 and hg38’s DP15 and DP30 data, see 
Table 2 in Supplementary Material 1.

Comparing with the “gold standard”
In order to compare the 6 HA algorithms, the authors 
first compared the chromosome positions from the 
known haplotypes with the SNV positions in the haplo-
types inferred by each HA algorithm. That is, the com-
parison was first conducted with the so-called “gold 
standard,” i.e., a set of “high confidence” haplotypes of 
NA12878. The basic rationale was that if some (or many) 
SNV or chromosome positions inferred by these HA 
algorithms were not in the positions listed in the “gold 
standard” or known haplotypes, then it would not be 
meaningful to compare the haplotypes inferred by each 
HA with the so-called “gold standard” haplotypes. For 
example, HapCUT2 inferred 100 SNVs (or positions) in 
its output, and only 50 of them overlapped with the “gold 
standard” (or known haplotype) positions. It would not 
be meaningful to use the “gold standard” as a reference.

Table  9 showed that when the coverage increased 
(from 1X to 30X), some SNPs (or SNVs) with low cov-
erage (e.g., < 10X) were filtered out from the haplotypes 

inferred by each HA method. Therefore, the SNP num-
ber decreased as the coverage filtering level increased. 
The decrease in the SNP (SNV) number in Table 9 could 
also be explained by Table 2, which showed that the num-
ber of DNA fragments (or sequencing reads) decreased 
as the filtering coverage level increased (from 1X to 15X 
and then to 30X).

By comparing based on the SNV positions only, as 
shown in Table  9, the authors found that for the hg19 
data, except WhatsHap, only 37–38% (for DP1 and DP15) 
and 18% (for DP30) of SNVs in the other 5 HA algorithms 
overlapped with the known haplotype positions or SNVs. 
For the hg38 data, the overlap was much larger, 81–84%. 
There were still about 20% of SNV positions (roughly 
about 20,000 SNVs) that were not in the “gold standard” 
or known haplotypes. Therefore, it was not proper to 
compare their haplotypes with known ones.

Pairwise comparison based on SNV and block
As shown in Table  8, the WhatsHap output for the 
hg19 DP1 data contained 178,523 SNVs, around 50% 
more than the other HA algorithms, which made it an 
“improper” or “unbalanced” comparison. In order to have 
a “proper” pairwise comparison, the authors filtered the 
WhatsHap output to only contain chromosome positions 
found in the PEATH and MAtCHap output files. These 
two algorithms were used because they had identical 
115,813 SNV positions, and HapCUT2 and MixSIH had 
a similar number of SNVs. Pairwise comparisons were 
then conducted by including both the unfiltered and fil-
tered WhatsHap (WhatsHap.Filter or WhatsHap.F) out-
put with the other HA algorithms.

Table  10 was the pairwise comparison of 6 HA algo-
rithms plus WhatsHap.Filter. Each row showed the 

Table 8  Block and SNV number summary of the hg19 and hg38 DP1 data
hg19.DP1.no.HI filterSNV 

(no”-“)
Block (no “-“) Min Q1 Median Mean Q3 Max

HapCUT2 115,215 32,150 2 2 2 3.58 4 770

MixSIH 115,790 32,252 2 2 2 3.59 4 770

PEATH 115,813 31,355 2 2 2 3.69 4 770

WhatsHap 178,523 10,132 2 2 2 17.6 9 5194

SDhaP 115,813 32,252 2 2 2 3.59 4 770

MAtCHap 115,813 31,355 2 2 2 3.69 4 770

hg38 DP1.no.HI filterSNV 
(no”-“)

Block (no “-“) Min Q1 Median Mean Q3 Max

HapCUT2 100,686 21,710 2 2 2 4.64 5 2187

MixSIH 100,807 21,726 2 2 3 4.64 5 2190

PEATH 100,810 19,660 2 2 3 5.13 4 6988

WhatsHap 100,785 21,654 2 2 3 4.65 5 2479

SDhaP 100,810 21,726 2 2 3 4.64 5 2190

MAtCHap 100,810 19,660 2 2 3 5.13 4 6988
The top 7 rows are for the hg19 DP1 data. The bottom 7 rows are for the hg38 DP1 data. The first 3 columns are the HA names, total number of SNVs (after “-” being 
removed), and total number of haplotype blocks. “no.HI” in the first column means that homozygous variants and indel sites were not included. Columns 4 to 9 show 
a summary of the number of SNVs per block for all blocks listed in the third column. “Min” means minimum. “Max” means maximum. “Q1” is the 25th percentile. “Q3” 
is the 75th percentile
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pairwise comparison result with that row’s HA as the 
reference (HA1). For example, the second row in the top 
panel was HapCUT2. That is, the authors used its output 
as a reference, i.e., HA1. Then, the other HA algorithms 
listed in different columns were called HA2, where each 
HA2 was compared with HA1 to see how many blocks 
of HA2 (in the column) differ from HA1 (in the row). 
The comparison results were shown in the top panel 
(block disagreement), then the total number of SNVs was 
counted in these disagreement blocks. These comparison 
results were shown in the bottom panel (SNV disagree-
ment). The authors conducted this type of pairwise com-
parison for hg19 and hg38’s DP1, DP15, and DP30 data. 
In total, there were 6 comparison tables, each with two 
panels, one for block disagreement and one for SNV dis-
agreement as shown in Table 10. In order to avoid show-
ing all these tables, the authors provided all pairwise 
comparison tables in Supplementary Material 2, which 
was an EXCEL file for hg19 and hg38 data and each with 
3 sheets for DP1, DP15, and DP30 respectively.

Regarding the WhatsHap.Filter results, 115,745 out of 
178,523 SNVs (after removing blocks with 1 SNV) were 
left. That is, WhatsHap and other HA algorithms had 
many common SNVs after the filter (selection). The fil-
tered output was different from HapCUT2 in 2,362 out of 
8,149 (i.e., 28.99%) blocks. These 2,362 blocks consisted 
of 94,685 SNVs. That is, on average, there were approxi-
mately 40 SNVs on each of these blocks. Thus, the output 
generated by WhatsHap usually had disagreements with 
other HA algorithms on long or large blocks. The authors 
also found that both the SNV and block disagreements 
were much lower for the WhatsHap.Filter output than 
those for the unfiltered output as shown in Table 10.

To demonstrate the patterns in Table  10 clearly, bar 
plots were made, see Figs.  4 and 5. In these bar plots, 

in the bottom along the x-axis, 6 HA algorithms plus 
WhatsHap.Filter were shown as HA1, and the rainbow-
colored bars were for each of the other HA algorithms, 
i.e., HA2, to compare. Figure 4 showed a few key patterns. 
First, the hg38 data (bottom 3 plots) showed that all 6 
HA algorithms had much better agreement rates than 
the hg19 data (top 3 plots). Second, for both hg19 and 
hg38, comparisons with SDhaP as HA2 seemed to have 
the highest block disagreement rate, see the outstand-
ing blue bars in Fig. 4. Third, for the hg19 data, Whats-
Hap, WhatsHap.Filter, and SDhaP had the highest block 
disagreement rate when used as HA1, see the x-axis for 
tall bar clusters in the top panel. However, for the hg38 
data, only SDhaP generally had high disagreement rates, 
see the blue bars in the bottom 3 plots in Fig. 4. Pairwise 
comparisons were based on the total number of disagree-
ment SNVs. Figure  5 showed similar patterns as Fig.  4. 
That is, for most comparisons, both hg19 and hg38 fol-
lowed the same trend across three DP levels and had 
similar results, with hg19 having marginally higher SNV 
disagreement than hg38 (hg19 had around 10–20% while 
hg38 had less than 10% on average). With WhatsHap and 
WhatsHap.Filter as HA1, there was a much larger SNV 
disagreement rate than all other comparisons in the hg19 
data, but not the hg38 data. Disagreement with SDhaP as 
HA2 was again the largest, see the blue bars in Figs. 4 and 
5.

Similar to the pairwise comparison based on the block 
and SNV disagreement, the authors did the pairwise 
comparison using switch errors. As stated in the com-
parison analysis, 12 different but related switch-distance 
metrics were used to compare those HA algorithms. For 
each metric, the pairwise comparison results were plot-
ted. Some of them had similar patterns and information. 
To avoid showing redundant figures, only 2 of these 12 

Table 9  Comparing SNVs in 6 HA algorithms with positions in known haplotypes
HA methods hg19.DP1 overlap hg19.DP15 overlap hg19.DP30 overlap
HapCUT2 115,215 43,868 (38.07%) 96,357 35,930 (37.29%) 18,824 3517 (18.68%)

MixSIH 115,790 44,210 (38.18%) 96,818 36,211 (37.40%) 18,885 3542 (18.76%)

PEATH 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

WhatsHap 178,523 97,865 (54.82%) 152,769 84,094 (55.05%) 24,628 7788 (31.62%)

WhatsHap.Filter 115,745 44,198 (38.19%) 96,783 36,204 (37.41%) 18,864 3540 (18.77%)

SDhaP.100,595 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

MAtCHap 115,813 44,223 (38.18%) 96,835 36,225 (37.41%) 18,887 3542 (18.75%)

HA methods hg38.DP1 overlap hg38.DP15 overlap hg38.DP30 overlap
HapCUT2 100,686 84,197 (83.62%) 99,572 83,851 (84.21%) 63,970 52,185 (81.58%)

MixSIH 100,807 84,239 (83.56%) 99,675 83,887 (84.16%) 64,023 52,203 (81.54%)

PEATH 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)

WhatsHap 100,785 84,332 (83.68%) 99,648 83,983 (84.28%) 63,999 52,265 (81.67%)

WhatsHap.Filter 100,625 84,199 (83.68%) 99,487 83,846 (84.28%) 63,917 52,186 (81.65%)

SDhaP 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)

MAtCHap 100,810 84,239 (83.56%) 99,676 83,888 (84.16%) 64,025 52,203 (81.54%)
The columns are HA methods, numbers of SNVs obtained based on 3 DP level input data, and the corresponding overlap with 3,591,460 SNVs (for the hg19 data) and 
with 3,632,297 SNVs (for the hg38 data) in known haplotypes
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metrics were shown. These two metrics were total.sw 
and blk.w.0sw as shown in Figs. 6 and 7 respectively. The 
bar plot layout (order and color) in these figures was the 
same as the one in Figs. 4 and 5. The bar plots of all 12 
metrics were shown in Supplementary Material 3 (a PDF 
of 13 pages).

Pairwise comparison based on switch distance
Figure 6 was for the metric total.sw. It showed the total 
number of switches a specific HA2 algorithm needed 
to match the HA1 haplotypes. This figure showed a few 
striking patterns. First, all 6 HA algorithms seemed to 
agree with each other better in the hg38 data than in the 
hg19 data. Second, for both hg19 and hg38 data, compar-
isons with SDhaP as HA2 showed the greatest difference 
(see blue bars that represent high disagreements), that is, 
more switches were needed. Third, for hg19, with Whats-
Hap.Filter and SDhaP as HA1, there were more switches 
(tall bar clusters). For hg38, only SDhaP had the largest 

number of switches (blue bars). Fourth, for the hg19 data, 
when WhatsHap was used as the HA1, the number of 
switches needed was the smallest (see the short bars 
above WhatsHap). This might be because WhatsHap had 
long blocks, while the other HA method (i.e., HA2) did 
not have those long blocks to compare with. Thus, it had 
a small number of switches needed. This could be seen 
in Fig. 7, which showed low bars above WhatsHap. How-
ever, for the WhatsHap.Filter, after removing those SNVs 
not inferred by other HA algorithms, its haplotype block 
structures were altered, and then many switches were 
needed. Fifth, for hg19 data, DP1 and DP15 plots were 
very similar in size. The switches required for DP30 were 
much smaller, see low bars in Fig. 6 for total switches.

Figure  7 was for the metric blk.w.0sw. This figure 
showed the total number of blocks with 0 switches. 
That is, the figure showed the number of blocks where 
those HA algorithms agreed with each other. This figure 
showed a few patterns. First, for the hg19 data, the blocks 

Table 10  Pairwise comparison based on block and SNV disagreements of hg19 DP1 data
Block-Disagree HapCUT2 MixSIH PEATH WhatsHap WhatsHap.

Filter
SDhaP MAtCHap

HapCUT2
(32,150 blocks)

0 459/32,150 
(1.43%)

188/32,150 
(0.58%)

1690/32,150 
(5.26%)

1690/32,150 
(5.26%)

4860/32,150 
(15.12%)

494/32,150 
(1.54%)

MixSIH
(32,252 blocks)

885/32,252 
(2.74%)

0 655/32,252 
(2.03%)

1924/32,252 
(5.97%)

1924/32,252 
(5.97%)

5109/32,252 
(15.84%)

664/32,252 
(2.06%)

PEATH
(31,355 blocks)

1005/31,355 
(3.21%)

976/31,355 
(3.11%)

0 2032/31,355 
(6.48%)

2032/31,355 
(6.48%)

5215/31,355 
(16.63%)

838/31,355 
(2.67%)

WhatsHap
(10,132 blocks)

6353/10,132 
(62.70%)

6344/10,132 
(62.61%)

6328/10,132 
(62.46%)

0 6602/10,132 
(65.16%)

6347/10,132 
(62.64%)

WhatsHap.Filter
(8149 blocks)

2362/8149 
(28.99%)

2258/8149 
(27.71%)

2227/8149 
(27.33%)

- 0 2824/8149 
(34.65%)

2255/8149 
(27.67%)

SDhaP
(32,252 blocks)

5207/32,252 
(16.14%)

5121/32,252 
(15.88%)

5109/32,252 
(15.84%)

5702/32,252 
(17.68%)

5702/32,252 
(17.68%)

0 5129/32,252 
(15.90%)

MAtCHap
(31,355 blocks)

1274/31,355 
(4.06%)

954/31,355 
(3.04%)

838/31,355 
(2.67%)

2105/31,355 
(6.71%)

2105/31,355 
(6.71%)

5246/31,355 
(16.73%)

0

SNV- Disagree HapCUT2 MixSIH PEATH WhatsHap WhatsHap.
Filter

SDhaP MAtCHap

HapCUT2
(115,215 SNVs)

0 8881/115,215 
(7.71%)

6190/115,215 
(5.36%)

15,960/115,215 
(13.85%)

15,960/115,215 
(13.65%)

27,098/115,215 
(23.52%)

9224/115,215 
(8.01%)

MixSIH
(115,790 SNVs)

11,034/115,790 
(9.53%)

0 10,153/115,790 
(8.60%)

17,307/115,790 
(14.95%)

17,307/115,790 
(14.95%)

28,183/115,790 
(24.34%)

10,240/115,790 
(8.84%)

PEATH
(115,813 SNVs)

12,872/115,813 
(11.11%)

13,671/115,813 
(11.80%)

0 19,263/115,813 
(16.63%)

19,263/115,813 
(16.63%)

31,494/115,813 
(27.19%)

12,508/115,813 
(10.80%)

WhatsHap
(178,523 SNVs)

165,569/178,523 
(92.74%)

165,603/178,523 
(92.76%)

165,582/178,523 
(92.75%)

0 166,693/178,523 
(93.37%)

165,661/178,523 
(92.80%)

WhatsHap.Filter
(115,745 SNVs)

94,685/115,745 
(81.80%)

93,576/115,745 
(80.85%)

93,258/115,745 
(80.57%)

- 0 96,750/115,745 
(83.59%)

93,491/115,745 
(80.77%)

SDhaP
(115,813 SNVs)

28,693/115,813 
(24.78%)

28,261/115,813 
(24.40%)

28,253/115,813 
(24.40%)

31,441/115,813 
(27.15%)

31,441/115,813 
(27.15%)

0 28,452/115,813 
(24.57%)

MAtCHap
(115,813 SNVs)

15,417/115,813 
(13.31%)

13,563/115,813 
(11.71%)

12,508/115,813 
(10.80%)

19,750/115,813 
(17.05%)

19,750/115,813 
(17.05%)

31,801/115,813 
(27.46%)

0

Each cell consists of the count and percentages of blocks (top panel) and SNVs (bottom panel) that two HA methods disagree with. “-” means that the authors do 
not compare WhatsHap with WhatsHap.Filter.
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with 0 switches were consistently around 30,000 for 
DP1, 25,000 for DP15, and 5,000 for DP30, except when 
WhatsHap & WhatsHap.Filter was HA1 (see low bars). 
Second, for hg38, 6 HA algorithms’ block numbers were 
consistent with around 20,000 for DP1, 20,000 for DP15, 
and 15,000 for DP30. Third, the patterns for hg19 DP30 
and hg38 DP1, DP15, and DP30’s numbers of blocks 
with 0 switches were similar. That is, 6 HA methods per-
formed similarly when the DP level was high (i.e., DP30), 
and when the datasets had long reads (i.e., hg38 data).

WhatsHap had a much smaller number of blocks with-
out switches (sw = 0) and with switches (sw > 0) (Figs.  6 
and 7). This was because it had a significantly larger aver-
age number of SNVs per block that could not be checked 
due to different numbers of SNVs. In general, the number 
of SNV per block with switches was about 3 for hg19 and 
4 for hg38. On average, for those blocks in which 2 HA 

methods disagreed with each other, 1 to 2 switches were 
necessary per short block.

Overall, HapCUT2, MixSIH, PEATH, and MAtCHap 
had relatively low disagreement percentages for both 
hg19 and hg38 datasets with different filtering levels. This 
conclusion can be made based on the pairwise compari-
son analyses of haplotype blocks, SNVs, and switch error 
rates. However, both SDhaP and WhatsHap resulted in 
much higher disagreement percentages with the other 
algorithms in the hg19 data. For hg38, WhatsHap had a 
similar performance when it was compared with Hap-
CUT2, MixSIH, PEATH, and MAtCHap. SDhaP still per-
formed differently.

Discussion
Coverage of DNA sequencing data
According to the original data sources (web pages) from 
which both the hg19 and hg38 datasets were downloaded, 

Fig. 4  Bar plots of hg19 and hg38 block disagreement for pairwise comparisons of 6 algorithms. The vertical axis is the percentage of blocks that disagree 
between two HA algorithms (HA1 and HA2).
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the sequencing coverage levels were at least 30X for both 
datasets. Examination of the chr10 data revealed that 
hg38 datasets had larger or better sequencing coverages. 
The hg19 datasets had a 25X median and 26.13X mean 
coverage, but hg38 datasets had a 33X median and 34.4X 
mean coverage. As for the hg19 data, 73.58% of the sites 
had more than 20X coverage; while for the hg38 data, 
97.15% of the sites had more than 20X coverage. In addi-
tion to the sequencing-read-length difference, the cover-
age difference might be one of the reasons that those 6 
HA algorithms performed differently.

With and without homozygous variants and indels 
included
For all 6 HA algorithms, except MAtCHap, they could 
be run with or without homozygous variants and indels 
included. MAtCHap was developed to be run only on 
data with homozygous variants and indels removed. 
Therefore, the authors decided to run and report the 

results of all 6 HA algorithms with the homozygous 
variants and indels removed in this paper. Note that the 
authors did check the other 5 HA algorithms’ (except 
MAtCHap) outputs of these two versions: with and 
without homozygous variants and indels included. They 
found that these two versions were either identical or 
similar except some slight differences especially for Mix-
SIH and SDhaP’s different runs, when examining the 
summary of the SNV and block numbers, as well as the 
pairwise comparison results. When there were some 
differences in the pairwise comparison, the comparison 
result based on no homozygous variants and indels was 
better and had lower disagreement rates.

SDhaP
When running SDhaP, the authors found that it had 
an upper limit (700,000) for the number of lines in the 
input file as shown in its “SDhaP.c” script file. Thus, the 
NA12878 DNA fragment data must be split into two 

Fig. 5  Bar plots of hg19 and hg38 SNV disagreement of 6 HA algorithms. The vertical axis is the percentage of SNVs that are in those disagreement blocks
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parts in order to use SDhaP. The authors found the loca-
tion with the largest position difference that would still 
satisfy the limiting condition of SDhaP to split the input 
into two parts (e.g., 100,595 was used in the hg19 DP1 
data). SDhaP’s running time was then reported as the 
total time of running these two parts. Note that users 
should also be aware that the SNV positions in SDhaP 
output were 0-based. These positions should be changed 
to be 1-based before comparing SDhaP with other HA 
algorithms. Furthermore, SDhaP tended to infer alleles 
as homozygous even though homozygous SNVs were 
removed from the input data. This might be one of the 
reasons that SDhaP disagreed with other HA algorithms. 
Other reasons contributing to SDhaP’s disagreement 
with other HA algorithms might be sequencing qual-
ity or coverage, uncertainty in the data, and limitations 
of the algorithm itself, as all HA algorithms had certain 
weaknesses.

Ordering outputs
When checking the output files of 6 HA algorithms, 
the authors found that they were either sorted by SNV 
chromosome position or block number. Depending on 
how the file was sorted, this could affect the number of 
SNVs that were out of order. That is, the chromosome 
positions of SNVs in one specific block were not neces-
sarily smaller than those in the next block. For example, 
block 1 had SNVs “1,2,5,” and block 2 had SNVs “3,7.” 
If the HA algorithm outputted files that were sorted by 
SNV position, the SNVs in these two blocks would read 
“1,2,3,5,7,” but the block IDs would be out of order, read-
ing “1,1,2,1,2.” If the HA algorithm outputs were sorted 
by block ID and then SNV position, the block IDs would 
read “1,1,1,2,2,” but the SNVs would be out of order, 
reading “1,2,5,3,7.” The output for each of the 6 HA algo-
rithms was ordered to have one file sorted by SNVs and 
another sorted by block ID. The authors found that the 
pairwise comparisons of their R and Perl scripts gave the 
same results, regardless of how the input file was sorted, 

Fig. 6  Bar plots of the total switches (total.sw) between each pair of algorithms
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but HA users should be very careful when examining the 
output of each HA algorithm. Additionally, the authors 
determined how each HA algorithm ordered its output 
by sorting and checking the output positions generated 
by all HA algorithms. The fact was that HapCUT2, Mix-
SIH, and SDhaP’s output files were sorted by block ID 
(that is, their SNVs can be out of order), while Whats-
Hap’s was sorted by SNV position (that is, their block IDs 
could be out of order). Finally, PEATH and MAtCHap 
gave the cleanest outputs with both SNVs and block IDs 
well ordered.

Limitations of this paper
There are a few limitations in this paper. First, haplotype 
assembly can be alignment-based or assembly-based 
[6]. In this paper, only alignment-based methods were 
compared. Second, some HA methods were developed 
for both diploid and polyploid haplotyping. The authors 
chose to use human data and only consider diploid hap-
lotype assembly. Third, haplotype assembly can be done 

for both bulk sequencing and single cell sequencing data. 
Only the publicly available bulk sequencing datasets were 
used in this study. Fourth, although the authors have 
originally tried to run more than 20 different algorithms, 
only some of them could be run properly and compared 
for different practical reasons. Finally, many haplotype 
assembly methods or algorithms were developed [1, 10, 
13, 14, 16, 21–24, 31, 33–43]. In particular, there were 
some methods developed for single-cell sequencing 
data [35, 39] or with a focus on long reads [33, 42–44]. 
However, there remain different challenges in haplo-
type assembly for repetitive regions, in scaling haplotype 
reconstruction efforts for routine applications, in valida-
tion, in benchmarking, and in annotation [7]. These have 
not been addressed in this paper. Instead, the authors 
narrowed down the research focus to simplify the study 
because haplotype assembly was indeed a complex 
research problem. Despite these limitations, this research 
work offered some useful and important inputs and per-
spectives to other users or bioinformaticians.

Fig. 7  Bar plots of the number of blocks with zero switches (blk.w.0sw)
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NA12878 known haplotypes or the so-called “gold 
standard”
The NA12878 known (or true) haplotypes were obtained 
through various steps and processes as stated in Fig. 1 of 
Lowy-Gallego et al. 2019 [45]. These steps and processes 
were summarized below to help readers know their qual-
ity levels and understand how these haplotypes were 
obtained. Only Illumina sequence data with reads longer 
than 70 bp for WGS and 68 bp for whole exome sequenc-
ing (WES) data were used and aligned to GRCh38. The 
FASTQ files were converted to BAM files during the 
alignment process in which base quality scores were 
recalibrated and any duplicates were marked. The WGS 
and WES BAM files then underwent different methods of 
quality control. The BAM files were then used for variant 
identification using three established methods: GATK 
UnifiedGenotyper for WGS data, bcftools for both WGS 
and WES data, and Freebayes for WGS and WES data. 
This process produced 4 initial call sets that went under 
variant filtering. Each call set was normalized, and then 
various tools were used to decompose complex variants 
and re-sort and unify the remaining variants. Multiallelic 
sites were also discarded. Each of the 4 call sets was then 
processed into variant call format (VCF) files to generate 
consensus call sets. Eventually, the call set was filtered 
using a VariantScoreRecalibration method and phased 
using Beagle and SHAPEIT, producing the phased VCF 
files. VCF files with genomic likelihoods were divided 
into single files and then split into chunks that were pro-
cessed in Beagle. Then, using SHAPEIT2, the genotypes 
and haplotypes were phased onto a highly accurate scaf-
fold. The scaffold was also created by SHAPEIT2 using 
available array data from Illumina Omni 2.5 or Affyme-
trix 0.6 data from the 1000 Genomes Project.

About comparing with a “gold standard”
To provide a valid comparison, the authors have used 
a “gold standard,” i.e., a set of “high confidence” known 
(or inferred) haplotypes of NA12878. “High confidence” 
often means “high coverage” and/or “high quality.” That 
is, a lot of uncertain positions (SNVs) with low sequenc-
ing coverages or qualities were not included in the final 
“gold standard.” In fact, there was more than one ver-
sion of the “gold standard,” although the authors only 
used one version in this paper. The one used in this paper 
was better than the one that was not mentioned. They 
all had only about 30 ~ 40% of positions overlapped with 
the SNV positions inferred for the hg19 DP1 data. The 
authors chose to use the current one because it was the 
best NA12878 haplotype data that could be found so far. 
This “gold standard” haplotype dataset had about 80% 
of overlap with the SNV positions inferred by each HA 
method in the hg38 DP1 data. The low overlap percent-
ages (30 ~ 40% for hg19 DP1 data and 80% for hg38 DP1 

data) were due to various reasons. First, no matter how 
accurate a sequencing method was, a sequencing dataset 
could still have some errors, and some genomic regions 
(or positions) could be sequenced with uncertainty or 
low quality. Second, SNV calling and haplotype assembly 
have been very complex problems that involve multiple 
steps and processes as stated in Lowy-Gallego et al. 2019 
[45]. The whole process underwent many different meth-
ods and steps of quality control to ensure a “high confi-
dence.” As shown in Table 9, even filtering only based on 
one factor (DNA sequencing coverage), the number of 
remaining positions decreased significantly. Thus, only a 
certain percentage of positions (definitely not 100%) were 
included in the final “high confidence” true haplotypes 
(or “gold standard”). Therefore, if the haplotypes inferred 
by each HA were compared with the “high confidence 
gold standard” haplotypes, many SNVs would have to be 
removed from the inferred haplotypes. Then, the “block 
structure” from each HA would be destroyed. This kind 
of comparison was not meaningful for this study. There-
fore, the authors focused on pairwise comparisons in this 
paper to provide HA users with some new perspectives 
and results.

Strengths and weaknesses of 6 HA algorithms
All 6 HA methods had certain strengths, weaknesses, 
and unique features. Below were a few typical ones. First, 
HapCUT2, MixSIH, PEATH, and MAtCHap were all 
probability-based methods. This might be the main rea-
son they performed similarly. Second, HapCUT2 could 
work across various sequencing technologies: fosmid-
based dilution pool, 10X genomics linked-read, PacBio 
SMRT, and Hi-C. Other HA algorithms might not be 
able to produce results for data on all aforementioned 
sequencing types [1]. Third, HapCUT2 included extrac-
tHAIRs, a convenient tool available for other software 
packages. WhatsHap was easy to use as it only required 
one VCF file and one BAM file. It did not require a 
fragment file to run. However, the version of Whats-
Hap that was used in this study required Python 3.6 
or above, which could be installed directly by running 
pip (a Python command) or conda (a Miniconda com-
mand). Some inexperienced users might find it difficult 
to get these packages installed properly in a Linux server. 
Fourth, as for the run time, HapCUT2 and WhatsHap 
had stable performance across 6 datasets; but MixSIH, 
PEATH, and SDhaP had more variation. HapCUT2 
and WhatsHap were not affected by read length. They 
can deal with the increasing read lengths with future 
sequencing technologies. Fifth, the strength of SDhaP 
was that it can do both diploid and polyploid haplotype 
assembly [21] although this study did not compare poly-
ploid HA algorithms. Polyploid haplotyping is more chal-
lenging than diploid haplotyping as the complexity of the 
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problem increases drastically for polyploid genomes [7]. 
Sixth, WhatsHap and SDhaP were MEC-based methods. 
Motazedi et al.’s simulation study showed that this type of 
method had an inherent problem because MEC was sen-
sitive to local similarities between homologues [46]. This 
sensitivity led to approximately identical MEC scores for 
several different HA algorithms, causing a suboptimal 
solution to be reported. Other authors mentioned similar 
problems of MEC-based methods too [33, 44]. Seventh, 
both the authors of this paper and the PEATH authors 
found that some SNV positions in the SDhaP outputs 
were homozygous while these positions were indeed het-
erozygous in the gold standard dataset [16]. In addition, 
PEATH authors also mentioned that although SDhaP had 
certain advantages, its results had a large variance [16].

About run time and settings
All HA algorithms were run with a similar command 
line “time HA.algorithm input output”. The input and 
output settings were summarized in Table 11. This table 
showed that an additional parameter was used for Mix-
SIH, i.e., “-a 0.05”, which was required by this algorithm, 
and this setting was close to the default value (0.1). No 
other parameters were set up for the other 5 algorithms. 
The Unix command “time” was used to obtain the CPU 
time of each job. This command provided three differ-
ent time measurements: Real, User, and System. The Real 
time is wall clock time, that is, the time from the begin-
ning to the end of the call including time used by other 
processes and time the process spends blocked. The User 
time is the actual CPU time used in executing the pro-
cess. The System time is the amount of CPU time spent 
in the kernel within the process. All these measurements 
were recorded when running 6 algorithms on both hg19 
and hg38 data as shown in the Supplementary Mate-
rial 4 (an Excel file with two sheets, one for hg19 and 
one for hg38 data). In general, the “User + System” time 
should be the total CPU time. In this paper, only the 
User time was reported as the CPU time in Table 7. The 
System time was not included as part of the CPU time 
in Table  7 because the amount of the System time was 

so small (around 1  min or less) for all HA algorithms 
except SDhaP’s hg19 DP15 and DP30 runs. A record of 
low System time suggested the application was running 
efficiently, but a record of high System time could be an 
indicator of executing inefficiencies and possible issues 
of a specific algorithm. Because SDhaP had an outlying 
performance as documented in the previous subsection 
“SDhaP”, its high System time (hg19 data) could be due 
to some possible issues only related to itself. In addition, 
whether including the System time or not would not 
affect the key conclusion of comparing the running time. 
Therefore, for the sake of consistency and simplicity, only 
the actual CPU time used in executing each process (i.e., 
User time) was reported in Table 7.

All HA jobs were run sequentially without using paral-
lel computing settings. In addition, the run time was the 
time that each HA algorithm used to reconstruct haplo-
types. The input preparation time (e.g., getting a DNA 
fragment file or a VCF file as shown in Fig. 2) for each HA 
algorithm was not included in the run time reported in 
this paper. The input preparation time could range from 
minutes to hours depending on the data size. Finally, the 
authors of certain HA methods (e.g., WhatsHap) kept 
improving their algorithms by adding new features over 
the last several years. It is possible that other research-
ers used less (or more) time if they installed a different 
version of a specific algorithm. For the sake of compari-
son, readers may check the algorithm version or software 
installation time listed in the last column of Table 1.

About SNVs and haplotype blocks
The terms “SNVs” and “haplotype blocks” have been 
commonly used in many recent haplotype assembly 
papers. Before the existence of the next (or second) gen-
eration sequencing (NGS) and third generation (or single 
cell) sequencing (TGS), the term “haplotype” was mainly 
defined as the alleles of consecutive SNPs in the nearby 
region on the same chromosome. The distance between 
the first and last SNPs on a haplotype block could be as 
large as several thousand bases to 100 thousand bases as 
shown in Fig.  2 of Daly et al. 2001 [47]. The term hap-
lotype block was inherited or commonly used in the 
new field of haplotype assembly. However, the length of 
a haplotype block shown in the output of a haplotype 
assembly algorithm could be just 100 bases or less. These 
haplotype blocks consisted of some SNVs that were not 
validated as SNPs yet. That is, with the development of 
DNA sequencing technologies, the meaning of haplotype 
blocks used in the haplotype assembly output somehow 
has evolved or become slightly different from the original 
one defined before the existence of NGS and TGS. These 
terms were explained here for the sake of clarification.

Table 11  The specific input, output, and other key parameters 
used to run each algorithm
Algorithm Input Output Other pa-

rameters
HapCUT2 --fragments DNA.frag-

ment.file 
 --vcf variant.VCF.file

--output output.
file.txt

None

MixSIH Sorted DNA fragment file output.file name - a 0.05

PEATH DNA fragment file output.file name None

WhatsHap Sorted BAM file output.file name None

SDhaP DNA fragment file output.file name None

MAtCHap -F sorted.fragment.file 
V variant.VCF.file

-L output.label 
-O output.folder

None
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The scientific value and the goal of this study
Comparative analysis of existing algorithms may not be 
considered as innovative as a new HA algorithm, but it 
can address recurring questions. The current situation 
is that although many HA algorithms have been devel-
oped, bioinformaticians may not know which one to 
use and how well these algorithms perform. The authors 
were often asked these questions when attending con-
ferences. Therefore, in this paper, a comparison study 
was conducted to answer some important questions 
that involved challenging bioinformatic data analysis. 
This study answered some questions that were not well 
addressed before, and the findings shown in this paper 
can help many users. This research work showed how 
different HA methods might perform if other research-
ers analyzed a newly generated dataset (or a publicly 
available dataset) that had no known haplotypes (i.e., the 
so-called “gold standard”). This study has also offered 
different perspectives for users to investigate with their 
own data and explain what they might find (e.g., filter-
ing based on different coverage levels). The findings of 
this study have not been reported by other authors yet. 
Therefore, this research work is novel and useful. Two 
practical examples of previous publications on compar-
ing a few SNP calling algorithms [48] and alignment algo-
rithms [49] have been cited many times by others. These 
citations can show the scientific value of comparison 
analysis. Therefore, this study is original and valuable.

Conclusion
In this paper, the pairwise comparative analysis of 6 HA 
methods was conducted. Two publicly available sequenc-
ing datasets, hg19 and hg38 from one sample (NA12878), 
were used for the comparative analysis. The aligned reads 
were downloaded and then filtered using 3 sequencing 
depth (DP) levels, DP1, DP15, and DP30 corresponding 
to ≥ 1X, ≥ 15X, and ≥ 30X coverage. This filtering step 
was done for each of the two datasets (hg19 and hg38). 
The 6 HA algorithms were run on these 6 datasets and 
their performances were then compared. The fastest HA 
was HapCUT2 for both hg19 and hg38. Its run time was 
consistently under 2  min. In addition, WhatsHap was 
relatively fast, and its run time was 21 min or less for all 
6 datasets. The other 4 HA algorithms’ run time varied 
across different datasets and DP filtering levels. A pub-
licly available known haplotype dataset was used to com-
pare the SNV positions of these known haplotypes with 
the SNV inferred in each of the 6 HA output files. The 
finding was that < 40% of SNVs inferred in the hg19 out-
put overlapped with known haplotypes, and only 81–84% 
of hg38 output overlapped with the SNV positions in the 
known haplotypes. Then pairwise comparisons were con-
ducted to see how well the 6 HA methods agreed with 
each other by comparing their haplotype blocks, SNVs, 

and switch distances. The comparison results showed 
that for hg19 data, HapCUT2, MixSIH, PEATH, and 
MAtCHap had relatively large agreement levels, but 
WhatsHap and SDhaP had outlying performances. For 
the hg38 data, all algorithms, except SDhaP, performed 
similarly. The pairwise comparison results based on the 
sequencing datasets of the same sample could help users 
to better understand current HA methods. This study 
also provided useful insights on developing more accu-
rate and efficient methods.
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