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Objective
Ottelia Pers., an aquatic plant genus that includes 
approximately 24 extant species, is the second largest 
genus in the family Hydrocharitaceae [1, 2]. China is 
the centre for Ottelia in Asia. There are 10 Ottelia spe-
cies in China, all of which are endemic, except O. alis-
moides [1, 2]. Ottelia alismoides (L.) Pers. is an annual 
or perennial herb that can be submersed or floating in 
fresh or salt water [1–4]. It is distributed worldwide, 
including Africa, Australia and Asia [4]. Molecular 
phylogeny analysis indicates that O. alismoides is the 
ancestor of the other Ottelia species in China [1, 2]. 
Due to the loss and deterioration of aquatic habitats 
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Abstract
Objectives Ottelia Pers. is in the Hydrocharitaceae family. Species in the genus are aquatic, and China is their 
centre of origin in Asia. Ottelia alismoides (L.) Pers., which is distributed worldwide, is a distinguishing element 
in China, while other species of this genus are endemic to China. However, O. alismoides is also considered 
endangered due to habitat loss and pollution in some Asian countries. Ottelia alismoides is the only submerged 
macrophyte that contains three carbon dioxide-concentrating mechanisms, i.e. bicarbonate (HCO3

−) use, 
crassulacean acid metabolism and the C4 pathway. In this study, we present its first genome assembly to help 
illustrate the various carbon metabolism mechanisms and to enable genetic conservation in the future.

Data description Using DNA and RNA extracted from one O. alismoides leaf, this work produced ∼ 73.4 Gb HiFi 
reads, ∼ 126.4 Gb whole genome sequencing short reads and ∼ 21.9 Gb RNA-seq reads. The de novo genome 
assembly was 6,455,939,835 bp in length, with 11,923 scaffolds/contigs and an N50 of 790,733 bp. Genome 
assembly completeness assessment with Benchmarking Universal Single-Copy Orthologs revealed a score 
of 94.4%. The repetitive sequence in the assembly was 4,875,817,144 bp (75.5%). A total of 116,176 genes 
were predicted. The protein sequences were functionally annotated against multiple databases, facilitating 
comparative genomic analysis.
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due to anthropogenic activities, it has been endan-
gered in both China and Japan [2, 4]. However, it 
is listed as a noxious weed in America [5]. One par-
ticular property in O. alismoides is that it is the only 
submerged macrophyte that contains three carbon 
dioxide-concentrating mechanisms, i.e. bicarbonate 
(HCO3−) use, crassulacean acid metabolism (CAM) 
and the C4 pathway [6, 7]. It can be used to treat water 
pollution [3, 8] and has as medicinal value, such as 
cancer and tuberculosis treatment [3, 9]. Therefore, 
our work provides a draft genome of O. alismoides to 
help depict the genetic bases of its different carbon 
usages and metabolism related to variable biochemical 
medicines for its conservation, management and util-
ity in the future.

Data description
Leaf samples from one O. alismoides individual 
planted in the South China Botanical Gard in Guang-
zhou, China, were collected. For genome assembly 
and annotation, three sequencing libraries were con-
structed using total RNA and genomic DNA extracted 
from the samples. Genomic DNA was extracted using 
the cetyltrimethylammonium bromide method, and 
total RNA was extracted using the TRNzol Univer-
sal RNA Extraction Kit (Tiangen, Beijing, China). 
The quality and quantity of DNA/RNA were assessed 
using the NanoDrop™ One microvolume UV-Vis 
Spectrophotometer (Thermo Fisher Scientific, Cali-
fornia, USA) and gel electrophoresis. The PacBio 
Sequel II sequencer was used for circular consensus 
long read whole genomic sequencing (WGS), which 
is also known as HiFi sequencing. A MGI DNBSEQ-
T7 sequencer was used for short-read WGS and RNA 
sequencing (RNA-seq), both under 150 bp paired-end 
mode. Using sequencing data, different programmes 
were applied to perform the analyses. In these analy-
ses, the default parameters of the programmers were 
used unless otherwise mentioned.

The WGS short reads were trimmed with Sickle 
v1.33 [10] under the parameters of “-q 30 -l 80”. 
KmerGenie v1.7044 [11] was then used to estimate 
the O. alismoides genome size with the trimmed 
reads under the parameters of “-k 141 --diploid”. After 
removing adapters in HiFi reads by HiFiAdapterFilt 
v2.0.0 [12], hifiasm v0.19.6 [13] was used to assemble 
the O. alismoides genome. Duplicated sequences were 
further removed by Redundans 0.14a [14] and Purge_
dups v1.2.5 [15]. Using RNA-seq data, the assembly 
was scaffolded with P_RNA_scaffolder [16], and the 
scaffolds were gap closed by TGS-GapClose 1.2.1 [17]. 
The completeness of the final assembly was assessed 
by BUSCO v5.7.0 [18] using the Embryphyta odb10 
2020-09-10 database.

The assembly was parsed through RED v2.0 [19] 
and EDTA v2.1.0 [20] for repeat sequence identifica-
tion. After combining the RED and EDTA results, 
the repeated sequences were then soft-masked in the 
assembly. Braker3 v.3.0.6 [21] was applied for initial 
gene prediction aided with transcriptome data and ref-
erence protein sequences (Data file 1) [22]. The braker 
results were then input into the Funannotate pipeline 
v1.8.16 [23] under the “funannotate prediction” com-
mand with the parameters “--max_intronlen 1000000”. 
The predicted genes were functionally annotated 
against multiple databases using the “funannotate 
annotate” command.

The sequencing libraries produced ∼ 73.4 Gb raw 
data for HiFi sequencing (Data file 2) [24], ∼ 126.4 Gb 
for WGS short read sequencing (Data file 3) [25] and 
∼ 21.9 Gb for RNA-seq (Data file 4) [26]. The estimated 
genome size of O. alismoides was 6,863,432,158  bp, 
while the assembly was 6,455,939,835  bp with 11,923 
scaffolds/contigs (N50 = 790,733  bp) (Data file 5) 
[27]. The BUSCO assessment indicated a complete-
ness of 94.4% (Data file 6) [28]. EDTA and RED iden-
tified 3,695,203,717  bp (57.2%) (Data file 7) [29] and 
4,138,710,098 bp (64.1%) (Data file 8) [30] of repetitive 
sequences, respectively, in the genome. Their combi-
nation was 4,875,817,144  bp, accounting for 75.5% of 
the genome (data file 9) [31]. A total of 116,176 genes 
were predicted (Data files 10–12) [32–34], and their 
annotation is shown in Data files 13 and 14 [35, 36].

Limitations
The current assembled genome is still fragmented and 
could be further improved by increasing HiFi sequenc-
ing data and combining ultra-long Nanopore sequenc-
ing and Hi-C data.
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