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Abstract
Background  HER2-positive breast cancer (BC) is a subtype of breast cancer. Increased ERBB3 expression has been 
implicated as a potential cause of resistance to other HER-targeted therapies. Our study aimed to screen and validate 
prognostic markers associated with ERBB3 expression by bioinformatics and affecting the prognosis of HER2 staging.

Methods  Analyzing differences in ERBB3-related groups. ERBB3 expression-related differentially expressed 
genes (DEGs) were identified and intersected with survival status-related DEGs to obtain intersected genes. Three 
algorithms, LASSO, RandomForest and XGBoost were combined to identify the signature genes. we construct risk 
models and generate ROC curves for prediction. Furthermore, we delve into the immunological traits, correlations, 
and expression patterns of signature genes by conducting a comprehensive analysis that encompasses immune 
infiltration analysis, correlation analysis, and differential expression analysis.

Results  Significant variability in ERBB3 expression and prognosis in high and low ERBB3 expression groups. Twenty-
five candidate DEGs were identified by intersecting ERBB3-related DEGs with survival-related DEGs. Utilizing three 
distinct machine learning algorithms, we identified three signature genes-PBX1, IGHM, and CXCL13-that exhibited 
significant diagnostic value within the diagnostic model. In addition, the risk model had better prognostic and 
predictive effects, and the immune infiltration analysis showed that IGHM, CXCL13 might affect the proliferation of BC 
cells through immune cells. Functional studies demonstrated that interference with PBX1 inhibited the proliferation, 
migration, and epithelial-mesenchymal transition process of HER2-positive BC cells.

Conclusion  PBX1, IGHM and CXCL13 are associated with the expression level of the ERBB3 and are prognostic 
markers for HER2-positive in BC, which may play an important role in the development and progression of BC.
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Introduction
Human epidermal growth factor receptor 2 (HER2)-pos-
itive breast cancer (BC) represents a distinct pathologi-
cal subtype of BC that is characterized by a high degree 
of aggressiveness and often results in an unfavorable 
prognosis [1, 2]. The overexpression of the HER2 protein 
is closely linked to the acceleration of tumor prolifera-
tion and invasion [3]. The advent of anti-HER2 targeted 
drugs has markedly enhanced the prognosis of patients 
with this particular subtype [2, 4]. Nevertheless, a subset 
of metastatic HER2-positive BC patients demonstrate 
inadequate responses to targeted pharmaceutical agents 
[5]. Expanding the number of early cured patients and 
preventing recurrence are therapeutic goals for HER2-
positive BC. Consequently, the development of new ther-
apeutic modalities is imperative, given the dependence of 
these tumors on HER2 signaling.

The HER receptors are comprised of three distinct 
domains: an extracellular ligand-binding domain, a trans-
membrane domain, and an intracellular tyrosine kinase 
domain. Upon ligand binding to the HER proteins, either 
homodimerization or heterodimerization of these recep-
tors is triggered, resulting in the activation of down-
stream signaling pathways. These pathways stimulate cell 
division and growth while inhibiting cell apoptosis [6–8]. 
ERBB3, also designated HER3, is the preferred dimeriza-
tion partner of HER2, forming ERBB3-HER2 heterodi-
mers primarily through the corresponding dimerization 
arms of the extracellular regions of the two proteins [9–
11]. A substantial contributing factor contributing to the 
failure of HER2-targeted therapies has been identified as 
the activation of ERBB3 and its subsequent downstream 
PI3K/AKT signaling pathway [12]. Moreover, elevated 
ERBB3 expression has been postulated as a potential 
mechanism underlying resistance to other HER-targeted 
therapies [13]. The overexpression of HER2 in mouse 
mammary tissue has been demonstrated to induce 
tumor formation. However, the formation of tumors is 
prevented when the ERBB3 gene is knocked out in the 
tissues [14]. It is therefore imperative to conduct a com-
prehensive investigation into the bioinformatics of HER2 

and ERBB3 expression in HER2-positive BC patients in 
relation to tumor immunity, with the objective of identi-
fying reliable biomarkers capable of forecasting or moni-
toring the therapeutic outcomes of HER2-positive BC. 
This approach is crucial for elucidating the mechanisms 
underlying tumor immunity and advancing treatment 
effectiveness.

In the present study, we utilized data from the TCGA 
and GEO databases were employed. By intersecting the 
differentially expressed genes (DEGs) identified in the 
high and low ERBB3 expression groups with from the 
survival status group, we were able to identify genes that 
are both associated with ERBB3 expression levels and 
have the potential to impact prognosis. By employing 
three distinct machine learning algorithms, namely Least 
Absolute Shrinkage and Selection Operator (LASSO), 
Random Forest (RF), and eXtreme Gradient Boosting 
(XGBoost), we could identify PBX1, IGHM, and CXCL13 
as signature genes. The risk models for all three genes 
demonstrated superior prognostic and predictive out-
comes. The immune mechanisms in patients with HER2-
positive BC were investigated through the analysis of 
immune infiltration and correlation analysis between 
characterized genes and immune cell infiltration. In con-
clusion, the results demonstrated that PBX1, IGHM and 
CXCL13 are associated with the expression level of the 
ERBB3 and are prognostic markers for HER2-positive 
in BC, which may play an important role in the develop-
ment and progression of BC.

Materials and methods
Data sources and processing
Bulk RNA-seq data and relevant clinical information for 
TCGA-BRCA from the Cancer Genome Atlas (TCGA) 
database, while the GSE20711 dataset was sourced from 
the Gene Expression Omnibus (GEO) database. The 
TCGA-BRCA cohort was employed as the training set, 
while the GSE20711 cohort served as the validation set. 
We conducted our study with 82 samples in the TCGA-
BRCA training set and 22 samples in the GSE20711 vali-
dation set, all of which were HER2-positive BC cases 
with a clinical survival time exceeding 0. As illustrated 
in Table  1. Furthermore, the GSE20711 validation set 
contains 2 Normal breast tissue samples. The differences 
between groups with high and low ERBB3 expression, 
and between alive and dead groups were analyzed using 
the “limma” R package [15]. Genes with a P-value < 0.05 
and |log2-fold change (logFC)| >1 were designated 
as DEGs. The R package “ggplot2” was used to create 
expression volcano plots of the DEGs [16].

Functional enrichment analysis
Utilizing the “clusterProfiler” R package, we conducted 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

Table 1  Clinical information of breast patiens
Clinicopathologic variable Category TCGA GSE20711
Sample type HER2-positive 82 22
Age (years) < 50 23 /

≥ 50 59 /
Tumor stage I 7 0

II 50 0
III 20 22
IV 3 0
NA 2 0

States of survival Alive 65 12
Dead 17 10
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and Genomes (KEGG) enrichment analyses. The GO sys-
tem is comprised of three main categories: cellular com-
ponents (CC), molecular functions (MF), and biological 
pathways (BP), which are pivotal in analyzing gene func-
tions and biological processes. On the other hand, KEGG 
analysis provides information on functional annotation 
of genes, metabolic pathways and related pathways [17]. 
Additionally, Gene Set Enrichment Analysis (GSEA) 
input files comprise expression profiling data that has 
been normalized by the TCGA HER2-positive BC patient 
training set and biomarker sample labels. In order to 
identify relevant pathways and potential molecular 
mechanisms, the threshold for selecting enriched path-
ways was set at a false discovery rate (FDR) of q < 0.01 to 
assess relevant pathways and potential molecular mecha-
nisms [18].

Machine learning algorithms to acquire signature genes
Three machine learning algorithms-LASSO, RF, and 
XGBoost-were employed for the purpose of identify-
ing signature genes. The LASSO logistic regression 
method is supported by the “glmnet” R software package, 
which is designed to construct the optimal classification 
model by determining the classification error minimiz-
ing λ, screening the feature variables [19]. The RF algo-
rithm ranks the DEGs and the genes with higher scores 
are used as signature genes [20]. XGBoost calculates the 
global importance score of each gene’s contribution to 
the objective function [21]. Finally, the genes obtained 
from the intersection of the three machine learning algo-
rithms are considered as signature genes.

Construction and validation of risk models
The predict function of the “survuval” R package was 
used to predict the risk scores of BC patients, and all BC 
patients were categorized into high- and low-risk groups 
according based on the median value of the Riskscore. 
Subsequently, Kaplan-Meier survival curves were plotted 
for the high- and low-risk groups in the training and vali-
dation sets. Furthermore, risk curves for the two groups 
as well as ROC curves at 1-, 3-, and 5-years were gener-
ated using the “timeROC” R software package to observe 
the differential expression of relevant genes between the 
high- and the low-risk model group.

Immune infiltration analysis
To evaluate the proportional distribution of immune cells 
within the BC risk model, the CIBERSORT algorithm 
was employed to estimate the extent of immune cell infil-
tration in BC patients. The algorithm in question deter-
mines the abundance of immune cells across 22 distinct 
cell types and functional states [22]. The differences in 
immune cell infiltration between the high- and low-risk 
BC groups was conducted using the Wilcoxon rank-sum 

test. Signature genes linked to immune cells were identi-
fied, and the correlation between the expression of these 
signature genes and immune cell levels was assessed 
using Spearman correlation analysis.

Cells, and shRNA
Human normal mammary epithelial cells MCF-10  A, 
HER2-positive breast cancer cell lines HCC1954 (HR-
negative) and BT474 (HR-positive) cells were purchased 
from Procell Life Sciences Co. (Wuhan, China). These 
cells were maintained in culture following the manufac-
turer’s established protocols. The shRNA targeting PBX1 
was synthesized by Sangyo Bio. Subsequently, the cells 
were assigned to three distinct groups: Control, sh-NC 
(non-targeting shRNA control), and sh-PBX1. Utiliz-
ing Lipofectamine 3000 (Invitrogen) as the transfection 
agent, the shRNA was introduced into HCC1954 cells. 
Following a 24 h incubation period post-transfection, the 
cells were harvested for further analysis.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted using RNAiso Plus reagent 
(Takara), following the manufacturer’s instructions. The 
isolated RNA was then reverse transcribed into cDNA 
using the PrimeScript RT Master Mix Kit (Takara). qRT-
PCR was performed with the GoTaq qPCR Master Mix 
(Vazyme), adhering strictly to the manufacturer’s proto-
cols. The specific primers used for PBX1 were: forward 
primer 5’-​A​T​G​A​A​T​C​T​C​C​T​G​C​G​A​G​A​G​C​A​A-3’ and 
reverse primer 5’-​C​A​T​C​C​A​G​A​A​A​T​C​G​G​G​A​A​C​G​C-3’. 
For IGHM, the primers were: forward primer 5’-​C​C​C​A​
C​G​A​C​C​T​A​C​A​A​G​G​T​G​A​C-3’ and reverse primer 5’-​A​T​T​
C​T​G​C​T​G​G​A​A​G​G​T​C​A​G​G​C-3’. Lastly, for CXCL13, the 
primers were: forward primer 5’-​G​C​T​T​G​A​G​G​T​G​T​A​G​A​
T​G​T​G​T​C​C-3’ and reverse primer 5’-​C​C​C​A​C​G​G​G​G​C​A​
A​G​A​T​T​T​G​A​A-3’.

Western blot
Total sample protein was extracted according to the 
manufacturer’s instructions (Proteintech). Protein con-
centration was measured using the BCA assay (Pro-
teintech). Protein samples were separated by molecular 
weight size by polyacrylamide electrophoresis and trans-
ferred to a polyvinylidene difluoride membrane (Milli-
pore). The samples were then incubated with anti-PBX1 
(Abcam, 1:10000), anti-IGHM (CUSABIO, 1:5000), anti-
CXCL13 (Abcam, 1:3000), anti-E-Cadherin (Cell Signal-
ing, 1:1000), anti-N-Cadherin (Cell Signaling, 1:1000), 
anti-Vimentin (Cell Signaling, 1:1000), anti-MMP2 
(Abcam, 1:5000) and anti-MMP9 (Abcam, 1:10000) were 
incubated overnight at 4 °C, followed by incubation with 
horseradish peroxidase-coupled secondary antibodies 
for 2  h at room temperature. The target proteins were 
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specifically detected by treatment with ECL reagent 
(MultiSciences).

CCK8
Cells from each group were harvested, and a cell prolif-
eration assay was conducted using the CCK-8 kit (Bey-
otime), adhering to the manufacturer’s instructions. 
Initially, CCK-8 solution, which contains WST-8, was 
dispensed into 96-well plates containing the cells. These 
plates were then incubated in a cell culture incubator for 
one hour. Subsequently, the absorbance was quantified at 
450 nm using a microplate reader (Bio-Rad Laboratories, 
Inc.) equipped with an enzyme marker.

Scratch wound healing assay
After stabilizing the HCC1954 cells transfected with 
plasmids, they were seeded into a 6-well plate. Upon 
reaching confluence, a standard 10 µL pipette tip was 
used to create a straight and consistent scratch across 
the center of each well. Images of the various cell lines 
were captured at predetermined time points. The widths 
of the scratches were then measured and compared to 
their baseline values across three replicate experiments. 
For statistical analysis, a two-tailed unpaired t-test was 
employed.

Transwell cell migration and invasion assay
HCC1954 cells were inoculated with serum-free medium 
into the upper chamber of Transwell inserts (Corning 
Incorporated). Matrigel was not added for migration 
assays and was added for invasion assays (BD Biosci-
ences). The lower chamber was injected with medium 
containing 10% FBS as chemokine. After 24  h of incu-
bation, cells on the membrane surface that migrated or 
invaded the lower chamber were fixed with methanol, 
stained with 0.1% crystal violet solution, and counted in 
10 randomly selected fields of view. The whole experi-
ment was repeated three times.

Statistical analyses
All statistical analyses in this study were performed using 
R software (v4.4.0) and GraphPad Prism (v8.0), with the 
Wilcoxon rank-sum test used to assess the significance 
of differences in immune infiltration levels between the 
high- and low-risk groups. p < 0.05 was considered indic-
ative of statistical significance.

Results
Identification of ERBB3 and survival-related DEGs and 
functional enrichment analysis
The flowchart of this study is presented in supplemen-
tary Fig.  1. Firstly, we halved into high and low expres-
sion groups based on the expression level of ERBB3. In 
the HER2-positive BC cohort, there was a significant 

difference in ERBB3 expression and prognosis, ERBB3 
plays an important role in the survival and prognosis of 
patient (Fig. 1A-C). Therefore, we analyzed gene expres-
sion differences in ERBB3 expression-related groups. A 
total of 129 DEGs were identified, comprising 17 genes 
with upregulated expression and 112 genes with down-
regulated expression. The results of the differential 
expression analysis are presented in the form of volcano 
plots (Fig. 1D). The GO analysis revealed that DEGs were 
primarily concentrated in biological processes related 
to immunoglobulin, chemokine binding, and antigen 
binding (Fig. 1E). KEGG results showed that DEGs were 
mainly enriched in signaling pathways such as NF-κB, 
chemokines, and IL-17 (Fig. 1F).

Subsequently, patients were divided into two groups, 
Alive and Dead, based on their survival status. A total 
of 80 DEGs were identified. Of the identified genes, 40 
genes were found to have increased expression levels, 
and the other 40 genes displayed reduced expression. 
Results of differential expression analysis are presented 
using volcano plots (Fig.  1G). The GO analysis revealed 
that the DEGs were primarily enriched in biological pro-
cesses pertaining to immunoglobulin production, antigen 
binding, and sex differentiation (Fig. 1H). KEGG results 
showed that DEGs were mainly enriched in signaling 
pathways such as prolactin, AMPK, and thyroid hormone 
(Fig. 1I). These results suggest that ERBB3 and survival-
related DEGs are mainly associated with biological pro-
cesses related to immunity and metabolism.

Selection of the signature genes
A comparable similar pathway metabolism is observed 
for ERBB3-related DEGs and survival-related DEGs. 
Consequently, we intersected the gene sets from the 
ERBB3-related DEGs with survival-related DEGs, result-
ing in 25 DEGs (Fig. 2A, Supplementary Fig. 2).

Three machine learning algorithms, LASSO regression 
analysis, RF and XGBoost, were employed to identify sig-
nature genes [23]. The results demonstrate that six genes 
(CXCL13, IGHM, IGHV1-69D, IGHV3-53, PBX1, and 
SRARP) performed best when they were included in the 
LASSO model (Fig. 2B, C). In the RF algorithm screen-
ing, the top 20 genes in terms of relative importance 
(Fig. 2D). 13 genes in XGBoost had an impact on prog-
nostic relevance (Fig. 2E). Ultimately, three genes PBX1, 
IGHM, and CXCL13 were identified as signature genes 
through the intersection of three machine learning algo-
rithms (Fig. 2F).

Expression level and ROC validation
In the training set, a comprehensive analysis was con-
ducted of the expression levels of three specific genes-
PBX1, IGHM, and CXCL13-comparing groups with high 
and low ERBB3 expression as well as considering their 
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survival status. The results demonstrated that the expres-
sion of PBX1 gene was higher in the high ERBB3 expres-
sion group, and the expression of IGHM and CXCL13 
genes was higher in the ERBB3 low expression group 
(Fig.  3A). Moreover, the Dead group exhibited a higher 
expression of the PBX1 gene, whereas the alive group dis-
played a higher expression of IGHM and CXCL13 genes 
(p < 0.05) (Fig. 3B).

Following this, we established a correlation analysis 
between the three signature genes and patient progno-
sis. The results revealed promising predictive accuracy, as 
evidenced by the area under the curve (AUC) values of 
0.741 for PBX1, 0.717 for CXCL13, and 0.716 for IGHM 
in their respective ROC curves (Fig.  3C-E). Moreover, 
a notable correlation was observed between the genes 
PBX1, IGHM, and CXCL13 and the prognosis of patients 
(Fig. 3F-H).

Fig. 1  Identification and enrichment analysis of DEGs grouped by high and low ERBB3 expression and survival state. A Box plots of ERBB3 expression 
levels in the high and low ERBB3 expression groups in the TCGA-HER2 positive BC patient cohort. B ROC analysis of ERBB3 gene. C Kaplan-Meier analysis 
of ERBB3. D Volcano plot of ERBB3-related DEGs(group: High and Low). E-F GO analysis (E) and KEGG enrichment analysis (F) based on ERBB3-related 
DEGs. G Volcano map of survival-related DEGs (group: Dead and Alive). H-I GO analysis (H) and KEGG enrichment analysis (I) based on survival-related 
DEGs. In the volcano plots, each dot represents a gene (red dots indicate up-regulated genes with logFC > 1 and p_value < 0.05, and blue dots indicate 
down-regulated genes with logFC < -1 and p_value < 0.05). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; FC, fold difference; 
DEGs, differentially expressed genes; CC, cellular components; MF, molecular functions; BP, biological pathways
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Construction and validation of risk models
A risk model was constructed using the biomarkers 
PBX1, IGHM, and CXCL13, which had previously been 
identified. The risk scores for BC patients were predicted, 
and subsequently, all BC patients were stratified into 
high- and low-risk groups using the median risk score 
as the threshold (Fig.  4A-C). The prognostic value was 
assessed by constructing Kaplan-Meier survival curves 
for the high- and low-risk groups in both the training and 
validation datasets. The findings showed that the high-
risk cohort had a notably diminished overall survival 
(OS) in comparison to the low-risk cohort (Fig. 4C). The 
risk model was employed to generate ROC curves for the 
1-, 3-, and 5-year training sets. Notably, the AUC values 
for these respective training sets exceeded 0.75, indicat-
ing that the risk model is highly efficacious (Fig.  4D). 
Furthermore, we investigated the differential expression 
patterns of PBX1, CXCL13, and IGHM genes between 
the high- and low-risk models. Of note, PBX1 displayed 
elevated expression in the high-risk group, whereas 
CXCL13 and IGHM exhibited increased expression in 
the low-risk group (Fig. 4E). The model was additionally 
subjected to functional validation using the independent 
validation set GSE20711, and the results confirmed that 

the model possesses a certain level of accuracy (Fig. 4F-J). 
In conclusion, the model had a better prognosis as well as 
predictive results.

Enrichment analysis of risk models
To gain further insight into the relevant signaling path-
ways and potential biological mechanisms associated 
with the high- and low-risk groups, we employed GSEA 
in the TCGA training set to identify pathways that were 
significantly enriched. GO analysis showed that the high-
risk group was predominantly enriched in processes 
related to energy transport, beta-catenin binding, and 
regulation of chromosome organization (Fig.  5A). The 
results of the KEGG analysis revealed significant enrich-
ment in pathways linked to the hedgehog signaling path-
way, mRNA surveillance pathway, and nucleocytoplasmic 
transport (Fig.  5B). In addition, REACTOME analysis 
demonstrated that it was predominantly enriched in 
pathways associated with nucleoplasmic transport, ECM 
proteoglycans, and non-integrin membrane-ECM inter-
actions (Fig. 5C).

Fig. 2  Signature gene selection. A Venn diagram between ERBB3-related DEGs and survival-related DEGs. B-C Lasso regression plot (B) and validation 
plot (C). D Top 20 relatively important genes based on RF algorithm. E The top 13 relatively important genes based on the XGBoost algorithm. F Venn 
diagrams of the characterized genes identified by the three machine learning algorithms. LASSO, least absolute shrinkage and selection operator; RF, 
Random Forest; XGBoost, eXtreme Gradient Boosting
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Immune infiltration analysis
The degree of immune cell infiltration in BC patients 
was assessed using the CIBERSORT algorithm [24], and 
the proportional abundance of immune cells between 
samples from high- and low-risk BC groups was com-
pared (Fig.  5D). A comparison of the immune cell dis-
tribution in BC patients from the high- and low-risk 
groups revealed that the majority of immune cell types 
did not exhibit significant differences. However, notable 

variations were observed in the levels of activated den-
dritic cells, plasma cells, T cells follicular helper, T cells 
CD8, and macrophages M0 (Fig.  5E). Furthermore, fol-
lowing the exclusion of items that were not statistically 
significant, we found strong correlations between the 
expression of signature genes and immune cells. These 
included a negative correlation between PBX1 and B cell 
memory, as well as T cells follicular helper. Additionally, 
IGHM and CXCL13 exhibits a negative correlation with 

Fig. 3  Expression of genes signature and association with prognosis. A Box plots of expression levels of PBX1, CXCL13 and IGHM in the high and low 
ERBB3 expression groups. B Box plots of expression levels of PBX1, CXCL13 and IGHM in the survival status groups.C-E ROC analysis of PBX1 (C), CXCL13 
(D) and IGHM (E) genes. F-H Kaplan-Meier analysis of PBX1 (F), CXCL13 (G) and IGHM (H) genes. 0 represents Alive and 1 represents Dead. BC, breast 
cancer; AUC, area under the curve; ROC, receiver operating characteristic. *p < 0.05, **p < 0.01, ***p < 0.001, and “ns” represents non-significant
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Fig. 4 (See legend on next page.)
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Macrophages M0. On the contrary, CXCL13 showed a 
negative correlation with macrophages M2, while IGHM 
and CXCL13 exhibited positive correlations with all other 
remaining immune cells (Fig. 5H, Supplementary Fig. 3). 
This indicates that IGHM and CXCL13 may engage with 
various immune cells to enhance the prognosis of HER2-
positive BC. Furthermore, we delved into the correla-
tional analysis between these genes and diverse immune 
cell types. The results revealed significant correlations 
within the low-risk group for certain immune cells. For 
instance, IGHM showed a significant correlation with 
cells including naive B cells, resting NK cells, and T cells 
CD8 (Fig. 5I). Similarly, CXCL13 exhibited a notable cor-
relation with cells like T follicular helper cells (Fig.  5J, 
Supplementary Figs.  4–6), suggesting that these cells 
have a crucial role in the prognosis of the low-risk group.

Validation of signature genes expression in BC cells
To ascertain the expression levels of PBX1, IGHM, and 
CXCL13, we conducted culturing of breast cancer cell 
lines HCC1954 and BT474. The results of the bioinfor-
matics analysis were corroborated by the observation of 
a significant elevation in mRNA and protein expression 
of PBX1 in the HCC1954 and BT474 cell lines relative 
to normal breast epithelial cells MCF-10  A (Fig.  6A-
C). mRNA expression of IGHM showed a tendency to 
increase in the HCC1954H and BT474 cell lines, but was 
not statistically different (Fig. 6A). Similarly, in compari-
son to MCF-10  A cells, although to a lesser extent, the 
mRNA and protein levels of CXCL13 were found to be 
significantly elevated in HCC1954 (Fig.  6A-C). The dis-
crepancy in PBX1 expression was the most pronounced, 
and thus was subjected to further investigation in subse-
quent experiments.

Interference with PBX1 inhibits HER2-positive BC cell 
proliferation, migration, and epithelial-mesenchymal 
transition (EMT) process
To explore the role of PBX1 in HER2-positive BC cells, 
we interfered with PBX1 expression. By qRT-PCR and 
western blot analysis, PBX1 expression was successfully 
knocked down in HCC1954 cell lines (Fig.  7A-C). In 
light of these findings, sh-PBX1-1 was selected for sub-
sequent experimentation. Functional studies showed sig-
nificant inhibition of proliferation of HCC1954 cells at 
24 h, 48 h and 72 h following PBX1 knockdown (Fig. 7D). 
These findings were corroborated by Edu staining, which 

revealed a reduction in proliferating cells in the sh-PBX1 
group relative to the control and sh-NC groups (Fig. 7E). 
Furthermore, we assessed the migration and inva-
sion ability of the cells. Our results indicated that PBX1 
knockdown resulted in a significant reduction in both 
wound healing and transwell migration in HCC1954 
cells (Fig.  7F, G). To investigate the potential mecha-
nism underlying these effects, we analyzed the expres-
sion levels of EMT-related proteins by western blot. In 
HCC1954 cell lines, PBX1 knockdown led to an increase 
in E-cadherin expression and a decrease in N-cadherin, 
vimentin, MMP2, and MMP9 expression, suggesting a 
reversal of the EMT process (Fig.  7H-J). These findings 
provide evidence that PBX1 plays a crucial role in the 
proliferation, migration, and EMT of HER2-positive BC 
cells and highlight its potential as a therapeutic target for 
BC treatment.

Discussion
BC is classified into four types based on molecular typ-
ing: luminal A, luminal B, HER2-positive, and triple-neg-
ative [25, 26]. With the advent of personalized medicine, 
traditional prognostic factors such as tumor size, grade, 
and lymph node involvement are no longer adequate for 
optimal management of early-stage BC patients [27]. 
Therefore, it becomes imperative to identify and select 
molecular biomarkers that can reliably predict thera-
peutic outcomes [28, 29]. ERBB3 plays a pivotal role in 
HER2-mediated transformation, tumor progression, and 
drug resistance. In HER2-dependent cells, deletion of 
ERBB3 results in reduced signaling through PI3K and 
cell proliferation [30–32], suggesting that HER2 may be 
dependent on ERBB3 to drive breast cancer cell growth 
and survival. In this study, we identified three prognos-
tic molecular biomarkers, namely PBX1, IGHM, and 
CXCL13, through the analysis of data pertaining to 
ERBB3 expression levels and survival status in patients 
with HER2-positive BC.

The comparative analysis of ERBB3 expression levels in 
high and low groups among HER2-positive BC patients 
revealed the identification of 129 DEGs. The GO and 
KEGG enrichment analyses revealed a notable cluster-
ing of the ERBB3-associated DEGs within signaling path-
ways related to immunoglobulins, chemokines, antigen 
binding, as well as the NF-κB and IL-17 pathways. Sub-
sequently, a differential analysis of survival state groups 
yielded 80 DEGs. GO and KEGG enrichment analyses 

(See figure on previous page.)
Fig. 4  Construction of risk models, survival status and mRNA expression levels in the training and validation set. In the training set, A-B Risk score plot 
(A) and survival state scatterplot (B) of HER2-positve BC patients. C Kaplan-Meier OS analysis of high- and low-risk model groups. D AUC predicting 1-, 
3-, and 5-year survival in HER2-positve BC patients. E Box plots of expression levels of PBX1, IGHM, and CXCL13 genes between high- and low-risk model 
groups. In the validation set, F-G Risk score plot (F) and survival state scatterplot (G) of HER2-positve BC patients. H Kaplan-Meier OS analysis of high- and 
low-risk model groups. I AUC predicting 1-, 3-, and 5-year survival in HER2-positve BC patients. J Box plots of expression levels of PBX1, IGHM, and CXCL13 
genes between high- and low-risk model groups. BC, breast cancer; OS, overall survival; AUC, area under the curve.*p < 0.05, **p < 0.01, ***p < 0.001, and 
“ns” represents non-significant
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showed that survival-related DEGs were predominantly 
associated with the signaling pathways of immunoglob-
ulin, antigen binding, AMPK and thyroid hormones. 
Chemokines, a class of small cytokines or signaling pro-
teins secreted by cells, serve as crucial active mediators 
in the immune response. They induce the proliferation of 
immune cells, facilitate their involvement in the immune 
response, activate various enzyme activities, and stimu-
late the killing capability of natural killer cells [33]. The 

IL-17 signaling pathway has been demonstrated to trig-
ger the activation of inflammatory transcription factors, 
which in turn lead to the upregulation of gene expression 
and activation of the MAPK pathway via NF-κB [34]. The 
cytokines and chemokines induced by IL-17 orchestrate 
the mobilization of myeloid-derived suppressor cells, 
which in turn foster angiogenesis while simultaneously 
suppressing anti-tumor immune responses [35–37]. We 
found that cell proliferation-related pathways were also 

Fig. 5  Biological characteristics and different immune statuses of risk models. A-C GSEA analysis for Top5 biological characteristics of GO (A), KEGG (B) 
and REACTOME (C) between high- and low-risk groups. D-E Histograms of relative abundance of 22 immune cells analyzed by the CIBERSORT algorithm 
in the training set (D), and box plots of immune cell infiltration enrichment analysis in the low-risk group (yellow box) and high-risk group (green box) 
(E). F Correlation analysis of PBX1, IGHM and CXCL13 genes with immune cells. G Scatter plot of correlation between IGHM gene expression levels and 
NK_cells_resting cells. H Correlation scatter plot of CXCL13 gene expression level with T_cells_follicular_helper cells. GSEA, Gene Set Enrichment Analysis; 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. *p < 0.05, **p < 0.01, ***p < 0.001, and “ns” represents non-significant
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significantly altered in BC tissues, but not as dramatically 
as immune-related pathways, including protein tyrosine 
kinase activator activity and protein kinase activator 
activity-related processes. In addition, ERBB3 has been 
shown to play a role in regulating the immune response 
[6], which is consistent with our observation of some sig-
nificantly enriched pathways. These findings indicate a 
robust correlation between ERBB3 expression levels and 
the prognosis of HER2-positive BC patients, suggesting 
that the associated genes may play a pivotal role in the 
complex immune-inflammatory regulatory mechanisms 
underlying the pathogenesis of BC [38]. Consequently, 
the intersection of ERBB3-related DEGs and survival-
related DEGs yielded 25 genes with correlated ERBB3 
expression levels and prognostic implications.

For the above overlapping genes, LASSO, RF, and 
XGBoost machine learning algorithms were used to 
screen 3 signature genes, PBX1, IGHM, and CXCL13. 
These genes exhibit a strong correlation with the prog-
nosis of BC patients and thus have significant diagnostic 
value and clinical implications. Furthermore, our analysis 
revealed that the PBX1 gene had higher expression lev-
els in both the high ERBB3 expression and Dead groups, 
whereas the IGHM and CXCL13 genes had higher 
expression levels in the low ERBB3 expression and Alive 
groups, respectively. The expression of these genes was 
significantly elevated in HCC1954 and BT474 cell lines 
compared to MCF-10  A cells, further confirming the 
accuracy of the bioinformatics analysis. PBX1 belongs 

to the PBX homeobox family of transcription factors 
and encodes a nuclear protein. It has been reported that 
PBX1 is correlated with ERα and promotes the expres-
sion of genes associated with the aggressive progres-
sion of ERα-positive BC by guiding estrogen-induced 
ERα recruitment to its target chromatin [39]. Further-
more, upregulation of PBX1 has been associated with an 
increased risk of metastatic progression of ERα-positive 
BC [40]. In a loss-of-function assay conducted in vitro, 
we confirmed the biological role of PBX1 in HER2-pos-
itive BC cells. Our findings revealed that knockdown 
PBX1 markedly suppressed the proliferation and meta-
static capabilities of HER2-positive BC cells. Further-
more, this knockdown also impeded the EMT process 
in vitro. IGHM gene is a constant region of the immu-
noglobulin heavy chain, which is correlated with RFS and 
distal metastasis-free survival in triple-negative breast 
cancer and general BC [41], and its role in HER2-positive 
BC is unclear. CXCL13, a chemokine ligand expressed by 
stromal cells in β-cell follicles, was found to be overex-
pressed in tumor tissues and peripheral blood of patients 
with BC [42]. The CXCL13/CXCR5 axis is related to 
improved outcomes of HER2-positive BC [43]. Our study 
demonstrated that 3 signature genes, PBX1, IGHM, and 
CXCL13, are prognostic molecular biomarkers with 
prognostic significance in HER2-positive BC.

In addition, all HER2-positive BC samples were divided 
into high- and low-risk groups based on the calculated 
risk scores, and we observed that the high-risk group 

Fig. 6  Validation of key gene expression in HCC1954 and BT474 cells. A The mRNA expression levels of PBX1, IGHM, and CXCL13 were detected by qRT-
PCR. B-C The protein expression levels of PBX1, IGHM, and CXCL13 were detected by western blot. *p < 0.05, **p < 0.01, ***p < 0.001, and “ns” represents 
non-significant

 



Page 12 of 15Mo et al. BMC Genomic Data            (2025) 26:2 

Fig. 7  Interference with PBX1 inhibits proliferation and migration of HER2-positive BC cells and the process of EMT. A-C Detection of PBX1 interference 
levels by qRT-PCR (A) and western blot (B, C). D CCK8 detects the proliferation level of HCC1954 cells. E Edu staining (green) to observe the proliferation 
level of HCC1954 cells. DAPI (blue) restaining of cell nuclei. F-G wound healing (F) and transwell (G) assays for cell invasive migration levels. H-J west-
ern blot detection of migration and EMT-related protein expression levels in cells. BC, breast cancer; EMT, epithelial-mesenchymal transition. *p < 0.05, 
**p < 0.01, ***p < 0.001, and “ns” represents non-significant
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was predominantly enriched for energy transport, ECM, 
nucleoplasmic transport, and mRNA-associated path-
ways, and thus hypothesizing that the risk scores may 
be a potential predictor of HER2-positive BC patients 
receiving immunotherapy, we conducted an in-depth 
analysis to assess the immune cell infiltration patterns 
between the two distinct groups. With regards to the 
immune cell distribution, no significant variations were 
observed in the majority of immune cell types, but there 
were significant differences between the two groups in 
dendritic cells activated, plasma cells, T cells follicular 
helper, T cells CD8 and macrophages M0. Breast tumors 
sites had higher numbers of CD8 T cells, lower num-
bers of CD4 T cells, and increased OS [44]. CD4 T cells, 
one of the most important subtypes of T cells and a key 
player in tumor immunity, include the T regulatory cell, 
which impairs the function of effector immune cells [45, 
46]. Furthermore, our study revealed a strong correlation 
between IGHM and CXCL13 with various immune cells 
and their functionalities within the low-risk group, sug-
gesting that they may influence BC cell proliferation via 
immune cell modulation. This indicates a significant role 
for these factors in the prognosis of the low-risk group. 
However, further experiments are still needed to verify 
these findings. In addition, the sample size of the valida-
tion set GSE20711 was relatively small, and to address 
this challenge, future studies should incorporate diverse 
validation sets and larger sample sizes, to further validate 
our results and establish more accurate clinical models.

Although our study successfully identified three key 
genes PBX1, IGHM and CXCL13 associated with ERBB3 
expression levels by in-depth analyses of TCGA data 
and initially explored their prognostic value in HER2-
positive BC, there are still some limitations to the work. 
Firstly, the sample size of the validation set was rela-
tively small, limiting the broad applicability of the find-
ings, and future studies should include more samples to 
improve the generality and reliability of the results. Sec-
ond, the experimental validation was mainly limited to in 
vitro experiments and a few cell lines, and lacked in vivo 
experiments and wider cell line validation, which limits 
our understanding of the mechanisms of these genes’ 
roles in complex biological environments. Finally, differ-
ences in statistical and computational methods may lead 
to uncertainty in conclusions, and optimisation of data 
pre-processing, parameter settings and algorithm selec-
tion should be enhanced in the future to improve the 
accuracy and reliability of results.

In summary, genes associated with ERBB3 expression 
levels and their impact on prognosis were intensively 
investigated by analyzing TCGA data, and three charac-
terized genes, PBX1, IGHM and CXCL13, were identified 
by risk assessment modeling, external dataset and experi-
mental validation. PBX1 has been shown to promote 

proliferation, invasion and metastasis of HER2-positive 
BC cells. Therefore, PBX1, IGHM and CXCL13 genes 
associated with ERBB3 gene can be used as prognostic 
markers for HER2 typing and influence the prognosis of 
HER2 typing.
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