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Abstract
Background  miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles 
in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for 
miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics 
tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-
scale biological data. Hence, developing a model to predict, identify, and rank connections in miRNAs and diseases 
can significantly enhance the precision and efficiency in investigating the relationships between miRNAs and 
diseases.

Results  In this study, we utilized miRNA-disease association data obtained by biotechnological experiments 
to develop a DL model for miRNA-disease associations. To improve the accuracy of prediction in this model, 
we introduced two labeling strategies, weight-based and majority-based definitions, to classify miRNA-disease 
associations. After preprocessing, data was trained with a novel model combining gated recurrent units (GRU) 
and graph convolutional network (GCN) to predict the level of miRNA-disease associations. The miRNA-disease 
association datasets were from HMDD (the Human miRNA Disease Database) and categorized by two distinct labeling 
approaches, weight-based definitions and majority-based definitions. We classified the miRNA-disease associations 
into three groups, “upregulated”, “downregulated” and “nonspecific”, by regression analysis and multiclass classification. 
This GRU-GCN coordinated model achieved a robust area under the curve (AUC) score of 0.8 in all datasets, 
demonstrating the efficacy in predicting potential miRNA-disease relationships.

Conclusions  By introducing innovative label-preprocessing methods, this study addressed the relationships 
between miRNAs and diseases, and improved the ambiguity of the results in different experiments. Based on these 
refined label definitions, we developed a DL-based model to refine and predict the results of associations between 
miRNAs and diseases. This model offers a valuable tool for complementing traditional experimental methods and 
enhancing our understanding of miRNA-related disease mechanisms.
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Introduction
MicroRNAs (miRNAs) are endogenous noncoding RNAs 
with 18 to 24 nucleotides in lenhths, and play a major role 
in many important physiological processes [1]. miRNAs 
also play crucial roles in cancer- or disease-related path-
ways. The abnormalities in miRNAs may cause dysfunc-
tions in target gene expression, which eventually leads to 
the proliferation of cancer cells [2]. Over 60% of human 
protein-coding genes selectively pair with miRNAs [3]. 
In general, miRNAs target complementary sequences 
on the 3’UTR of mRNAs to silence gene expression [4]. 
Pri-miRNAs (primary transcript miRNAs) are first tran-
scribed and edited to pre-miRNAs in the nucleus, and 
then pre-miRNAs (precursor miRNAs) are further edited 
to mature miRNAs in the cytoplasm to identify specific 
sequences of mRNAs [5]. miRNAs are linked to various 
diseases such as miR-143/145 family in hypertension 
and cardiac failure, let‐7 and miR‐103/107 family in glu-
cose metabolism, miR-29 in diabetes, and a cluster of 
oncomiR of miR‐17 to 92 family in various cancers [6].

Today, various databases for miRNAs, such as miR-
base, TargetScan, miRDB, MirGeneDB, and HMDD have 
been constructed [7–12]. Both miRbase and HMDD 
(the Human MicroRNA Disease Database) are con-
tinually updated. miRbase is a database containing both 
hairpin and mature miRNA sequences, annotations and 
functional information about specific microRNAs. miR-
base contains pre-miRNA sequences with stem-loops, 
the positions and sequences of mature miRNAs, and 
related literatures of specific miRNAs [10, 13]. HMDD 
was established and used to provide cumulative knowl-
edge on the associations with miRNAs and diseases 
from life science- or medical publications. HMDD is a 
database that collects and continually updates results of 
miRNA-disease associations [11, 12]. HMDD v3.0 is a 
database that manually collects 32,281 miRNA-disease 
associations including 1,102 miRNA genes, and 850 dis-
eases from 17,412 publications [11]. Most studies on the 
relationships between miRNAs and diseases are based on 
experimental or wetlab assays which are expensive and 
time-consuming but highly accurate. However, due to 
experimental conditions, some controversial or incon-
sistent results exist in different publications. Developing 
a tool to complement traditional experimental methods 
will enhance our understanding of miRNA-related dis-
ease mechanisms.

Various models were used to delve into miRNA-disease 
associations. For examples, using semantic information 
and heterogeneous disease-related interaction data [14], 
metric learning [15], node2vec-based neural collabora-
tive filtering [16], deep-belief network [17], and employ-
ing graph convolutional networks with a learning graph 
spatial operated paths for predicting miRNA-disease 
associations [18]. Employing regularized least squares 

to uncover the relationship between miRNAs and dis-
eases [19]. Matrix factorization-based models such as 
similarity-based matrix factorization framework (SMAP) 
[20], framework of predicting miRNA disease associa-
tions via matrix factorization (MDMF) [21], and inferring 
miRNA-disease interactions using probabilistic matrix 
factorization (IMIPMF) [22] were used to predict the 
association between miRNAs and diseases.

Considering the labor-intensive nature of analyzing 
the results of associations between miRNAs and diseases 
from traditional biotechnological methods, we aimed to 
utilize the miRNA-disease data in HMDD v3.2 to develop 
a pairwise association model and predict potential miR-
NAs-diseases correlation based on machine learning 
(ML) or deep learning (DL) methods. miRNA-disease 
heterogeneous information networks were analyzed with 
graph neural network (GNN)-based approach to predict 
their relationships [23, 24]. DL is a branch of ML that uses 
the back-propagation algorithm to mine the structure of 
datasets and processes multiple layers to recognize data 
with multiple levels of abstraction [25]. Because of vari-
ous tasks and data structures, many different algorithms, 
such as convolutional neural network (CNN), recurrent 
neural network (RNN), and graph convolutional net-
work (GCN) have been developed for DL. CNN is widely 
used in processing image data such as images and vid-
eos, whereas RNN has made great progress in analyzing 
sequential data such as text and gene sequences. GCN is 
modified from CNN and properly handles tasks involving 
graph-type data, such as social networks, citation net-
works, and recommendation systems [26]. In this study, 
we proposed a GRU-GCN coordinated model to predict 
the association between miRNAs and diseases. We estab-
lished two modules in this model, miRNA representation 
module and disease representation module, to evaluate 
the relationships between miRNAs and diseases. We used 
secondary structure and sequence of miRNAs as an input 
feature in the miRNA representation module. We con-
verted MeSH descriptor to a directed acyclic graph com-
bining with the GloVe word embedding transformation 
as a feature of node into disease vectors in the disease 
representation module. Furthermore, we utilized second-
ary structure and sequence of miRNAs in this model to 
provide another window to investigate the relationships 
between miRNAs and diseases in fields of bioinformatics, 
bio-simulation, and epigenetics. We expected this model 
could accelerate the identification of miRNA-disease 
association from the results of traditional experimental 
methods in this GRU-GCN coordination-based model.

Methods
Database
The parameters which are attributes in HMDD v3.2 
include the code, miRNA name, disease name, PMID, 
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and description [11]. The “code” attribute in HMDD is 
assigned to a specific miRNA and disease pair. The num-
ber of each code was listed in Supplementary Table 1. 
The microRNA database (miRBase) is currently main-
tained by the Griffiths-Jones lab at the Faculty of Biology, 
Medicine, and Health, University of Manchester [13]. 
The sequences and corresponding names of the miRNAs 
were downloaded from miRbase.

Data preprocessing
HMDD label definition
HMDD database organized the data into six generalized 
categories (genetics, epigenetics, target, circulation, tis-
sue, and others). Among the categories, “Genetics”, “Cir-
culation” and “Tissue” could be further divided into three 
classes: “upregulate”, “nonspecific” and “downregulate”. 
The detailed definitions of the classes were listed in Sup-
plementary Table 2. The relationships between miRNAs 
and diseases in HMDD was accumulated from PubMed. 
However, the relationships between miRNAs and a dis-
eases didn’t represent consistant results in different 
experiments in different studies. Therefore, in addition 
to the digitization of labels, we considered the different 
results drawn by other publications. Assume that a spe-
cific miRNA and a specific disease in HMDD has p posi-
tively correlated results, n negatively correlated results, 
and ns irrelevant studies. For multiclass classification 
problems, we used majority-determination labels to 
address different conclusions, and deleted data where p 
and n are equal:

	

class =




max (p, n, ns) , if p ̸= n ̸= ns
p, if p ̸= ns > n
n, if n ̸= ns > p

delete data, if p = n > ns

For the multiple regression problem, we defined weight 
labels by weights to address different results. The weight 
label is formulated as follows.

	
lable = p × 1 + ns × 0 + n × (−1)

p + n + ns

miRNA data preprocessing
The raw data of the HMDD database contains the names 
of pre-miRNAs without mature miRNA gene sequences. 
Therefore, it is necessary to identify the mature miRNA 
sequences corresponding to pre-miRNAs in the HMDD. 
After obtaining the mature miRNA sequences from miR-
base (Supplementary Fig. 2), the model needs the digital 
type data for input. We used K-merge algorithm to con-
vert the mature miRNA sequence into a sequenced num-
ber. In this study, we set al.l the miRNAs to a fixed length 

of 28 with zero-padding. K-merge algorithm is illustrated 
in Supplementary Fig.  2. We also followed the methods 
of PDMDA [27] to extract pre-miRNAs’ secondary struc-
tures as the input of the model. All extracted features and 
descriptions are shown in Supplementary Table 3.

Disease data preprocessing
We used the Medical Subject Headings (MeSH) descrip-
tor for disease data preprocessing. MeSH descriptor was 
further transformed into a directed acyclic graph. An 
example of a directed acyclic graph of MeSH descrip-
tor was illustrated in Supplementary Fig. 3. The diseases 
of MeSH descriptor was first converted into a directed 
acyclic graph, and then combined with the GloVe word 
embedding transformation [28] to convert the text in the 
node into disease vectors. Finally, the input graph of the 
GCN was constructed. More specifically, every disease 
had a different directed acyclic graph and was defined as 
G = (V, E, XV ), where V  was the set of MeSH descrip-
tors, the edges E = {(i, j)| when vi is adjecent to vj} 
represented the hierarchical relationship of MeSH 
descriptor, and nodes vector XE =

{
X(i,j)

∣∣ (i, j) ∈ E} 
represented the disease vector of MeSH descriptor 
which was transformed by GloVe word embedding 
transformation.

Deep learning models
After the raw data has been labeled, preprocessed, and 
mapped to the original HMDD database, the processed 
data was input into the feature learning model. In this 
study, we employed GRU to learn the features of miRNA 
sequence and GCN to learn the features of disease graphs 
from MeSH descriptors. The multiple regression model 
in this study was based on MLP. The features of both 
miRNA and disease were simultaneously input to the 
final MLP-based multiple regression model. We used 
multilayer perceptron (MLP) [29], 1-dimensional con-
volutional neural network (Conv1D) [30], bidirectional 
encoder representations from transformers (BERT) [31], 
long short-term memory (LSTM) [32], GRU [33], and 
GCN [34] to train and test the miRNA feature learning 
module or disease feature learning module. Importantly, 
the preprocessing steps were various in the disease rep-
resentation module because of the different models used. 
Only GRU used GloVe embedding as the data preprocess-
ing method, and only BERT used tokenization as the data 
preprocessing method. After the raw data were labeled, 
preprocessed, and mapped to the original HMDD data-
base, the processed data was input into the representa-
tion modules. We used MLP, Conv1D, BERT, LSTM, 
GRU, and GCN to learn the features of miRNA sequences 
and disease graphs from MeSH descriptors. We used 
the MLP classifier and MLP-based multiple regression 
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model to output the results. We randomly selected 640 
data points, which were not included in the training set, 
as the testing set. All the testing data for each experi-
ment was different. MLP, Conv1D, BERT, LSTM, and 
GRU were implemented using Pytorch, and GNN was 
implemented using Pytorch Geometric. Training hyper-
parameters and other details were shown in Supplemen-
tary Table 4. Both representation modules of miRNA and 
disease were then input to the final MLP-based multiple 
regression model. The features XF

m learned from the 
miRNA representation module and the features XF

d  
learned from the disease representation module were 
input into the MLP-based multiple regression model 
for regression analysis. The weight of the l-th layer was 
represented as W (l)| (l ∈ 1,2, 3, . . . , n), and the bias of 
the l-th layer wa represented as b(l) |( l ∈ 1,2, 3, . . . , n)
. The algorithm of regression model was as 
ŷ = W lReLU

(
. . . ReLU

(
W 1 (

XF
m ⊕ XF

d

)
+ b1)

. . .
)

+ bl

, where ⊕ was matrix connection.

Predicted regulation-level model for miRNA-disease 
associations
miRNA sequence information Xm = {x1

m, x2
m, . . . , xn

m} 
and disease vectors Xd = {x1

d, x2
d, . . . , xn

d } were used 
as input features into a MLP-based multiple regres-
sion model (or a classifier) R. The MLP-based multiple 
regression model R performed regression analysis based 
on the input miRNA sequence information Xm and dis-
ease Xd and was trained to output the regulation-level 
Y = {y1, y2, . . . , yn} which was extracted from HMDD. 
According to the notation above, the loss function could 
be defined as:

	
arg min

θ R

1
n

∑
n
i=1

(
Y − R

(
xi

m, xi
d

))2

where θ R were the parameters of R. Assuming that the 
miRNA feature learning model Fm was used to learn the 
expression of Xm, the disease feature learning model Fd 
was used to learn the correct expression of Xd, and 
θ Fm

, θ Fd  were the parameters of Fm and Fd, respec-
tively. The loss function of the model could be thus for-
mulated as follows.

	
arg min

θ R,θ Fm ,θ Fd

1
n

∑
n
i=1(Y − R(Fm(xi

m), Fd(xi
d) ))

2

Model evaluation
We used mean square error (MSE) to evaluate the aver-
age squared difference between the estimated values 
and the actual values. The mean absolute error (MAE) 
was used to evaluate the sum of absolute errors. The 

confusion matrix was used to evaluate the values of Pre-
cision, Recall, and F1-score in different models. The ROC 
(receiver operating characteristic) and AUC (area under 
the curve) were used to evaluate the discrimination abil-
ity in different models. The definition of MSE and MAE 
was 1

n

∑
n
i=1(yi − ŷi)2 and 1

n

∑
n
i=1 |yi − ŷi|. The for-

mula of confusion matrix was Precision = T P
T P +F P , 

Recall = T P
T P +F N , and F1 Score = 2× Recall× P recision

Recall+P recision .

Results
Gate Recurrent Unit (GRU) had better performance in the 
miRNA representation module
Before constructing the GRU-GCN coordinated model 
to predict associations of miRNAs and diseases, we first 
estimated the performance of GRU-GCN coordinated 
model with different models in the miRNA represen-
tation module and MLP in the disease representation 
model. To evaluate the best performance of the miRNA 
representation module among the different DL mod-
els, we trained MLP, LSTM, Conv1D, GRU, and BERT 
as miRNA sequence feature extractors. Unexpectedly, 
during the data preprocessing stage, we found many 
repetitive, contradictory or mislabeled results in HMDD 
database. To correct biases, we used miRbase data-
base to screen out mislabeled miRNAs to address these 
problems. After training, the combinations of features 
in the miRNA sequences and miRNA secondary struc-
tures were input to the MLP to obtain different miRNA 
representation modules. The features of diseases were 
input the MLP to obtain the representation of diseases. 
Then the modules of miRNAs and diseases were sub-
sequently input into the regression model to predict 
regulation-level of miRNA-disease associations (Fig.  1). 
Table 1 showed that both GRU and BERT had better fea-
ture extracting power and achieved similar value in MSE 
(0.2319 and 0.2329), but GRU surpassed other models in 
terms of MAE (0.3451).

Graph Convolutional Network (GCN) had better 
performance in disease representation
In the Fig. 1; Table 1, we revealed the best performance 
of the miRNA representation module, we next evalu-
ated the performance of GRU-GCN coordinated model 
with GRU-MLP-coordinated model in the miRNA rep-
resentation module and different models in the disease 
representation model. To estimate the best performance 
of the disease representation modules among the differ-
ent DL models, we trained MLP, LSTM, GRU, BERT, and 
GCN as disease feature extractors. After training, the 
GRU-MLP-coordinated miRNA representation module 
combined with different disease representation mod-
ules were input into the regression model for predicting 
regulation-level of miRNA-disease associations (Fig.  2). 
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Table 2 displayed that GCN had better feature extraction 
power and lower MSE (0.2406), but GRU surpassed other 
models in terms of MAE (0.3515).

1-merge had better performance in GRU-GCN 
coordination-based prediction model for miRNA-disease 
association
In the results of Tables  1 and 2, we demonstrated that 
GRU-GCN coordination-based prediction model had 
better performance for predicting the regular level of 

Table 1  Performance of miRNA sequence representation 
modules
Fm MLP Conv1D BERT GRU LSTM
Fd MLP MLP MLP MLP MLP

MSE(L2) 0.2664 0.2904 0.2329 0.2319 0.2359
MAE(L1) 0.3908 0.4076 0.3649 0.3451 0.3610
MSE: mean square error. MAE: mean absolute error

Fig. 1  The architecture of regular level by different miRNA sequence feature extractors. The figure was created with BioRender.com
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miRNA-disease association. miRNAs are usually com-
posed of 18–24 nucleotides and inputting different 
lengths of miRNAs into the miRNA presentation mod-
ule would result in differences. For this reason, we used 
K-merge algorithm to assess the appropriate input length 
of a miRNA. We converted the mature miRNA sequence 
into a sequenced number and then input it into the GRU-
MLP-coordinated miRNA representation for miRNA-
disease association and examined the performance from 
1-merge to 7-merge in this model (Fig. 3). Table 3 indi-
cated that 1-merge coding had the lowest MSE (0.1901) 
and MSA (0.3386) for predicting the regular level of 
miRNA-disease association.

GRU-GCN coordination-based prediction model had the 
best performance the in predicting model for miRNA-
disease association
The above results indicated that GRU and GCN had the 
best performance in the miRNA and disease representa-
tion modules respectively. Here, we replaced GRU and 
GCN with MLP in the miRNA and disease representa-
tion modules respectively to evaluate the performance 
in GRU-GCN, MLP-GCN, and GRU-MLP coordina-
tion-based prediction models. The representations of 
both miRNAs and diseases would all be input into the 
final multiple regression model. The model architecture 
was illustrated in Fig. 4. Table 4 showed that GRU-GCN 
coordination-based prediction model had the lower MSE 
(0.1901) and MAE (0.3386), because it had the best per-
formance the in predicting model for miRNA-disease 
association.

Evaluation of GRU-GCN coordination-based prediction 
model for miRNA-disease association
In the results of Fig.  4; Table  4, we demonstrated that 
incorporating the GRU-MLP-based miRNA representa-
tion module and the GCN-based disease representation 
module into regression model had the best perfor-
mance in miRNA-disease associations. However, it was 

Table 2  Performance of disease representation disease 
representation modules
Fm MLP MLP MLP MLP MLP
Fd MLP BERT LSTM GCN GRU
MSE(L2) 0.2664 0.3670 0.3311 0.2406 0.2565
MAE(L1) 0.3908 0.4510 0.4187 0.3606 0.3515
MSE: mean square error. MAE: mean absolute error

Fig. 2  The architecture of regular level by different disease feature extractors. The figure was created with BioRender.com
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still challenging to assess the effectiveness of this model 
through MSE and MAE. Here, we further defined the 
input dataset as a multiclass classification through major-
ity-determination labels, and evaluated the value of Pre-
cision, Recall, F1-Score, ROC, and AUC in Table 5. The 
ROC curves of the GRU-GCN coordination-based pre-
diction model for the ‘Circulation,’ ‘Tissue,’ and ‘Genetics’ 
datasets, as listed in Supplementary Table 2, are displayed 
in Fig. 5A and C, with the AUC for each exceeding 0.8. 

These results revealed that this model could effectively 
classify the associations between miRNAs and diseases. 
Notably, the AUC of the Circulation dataset had the best 
performance (above 0.9), and the AUC of the other data-
sets had lower performance (between 0.80 and 0.86). The 
ROC curve of the GRU-GCN coordination-based predic-
tion model with a multiclass classifier on the “All” dataset 
was shown in Fig. 5D, and the AUC of the model was also 
greater than 0.8. This result indicated that the model had 

Table 3  Performance of different K-merge in GRU-GCN coordinated model
Fm GRU GRU GRU GRU GRU GRU GRU
Fd GCN GCN GCN GCN GCN GCN GCN
K-merge 1-mer 2-mer 3-mer 4-mer 5-mer 6-mer 7-mer
MSE(L2) 0.1901 0.2287 0.2279 0.2392 0. 2408 0.2892 0.2311
MAE(L1) 0.3386 0.3658 0.3588 0.3720 0.3860 0.4035 0.3713
MSE: mean square error. MAE: mean absolute error

Fig. 3  The architecture of regular level by different K-merge coding in GRU-GCN coordination-based prediction model for miRNA-disease associations. 
The figure was created with BioRender.com
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good identification ability in the face of the integrated 
data.

Discussion
In this study, we established a model for predicting the 
level of miRNA and disease associations. After com-
paring the performance of different model pairs, we 
demonstrated that the GRU-GCN coordination-based 
prediction model was the best model pair in Figs. 1 and 
2; Tables  1 and 2. miRNA is a kind of sequential data 

Table 4  Performance of GRU-GCN, MLP-GCN and GRU-MLP 
coordinated model
Fm GRU MLP GRU
Fd GCN GCN MLP
MSE(L2) 0.1901 0.2406 0.2319
MAE(L1) 0.3386 0.3606 0.3451
MSE: mean square error. MAE: mean absolute error

Table 5  Evaluation of GRU-GCN coordination-based prediction 
model for miRNA-disease association
Dataset Class AUC Precision Recall F1-Score
Circulation Down 0.9331 0.7959 0.6964 0.7429

NS 0.9103 0.8413 0.8689 0.8548
Up 0.9353 0.7805 0.7901 0.7853

Tissue Down 0.8144 0.6289 0.6455 0.6371
NS 0.8341 0.6650 0.6782 0.6716
Up 0.8021 0.7042 0.6787 0.6912

Genetics Down 0.8648 0.8819 0.8971 0.8894
Up 0.8653 0.8133 0.7888 0.8009

All Down 0.8071 0.4070 0.6250 0.4930
NS 0.8138 0.8595 0.5683 0.6842
Up 0.8334 0.5221 0.7284 0.6582

Down: downregulated, NS: nonspecific, Up: upregulated

Fig. 4  The architecture of regular level by GRU-GCN coordination-based prediction model for miRNA-disease associations. The figure was created with 
BioRender.com
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composed of “A”, “U”, “C”, and “G” and converting these 
this sequential data to digital types in the preprocess-
ing step is important. In the results of Fig. 3; Table 3, we 
showed that 1-merge coding had the lowest MSE and 
MAE for predicting the level of miRNA-disease associa-
tion. In the results of Figs.  4 and 5; Tables  4 and 5, we 
demonstrated that the GRU-GCN coordination-based 
prediction model had optimal identification ability in 
multiclass classification.

In the miRNA representation module, both GRU and 
BERT had good feature extraction power and achieved 

similar MSE results. However, GRU had the lowest MSE 
and MAE compared with other models. Although BERT 
is the most common model for sequence data, the per-
formance of BERT was not comparable to that of GRU. 
A possible reason could be insufficient pre-training data 
for BERT. In the disease representation module, we com-
pared MLP, LSTM, GRU, BERT, and GCN as disease fea-
ture extractors and determined that GCN had the lowest 
MSE and lower MAE. This is likely because the inputting 
data by MeSH disease graph in GCN contained more 
information compared to other preprocessing methods. 

Fig. 5  ROCs of GCN & GRU regulation prediction using multi-class classifier using (A) Circulation”, (B) Tissue, (C) Genetics and (D) All datasets
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More specifically, the disease graph provided by MeSH 
includes all related disease descriptors into the child 
nodes of the disease. Consequently, GCN had higher 
sensitivity to the relationships between diseases dur-
ing training, better understanding for the classification 
and relationships of diseases and improved the feature 
expression of the diseases.

HMDD congregates large amounts of miRNA-related 
literature. However, the labels in the HMDD appear 
as repetitive or contradictory collections. These fac-
tors would cause the problem as a binary classification 
to distinguish whether diseases were downregulation, 
upregulation or not by miRNAs in ML. To overcome 
the inadequacies in predicting potential associations 
between miRNAs and diseases in ML methods, we pro-
posed a method of deep regulation-level for miRNA-
disease associations model with GRU and GNN to define 
the data preprocessing method and to solve the problem 
of label duplication in the HMDD database.

The predicting results of ML are highly dependent on 
the representations of the data. Directly inputting raw 
data without feature extraction might cause the regres-
sion model to analyze the irrelevant features. Extract-
ing the features of Xm and Xd were the main factors 
for the quality of prediction in the model. Thus, we used 
DL models to learn the proper representation of Xm and 
Xd. These representation learning modules could con-
vert Xm and Xd into features which were more suitable 
for inputting into regression model and decreased the 
labor consumption of manual feature extraction.

Zheng et al. using K‑mer sparse matrix to extract 
miRNA sequence information, miRNA functional simi-
larity, disease semantic similarity and Gaussian inter-
action profile kernel similarity information to predict 
miRNA-disease associations [35]. Differently, we linked 
the features of secondary structure and sequence of miR-
NAs in the miRNA representation module and the fea-
tures of MeSH descriptor to node into disease vectors in 
the disease representation module to predict miRNA-
disease associations. The secondary structure of miRNA 
was responsible for the inhibitory ability of miRNA. In 
the miRNA representation module, we extracted features 
of the secondary structure and sequence in miRNAs. The 
Mesh descriptors could improve the connection between 
clinically defined diseases and miRNAs. In the diseases 
representation module, we used MeSH descriptors to 
extract features of diseases. By combining these two 
modules, we could predict the associations of miRNAs 
and clinically defined diseases through considering the 
influence of the structure and sequence of miRNA. The 
predictive results in this model were based on inputting 
datasets by supervised learning. Whether unknow asso-
ciations between miRNAs and diseases could be identi-
fied requires further investigation. The innovation of this 

study was to establish a prediction model for the associa-
tions of miRNAs and diseases, which had potential ben-
efits for clinical applications.

Conclusion
In this GRU-GCN-coordinated model, we combined two 
innovative label-preprocessing methods to define the 
relationships between miRNAs and diseases and improve 
the ambiguity of the results from different experiments. 
On the dasis of these definitions, we proposed a deep 
learning-based model to refine and predict the results 
of associations between miRNAs and diseases. Through 
connecting the features of the secondary structure and 
sequence of miRNAs in the miRNA representation mod-
ule and the Mesh descriptors in the disease representa-
tion module in the GRU-GCN coordination-based model 
to predict the relationshps between miRNAs and dis-
easesm this model showed good identification ability in 
miRNA-disease association. We hope this model could 
effectively help understand the potential associations 
between miRNAs and diseases, reduce the redundant 
analyzing processes and assist biological researchers to 
select the trustworthy miRNA-disease pairs. In addition, 
identifying the associations between miRNAs and dis-
eases could help researchers further understand the rela-
tionships between pathogenesis and miRNAs in diseases, 
and therefore provide significant contributions to medi-
cal applications such as disease treatment, diagnosis, pre-
vention, and drug development.
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