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Abstract 

Objective As one of the most important ruminant breeds, Holstein cattle supply a significant portion of milk 
and dairy for human consumption, playing a crucial role in agribusiness. The goal of our study was to examine 
the molecular adaptation of gastrointestinal tissues that facilitate milk synthesis in dairy cattle.

Data description We performed RNA‑seq analysis on epithelial cells from the rumen, duodenum, and colon at eight 
different time points: Days 3, 14, 28, 45, 120, 220, and 305 in milk, as well as the dry period. Samples were taken 
from five multiparous dairy cows as biological replicates per tissue per stage, except for Days 14 and 28, for which 
the sample size was three. These tissues each serve critical and distinct roles in the digestion and absorption of nutri‑
ents and are all vital for providing the necessary substrates required for milk production. Understanding the intricate 
connections between the tissues involved in providing nutrients necessary to support milk synthesis and their role 
in digestion can deepen the understanding of lactation physiology. This resource aims to deliver in‑depth insights 
into cattle lactation, highlighting the distinct traits of gastrointestinal tissues and illuminating the intricate transcrip‑
tomic dynamics throughout the lactation period.
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Objective
The U.S. is the largest producer and exporter of milk pro-
tein globally. Holstein cattle are one of the major rumi-
nants that supply milk and dairy products to the human 
diet and agribusiness [1]. The lactation cycle is the time 

interval between one calving and the next, which can 
be divided into 4 phases: the early (day D0-120), mid 
(D120-240), and late lactation (D240-305) (each spanning 
roughly 120 days) and the dry period (which could last as 
long as 65 days). Dairy cattle lactation is closely linked to 
varied nutrient needs essential for milk synthesis. Thus, 
milk production is a typical dynamic process that var-
ies with time [2], during which the epithelial cells of the 
rumen and digestive tract must respond to metabolic 
reprogramming in a coordinated manner. The growth of 
the absorptive surface area is a well-documented phe-
nomenon [3]. Still, the functional genomic changes in the 
epithelia of the rumen and other gastrointestinal tract 
tissues are less well-studied [4–6]. In particular, impor-
tant information related to the dynamics of the transcrip-
tomic activities over the full lactation period is lacking.
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To address this question, epithelia from the rumen, 
duodenum, and colon were collected from Holstein 
cows. Samples were collected on D3, 14, 28, 45, 120, 220, 
and 305, which represented the four lactation phases: 
the early, mid, and late lactation and the dry period, 
respectively. RNA-seq and bioinformatics analyses were 
then performed to profile the changes in transcriptomes 
(Fig.  1 [7]) .This comprehensive dataset delivers stage- 
and tissue-specific transcriptome assessments of the cat-
tle gastrointestinal tract tissues. This dataset could serve 
as a valuable resource for researchers aiming to enhance 
economically significant traits in cattle, including milk 
yield, feed efficiency, and overall health.

Data description
Animal collection and tissue preparation
The USDA ARS BARC research dairy herd is representa-
tive of the U.S. Holstein population and, as such, serves 
as a great model for this work. We gathered 108 sam-
ples of colon, duodenum, and rumen tissues from eight 
lactation stages (D3, D14, D28, D45, D120, D220, D305, 
and Dry), with each stage including three to five repli-
cates (Table S1). Briefly, cows were surgically fitted with 
both a rumen fistula and a duodenal sampling cannula. 
Grab biopsies were used to collect rumen epithelial tis-
sue (papillae) without requiring total rumen evacuation. 
Duodenal biopsies were performed with sterile biopsy 
forceps and a Pentax EC-383IL camera, inserted via the 
duodenal cannula, while colonic tissue was obtained 
using the same tools, inserted through the anus. Fol-
lowing the isolation of the three gastrointestinal tissues- 
colon, duodenum, and rumen- the samples underwent 
a series of saline rinses. Following overnight incubation 
at 4 °C in  RNAlater® Solution to facilitate thorough pen-
etration, the samples were stored at −80 °C.

RNA‑seq library construction and sequencing
RNA extraction was performed using TRIzol (#15596026, 
Thermo Fisher Scientific), with concentration quantified 
via a  Qubit® RNA Assay Kit on a  Qubit® 2.0 Fluorom-
eter (Life Technologies, USA). The integrity of the RNA 
was analyzed using a Bioanalyzer 2100 system (Agilent 
Technologies, USA). Rumen tissue samples underwent 
RNA isolation, quality control, library preparation, and 
sequencing at Admera Health LLC (South Plainfield, 
NJ). Using paired-end mode (2 × 150 bp reads), sequenc-
ing was performed on the Illumina HiSeq 2500 platform 
(Illumina, San Diego, CA, USA).

Sample information and RNA-seq read statistics can be 
found in the metadata presented in Table  S1 and Fig.  2 
[7]. FastQC (v0.12.1) was used to determine the quality 
of the raw RNA-seq data. Figure 2 presents a representa-
tive FastQC report, where Fig. 2A and b [7] demonstrate 

that the reads had consistently high-quality values. The 
GC content distribution mirrored the theoretical distri-
bution, which confirms that the samples were uncontam-
inated (Fig.  2C [7]), . A peak at 150  bp in the sequence 
length distribution matched the expected fragment sizes 
of the RNA-seq libraries (Fig. 2D [7]), . Read quality was 
assessed using the geneBodyCoverage.py script from 
RseQC (v5.0.1), with no notable 5’ or 3’ end bias detected 
(Fig. 2E [7]), .

Bioinformatics analyses
Trimmomatic (v0.39) [8] was used to remove adaptors 
and low-quality reads with parameters TruSeq3-PE.
fa:2:30:10, LEADING:3, TRAILING:3, SLIDINGWIN-
DOW:4:15, and MINLEN:36. The ARS-UCD1.2 [9] refer-
ence genome was indexed using HISAT2-build, and then 
the clean reads were aligned using HISAT2 (v2.2.1) [10]. 
Each sample had an average of 20.42 million input reads, 
ranging from 16.78 to 25.74  million, and an average 
unique alignment rate of 97.06%, with a range of 94.96–
98.64% (Fig. 3 [7]).

Limitations
While this study focuses on Holstein cattle, provid-
ing valuable insights into a major dairy breed, the find-
ings may not fully extend to other breeds with different 
genetic backgrounds or environmental adaptations. 
Future studies could expand this research by including 
additional cattle breeds, offering a broader understand-
ing of gene expression across diverse populations.

Our use of short-read RNA sequencing, combined 
with tools like Samtools (v1.12) [11], StringTie (v2.2.1) 
[12], and featureCounts (v2.0.3) [13], successfully cap-
tured key gene expression dynamics (Fig. 4A and C [7]). 
However, incorporating long-read sequencing technolo-
gies in future research could reveal more complex tran-
script structures and novel isoforms, further enriching 
the understanding of cattle transcriptomics. The tissue-
specific variability highlighted by our principal compo-
nent analysis (PCA) provides an important foundation 
for exploring gene regulation across different physiologi-
cal stages PCA (Fig.  4B [7]). Expanding tissue diversity 
and sampling across more time points could uncover 
additional layers of gene regulation and inter-tissue 
interactions, further deepening our insights. Finally, 
while we identified differentially expressed genes (DEGs) 
using DESeq2 (v1.30.0) [14] under stringent thresholds 
(adjusted P-value ≤ 0.05, absolute log2 fold change ≥ 0.1 
in Fig. 5 [7]), further functional validation through tech-
niques like qPCR or proteomics would strengthen and 
confirm our findings Table 1.

Overall, this study offers a robust analysis of Holstein 
cattle gene expression during lactation and sets the stage 
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for future research. Expanding on these findings will help 
further advance our understanding of cattle genetics, 
with potential applications for improving breeding strate-
gies and dairy production efficiency.
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PCA  Principal components analysis
DEGs  Differentially expressed genes
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