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Abstract 

Objective Clonostachys, a genus with rich morphological and ecological diversity in Bionectriaceae, has a wide 
distribution among diverse habitats. Several studies have reported Clonostachys fungi as effective biological agents 
against multiple fungal plant pathogens. To clarify the diversity and biocontrol mechanisms of the Clonostachys fungi, 
this study was undertaken to sequence and assemble the genomes of two C. chloroleuca and one C. rhizophaga.

Data description Here, we performed genomic sequencing of three strains of genus Clonostachys collected 
from the China General Microbiological Culture Collection Center (CGMCC) using Illumina HiSeq 2500 sequenc-
ing technology. Whole genome analysis indicated that their genomes consist of 58,484,224 bp with a GC content 
of 48.58%, 58,114,960 bp with a GC content of 47.74% and 58,450,453 bp with a GC content of 48.58%, respectively. 
BUSCO analysis of the genome assembly indicated that the completeness of these genomes was at least 98%. In 
summary, these datasets provide a valuable resource for ongoing studies that include further exploration of biological 
function, marker development, enhanced biological control ability of Clonostachys fungi, and population diversity.
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Objective
Most studies related to the genus Clonostachys have been 
focused on its powerful capacity as a biocontrol agent, 
especially of fungal pathogens. For example, Clonos-
tachys rosea and C. chloroleuca are well-known destruc-
tive mycoparasites and can effectively control various 
plant diseases, caused by Fusarium species, Sclerotinia 
sclerotiorum and Botrytis cinerea [1–3]. Additionally, 

Clonostachys fungi are well known to produce a variety of 
secondary metabolites with various biological activities 
to show their pharmaceutical and agrochemical applica-
tions. Many of these compounds exhibit biological activi-
ties, such as cytotoxic, antimicrobial, antileishmanial, and 
antimalarial activities [4–6]. In the past decades, a zea-
ralenone hydrolase encoded by C. rosea was discovered, 
and the zearalenone detoxification ability was proved to 
be important for the biocontrol of Fusarium gramine-
arum [7–10].

It is remarkable as well that C. rosea is an important 
endophyte organism that, besides providing benefits to 
a wide range of host plants, can successfully mimic their 
chemical behavior [11, 12]. Some studies have shown the 
potential of C. rosea strains to promote the growth and 
health of diverse crops, such as tomato (Lycopersicon 
esculentum L.) [13], cucumber (Cucumis sativus L.) [14], 
wheat (Triticum durum Desf.) [15], pine (Pinus radiata 
D. Don) [16], and oil palm (Elaeis guineensis Jacq.) [17]. 
C. rosea was also classified as ‘plant-growth-promoting 
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fungi’ (PGPF) [18]. Therefore, in-depth understanding of 
the molecular mechanisms underlying biocontrol of Clo-
nostachys fungi will be conducive to developing sustain-
able strategies for management of fungal disease. In this 
regard, high-quality complete genome resources for Clo-
nostachys fungi will be helpful.

Data description
In this study, we sequenced the genomes of three strains 
belonging to the genus Clonostachys, which were col-
lected from the China General Microbiological Culture 
Collection Center (CGMCC). These strains were cul-
tured on potato dextrose agar (PDA) for five days at 22 °C 
in the dark. Mycelia growing on the cellophane were har-
vested by scraping the plates with a flame-sterilized metal 
spatula, frozen in liquid nitrogen for 20  s, and stored 
at − 80  °C until use. The genomic DNA of strains was 
extracted using the cetyltrimethylammonium bromide 
(CTAB) method [19]. Quality control for genomic DNA 
(gDNA) was performed by measuring the absorbance at 
ratios 260/280 and 260/230 using a NanoDrop ND-2000 
spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA).

DNA samples were sent to Shanghai Biotechnol-
ogy Corporation (Shanghai, China) for microbial whole 
genome sequencing. Three genome paired-end libraries 
were prepared for Illumina HiSeq 2500 System sequenc-
ing, yielding 27,300,124 short read pairs for strain 
CGMCC3.3655, 30,040,177 for strain CGMCC3.3657, 

and 33,506,775 for strain CGMCC3.4252 (Table  1 Data 
file 1–3). Fastp v0.20.0 was used to trim and filter the 
Illumina reads, then fastqc v0.11.9 and multiqc v1.8 were 
used to evaluate the reads’ quality [20–22]. After quality 
control, the short reads were used for de novo assembly 
by SPAdes v3.6.1 [23]. Potential mitochondrial genes 
and other possible contaminants from the genomes were 
filtered out using the Barrnap v0.9 [24]. The remain-
ing contigs were filtered at 1,000  bp, and the quality of 
the assembly was visualized with QUAST v5.0.2 [25]. 
The resultant draft genomes were all > 58  MB in size. 
GC content was similar across all three genomes at 
48%. However, the largest contig sizes varied with strain 
CGMCC3.3657 having the largest contig at 3,565,857 bp. 
Additionally, strain CGMCC3.3655 had the highest over-
all genome length at 58.5  Mb (Table  1 Data file 4–7). 
Transposable elements (TE) were identified by Tandem 
Repeat Finder (v4.04) [26] and The Extensive de novo 
TE Annotator (EDTA) [27]. The analysis revealed that 
4.25% of the CGMCC3.3655 genome (LTR/Gypsy type: 
1.5 Mb), 8.34% of the CGMCC3657 genome (LTR/Gypsy 
type: 1.9  Mb) and 3.99% of the CGMCC3.4252 (LTR/
Gypsy type: 1.3  Mb) were composed of repetitive DNA 
(Table 1 Data file 7).

Genome annotation was performed using the BRAKER 
v2.1.5 pipeline [28] based on GeneMark-ES version 
4.68 [29] and Augustus v3.3.3 [30]. 17,770 protein-cod-
ing genes for strain CGMCC3.3655, 17,186 for strain 
CGMCC3.3657, and 17,779 for strain CGMCC3.4252 

Table 1 Overview of all data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession 
number)

Data file 1 Sequencing read dataset of CGMCC3.3655 Fastq file (fastq) NCBI Sequence Read Archive (https:// ident ifiers. org/ 
ncbi/ insdc. sra:  SRR30 906288) [37]

Data file 2 Sequencing read dataset of CGMCC3.3657 Fastq file (fastq) NCBI Sequence Read Archive (https:// ident ifiers. org/ 
ncbi/ insdc. sra:  SRR30 906289) [38]

Data file 3 Sequencing read dataset of CGMCC3.4252 Fastq file (fastq) NCBI Sequence Read Archive (https:// ident ifiers. org/ 
ncbi/ insdc. sra:  SRR30 906290) [39]

Data file 4 Genome assembly of CGMCC3.3655 genbank format (.gbk) NCBI GenBank (https:// ident ifiers. org/ ncbi/ nucle otide:  
JBICS D0000 00000.1) [40]

Data file 5 Genome assembly of CGMCC3.3657 genbank format (.gbk) NCBI GenBank (https:// ident ifiers. org/ ncbi/ nucle otide:  
JBICS C0000 00000.1) [41]

Data file 6 Genome assembly of CGMCC3.4252 genbank format (.gbk) NCBI GenBank (https:// ident ifiers. org/ ncbi/ nucle otide:  
JBICS B0000 00000.1) [42]

Data file 7 Genome statistics and phylogeny of three strains 
of the genus Clonostachys

MS docx file (docx)/ Port-
able Data Format file (pdf )

Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 27229 
602. v1) [43]

Data set 8 CGMCC3.3655 genomic transcript, protein 
sequences and functional annotations

FASTA/Text Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 27229 
635. v1) [44]

Data set 9 CGMCC3.3657 genomic transcript, protein 
sequences and functional annotations

FASTA/Text Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 27237 
435. v1) [45]

Data set 10 CGMCC3.4252 genomic transcript, protein 
sequences and functional annotations

FASTA/Text Figshare (https:// doi. org/ 10. 6084/ m9. figsh are. 27237 
438. v1) [46]

https://identifiers.org/ncbi/insdc.sra:%20SRR30906288
https://identifiers.org/ncbi/insdc.sra:%20SRR30906288
https://identifiers.org/ncbi/insdc.sra:%20SRR30906289
https://identifiers.org/ncbi/insdc.sra:%20SRR30906289
https://identifiers.org/ncbi/insdc.sra:%20SRR30906290
https://identifiers.org/ncbi/insdc.sra:%20SRR30906290
https://identifiers.org/ncbi/nucleotide:%20JBICSD000000000.1
https://identifiers.org/ncbi/nucleotide:%20JBICSD000000000.1
https://identifiers.org/ncbi/nucleotide:%20JBICSC000000000.1
https://identifiers.org/ncbi/nucleotide:%20JBICSC000000000.1
https://identifiers.org/ncbi/nucleotide:%20JBICSB000000000.1
https://identifiers.org/ncbi/nucleotide:%20JBICSB000000000.1
https://doi.org/10.6084/m9.figshare.27229602.v1
https://doi.org/10.6084/m9.figshare.27229602.v1
https://doi.org/10.6084/m9.figshare.27229635.v1
https://doi.org/10.6084/m9.figshare.27229635.v1
https://doi.org/10.6084/m9.figshare.27237435.v1
https://doi.org/10.6084/m9.figshare.27237435.v1
https://doi.org/10.6084/m9.figshare.27237438.v1
https://doi.org/10.6084/m9.figshare.27237438.v1
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were predicted, respectively. To gain a functional gene 
annotation, we annotated whole-genome protein-
encoding genes. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway annotation of protein-coding 
genes was mainly performed by KAAS-KEGG Automatic 
Annotation Server (KEGG’s KAAS) (http:// www. genome. 
jp/ tools/ kaas/) [31]. The Gene Ontology (GO) annota-
tion of protein-coding genes was done using InterPro 
(v5.27) software [32]. The carbohydrate active enzymes 
(CAZymes) analysis was compared and annotated with 
the dbCAN database (https:// bcb. unl. edu/ dbCAN2/) 
by HMMER software (v3.3.2) [33]. The databases were 
pfam and Clusters Orthologous Groups (COG), which 
were compared using InterPro (version 5.27) [32] and 
diamond (v0.8.22) software [34], respectively. We iden-
tified a total of 11,835 proteins with Pfam domains, 
3,950 genes with GO items, 5,051 genes involved in dif-
ferent KEGG pathways, 12,007 COG genes, and 237 
CAZymes in the genome of strain CGMCC3.3655. There 
was also a total of 11,412 proteins with Pfam domains, 
3,880 genes with GO items, 4,933 genes involved in dif-
ferent KEGG pathways, 11,600 COG genes, and 224 
CAZymes in the genome of strain CGMCC3.3657. For 
strain CGMCC3.4252, we identified 11,851 proteins 
with Pfam domains, 3,960 genes with GO items, 5,057 
genes involved in different KEGG pathways, 12,042 COG 
genes, and 236 CAZymes (Table 1 Data file 8–10). Their 
genome annotation completeness’s were estimated using 
benchmarking universal single-copy orthologs (BUSCO 
v4.1.4) with the fungi dataset [35], identifying 98.3 to 
98.5% of the fungal orthologs (Table 1). With 1,000 boot-
strap replicates, the phylogenetic tree was built in Molec-
ular Evolutionary Genetics Analysis (MEGA) X software 
(v10.1.7) utilizing the neighbor-joining (NJ) method 
[36]. The phylogenetic analysis result based on the ATP 
citrate lyase (acl1) and the largest subunit of RNA poly-
merase II (rbp1) sequences showed that CGMCC3.3655, 
CGMCC3.4252 and other C. chloroleuca strains were 
grouped into one large branch with good support. But 
CGMCC3.3657 was clustered with members of C. rhizo-
phaga (Table 1 Data file 7).

These genome sequences could contribute to the 
understanding of genetic and genomic diversities of Clo-
nostachys fungi. It could also provide opportunities to 
analyze the molecular basis of their biocontrol activities.

Limitation
This data note was limited to the description of genomes 
of three Clonostachys strains. A larger collection is 
needed to help us better understand their genetic and 
biological characteristics.
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