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Abstract
High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and 
environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved 
in metabolism which provide a link between the internal (genetic) and external environments. O-methylascorbate 
has been reported to be associated with IOP. In addition, researchers have identified several genetic variants 
which are associated with metabolite concentrations, including O-methylascorbate and another vitamin C related 
metabolite, ascorbic acid 2-sulfate. We aimed to understand how O-methylascorbate and ascorbic acid 2-sulfate, 
or genetic variants associated with these metabolites, modify the associations between dietary environmental 
variables and IOP. We used data from 8060 participants of the Canadian Longitudinal Study on Aging. Using 
linear models adjusted for relevant covariates, we tested for interactions between six genetic variants previously 
found to be associated with O-methylascorbate and ascorbic acid 2-sulfate and four environmental variables 
related to diet (alcohol consumption frequency, smoking status, fruit consumption, and vegetable consumption). 
We also tested for interactions between serum concentrations of O-methylascorbate and ascorbic acid 2-sulfate 
and these environmental factors. We used a False Discovery Rate approach to correct for the 32 interaction tests 
performed. One interaction was suggestively significant after multiple testing correction (adjusted P-value < 0.1): 
rs8050812 and alcohol consumption frequency. Understanding how genetic variants and metabolites interact with 
the environment could shed light on biological pathways controlling IOP and lead to improved prevention and 
treatment of glaucoma.
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Introduction
Glaucoma is one of the leading causes of irreversible 
blindness in the world [1]. One of the most important 
risk factors for glaucoma is elevated intraocular pressure 
(IOP) [2, 3], which is heritable [4, 5]. Investigation of the 
etiology of elevated IOP may be key to preventing glau-
coma [6]. Several studies have investigated the genetic 
and environmental components that contribute to varia-
tion in IOP [7]. A recent genome-wide association study 
identified over 300 genetic loci associated with IOP [8]. 
However, there is still a large proportion of IOP variance 
which is unexplained [7, 8].

The exposome represents the totality of environmental 
exposures over the lifetime [9, 10]. One way to quantify a 
component of the exposome is through measured metab-
olite levels [11]. Metabolites are compounds involved 
in metabolism as intermediates or end-products. They 
can also help provide a link between the molecular/
genetic environment and the external environment [11]. 
Past research by Hysi et al. investigated the influence of 
metabolites on IOP and found that O-methylascorbate, 
a vitamin C metabolite, was most associated [12]. While 
there is global concern about vitamin C status [13], there 
is conflicting evidence about the association between 
glaucoma and vitamin C [14, 15]. In addition, there is lit-
tle research on the effect of vitamin C on IOP.

Other studies have identified genetic factors that are 
associated with metabolite levels [16, 17]. These genetic 
factors can be used when assessing the effect of metab-
olites on phenotypes in certain study designs, such as 
Mendelian Randomization [16] and could be helpful to 
detect interactions with environmental factors acting on 
metabolic pathways. We previously investigated genetic 
factors associated with O-methylascorbate and ascor-
bic acid 2-sulfate, which are both vitamin C related, and 
found several associations which had also been found in 
previous research [16, 18]. We identified three genetic 
variants which were independently significantly associ-
ated with each metabolite at the genome-wide signifi-
cance level (P-value < 5 × 10− 8). The variants identified 
were rs144009214, rs12414734 and rs8050812 for ascor-
bic acid 2-sulfate, and rs165879, rs4680, and rs61484427 
for O-methylascorbate [18].

Furthermore, several environmental risk factors may 
interact with vitamin C in their effect on IOP and glau-
coma. Some environmental risk factors relevant to vita-
min C that were previously found to be associated with 
glaucoma include diet (including vitamin consumption) 
[19–21], smoking [22, 23] and alcohol [24, 25]. Smoking 
and alcohol are also associated with IOP [23–28].

There is still a large proportion of IOP variance which is 
not explained by genetic or environmental factors alone. 
By investigating the interplay between genetic variants, 
the metabolome, and the environment we can better 

understand IOP variation and glaucoma etiology. In this 
study, we investigated interactions between environ-
mental risk factors relevant to vitamin C and metabolic/
genetic factors affecting IOP in the Canadian Longitudi-
nal Study on Aging (CLSA).

Materials and methods
Study population and design
We carried out a cross-sectional analysis using data from 
the Comprehensive Cohort of the Canadian Longitudinal 
Study on Aging (CLSA) [29]. The Comprehensive Cohort 
includes 30 097 Canadians between 45 and 85 years at 
recruitment with baseline data collected between 2012 
and 2015. Participants in the Comprehensive Cohort 
underwent in-home interviews, in-depth clinical exami-
nations and some provided biological samples at CLSA 
data collection sites located in Victoria, Vancouver, Sur-
rey, Calgary, Winnipeg, Hamilton, Ottawa, Montreal, 
Sherbrooke, Halifax, and St. John’s, Canada. Participants 
were included if they were community dwelling at base-
line, not cognitively impaired at baseline, and able to 
respond in English or French. Full-time members of the 
Canadian Armed Forces, those residing on a federal First 
Nations reserve or settlement, residents in the three ter-
ritories and some remote regions, those living in a long-
term care institution at baseline, were excluded.

Of those in the Comprehensive Cohort, 26 622 indi-
viduals were genotyped [30], 9992 participants had their 
metabolite levels quantified [31], and around 9000 partic-
ipants had both. Participants were then further excluded 
if they were not of European ancestry, were related to 
other participants, had missing or outlier IOP values or 
had missing confounder covariate information, leading 
to a final sample of 8060 individuals. Reporting of this 
research was informed by the Strengthening the Report-
ing of Genetic Associations (STREGA) guideline [32]. 
Written informed consent was obtained for all partici-
pants, and research ethics board approval was obtained 
for all CLSA affiliated sites. The analysis presented here 
was approved by the University of Ottawa research ethics 
board.

Genetic data
Consenting individuals from the Comprehensive Cohort 
provided blood samples which were stored at -80  °C 
before being shipped to a genomics facility and stored at 
-20  °C. 26 622 individuals in the CLSA were genotyped 
from the Comprehensive Cohort using the Affymetrix 
Axiom Array, leading to 794 409 variants genotyped 
[30]. We inferred genetic ancestry from genomic data 
by the CLSA to restrict the sample to European ances-
try [30]. Genotyped data was used for imputation using 
the TOPMED reference panel, resulting in ~ 308  mil-
lion imputed variants. For this analysis, we used the 
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imputed genetic data from six genetic variants of inter-
est (rs144009214, rs12414734, rs8050812, rs165879, 
rs4680, and rs61484427) which were found in our previ-
ous research to be associated with either ascorbic acid 2 
sulfate or O-methylascorbate. Genetic data were coded 
based on the number of minor alleles in an individual’s 
genotype.

Metabolic data
Ten thousand participants were selected for metabolo-
mics quantification. Among those, 3000 were selected 
from a group of participants who had fasted for over 
5 h while 7000 were selected from the rest of the cohort. 
Sample selection was made to reflect the distribution of 
the Comprehensive Cohort by data collection site, age 
and sex. This process resulted in 9992 consenting par-
ticipants from the Comprehensive Cohort having their 
metabolite levels quantified by an untargeted approach 
[31]. Metabolite levels were measured using mass spec-
trometry, followed by identification using the Metabolon 
Discovery HD4TM LC-MS platform. After quality con-
trol checks, 1314 identified metabolites were included 
in the final dataset. For our analysis, we focused on two 
metabolites: 2-O-methylascorbate and ascorbic acid-
2-sulfate. We used measurements provided by the CLSA 
which were batch normalized. Metabolite values were 
log-transformed, extreme outliers (more than 3 SD away) 
were removed, and then the values were normalized to a 
mean of 0 and SD of 1, as done in previous research [16].

Ocular data
The outcome of interest for this analysis was intraocu-
lar pressure (IOP). IOP was measured in mmHg using 
a Reichart Ocular Response Analyzer in the baseline 
examination in the Comprehensive Cohort. Partici-
pants with an eye infection, who reported that they had 
eye surgery in the three months prior to examination, 
or who reported a detached retina in the three months 
prior to examination. Participants with measurements 
in both eyes had their IOP levels averaged. For partici-
pants with only one eye measurement, that value was 
used. We used IOP measurements that were adjusted for 
corneal mechanic properties, i.e. corneal compensated 
IOP (IOPcc). Instead of using current IOP, we estimated 
pre-treatment IOP. Participants were asked to bring all 
medications. For participants taking medications with a 
Drug Identification Number indicative of an IOP-lower-
ing eye drop at the time of baseline examination, IOPcc 
was divided by 0.7 to account for the average medication 
effect, as done previously [27, 33, 34]. Three participants 
with outlier IOP levels, defined as > 60 mmHg [27], were 
removed.

Glaucoma was self reported by participants who were 
asked whether a physician had ever diagnosed them with 
glaucoma.

Environmental risk factors 
Alcohol consumption
Participants were asked “Have you ever drunk alcohol?” 
and if they said yes were asked “About how often during 
the past twelve months did you drink alcohol?”. Respon-
dents were categorized as “Never”, “Occasional”, “Weekly” 
and “Daily” drinkers based on these responses.

Cigarette smoking
The smoking variable was coded using the questions 
“Have you smoked at least 100 cigarettes in your life?” 
and “At the present time, do you smoke cigarettes daily, 
occasionally or not at all?”. Based on the responses, the 
participants were categorized as “Never” “Former” or 
“Current” smokers. If participants said no to smoking at 
least 100 cigarettes, they were considered as never smok-
ers. Those who said they smoke cigarettes daily or occa-
sionally were considered as current smokers. Those who 
said they had smoked 100 cigarettes, but currently not at 
all were considered former smokers.

Dietary variables
Participants were asked to fill in the validated 36-item 
Short Diet Questionnaire [35, 36]. For fruit consump-
tion, participants were asked “How often do you eat fruit 
(fresh, frozen, canned)?” and “How often do you drink 
100% fruit juices?”. These responses were standardized 
to the number of reported servings per day and added 
together total fruit consumption per day. One participant 
was excluded from this analysis based on having an out-
lier value of 20.

For vegetable consumption, the frequency of the con-
sumption of the following foods were added together: 
“How often do you usually eat green salad (lettuce, with 
or without other ingredients)?”, “How often do you usu-
ally eat carrots (fresh, frozen, canned, eaten on their own 
or with other food, cooked or raw)?”, and “How often do 
you usually eat other vegetables (except carrots, pota-
toes or salad)?”. These responses were standardized to the 
number of reported servings per day.

To calculate total daily caloric intake, responses from 
the Short Diet Questionnaire were used with meth-
ods described previously [27, 36]. Briefly, we used the 
reported frequencies of each food item from the SDQ, 
using portion sizes from a full food frequency question-
naire [37] used previously in the NuAge Study [38], and a 
nutrient database from the 2015 Canadian Nutrient File.
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Other covariates
Sex was determined based on chromosomal sex using 
the genetic data. Other demographic variables included 
age, province of residence, highest level of education and 
income and were based on the responses given in in-
home interviews. Highest level of education was based 
on the questions: “What is the highest degree, certificate, 
or diploma you have obtained?” and “Have you received 
any other education that could be counted towards a 
degree, certificate, or diploma from an educational insti-
tution?”. Participants were coded as: Less than a Bach-
elor’s, a Bachelor’s degree or higher than a Bachelor’s. 
Total household income was categorized as follows: <$20 
000, $20 000–50 000, $50 000-100 000, $100 000-150 
000,>$150 000, Don’t know/Missing/Refused.

Participants were also asked “In the last 24 hours, 
have you had any food or (excluding water) drink?” and 
respondents who said yes stated the last time they did so. 
This variable was included as the time since last meal or 
drink in order to determine fasting status which is rel-
evant to interpreting metabolite data. Participants were 
also asked if they had received a physician’s diagnosis of 
diabetes or high blood pressure. Blood pressure was mea-
sured six times in a single session for each participant, 
and the average of the last five readings was used as the 
blood pressure measurement. We defined hypertension 
as self-reported physician diagnosis of high blood pres-
sure or an average systolic blood pressure ≥ 130 mmHg or 
a diastolic blood pressure ≥ 80 mmHg. BMI was catego-
rized as underweight (< 20 kg/m2), normal (20–24.9 kg/
m2), overweight (25–29.9  kg/m2) and obese (≥ 30.0  kg/
m2) similar to past studies [39].

Statistical analysis
First, we used descriptive statistics and graphs to under-
stand the distribution of the variables and check neces-
sary assumptions such as normality and linearity. Next, 
we assessed the association of each environmental, 
genetic, and metabolic variable individually with IOP 
using linear models adjusted for age, sex, income, prov-
ince, education level, BMI, alcohol frequency, hyperten-
sion, diabetes, smoking status, total daily caloric intake, 
first ten genetic principal components (genetic models 
only), and hours since last meal or drink (metabolite 
models only). Environmental variables included: total 
fruit consumption, total vegetable consumption, alco-
hol consumption, and smoking status. Genetic variables 
included the six genetic variants associated with metabo-
lites (rs144009214, rs12414734 and rs8050812 for ascor-
bic acid 2-sulfate and rs165879, rs4680, and rs61484427 
for O-methylascorbate). Metabolic factors included 
O-methylascorbate and ascorbic acid 2-sulfate measured 
levels.

To assess the gene-environment and metabolite-envi-
ronment interactions, we first fit linear models with and 
without gene-environment or metabolite-environment 
interaction terms. Each model was adjusted for the fol-
lowing potential confounders: age, sex, income, province, 
education level, hypertension, diabetes, total daily caloric 
intake, BMI, alcohol frequency, and smoking status. The 
gene-environment models were additionally adjusted for 
the first 10 principal components or genetic variation to 
account for confounding by ancestry. The metabolite-
environment models were additionally adjusted for the 
hours since last meal or drink to reduce metabolite mea-
surement bias. We conducted a likelihood ratio test for 
each gene/metabolite environment pair to assess the sig-
nificance of the interaction term(s) in the model. We per-
formed a complete case analysis, resulting in each model 
using slightly different sample sizes based on the num-
ber of missing values for the included genetic variables, 
metabolite levels, and fruit and vegetable consumption 
values. The total number of participants for each model 
is stated in Table S1 and ranged from 7722 to 8050. We 
ran a total of 32 interaction tests and adjusted for mul-
tiple testing using a False Discovery Rate approach [40] 
using the p.adjust function in R. Suggestive interactions 
were visualized by creating interaction plots using the R 
package sjPlot v. 2.8.15 [41]. All analyses were performed 
in R v.4.3.1 [42].

Results
Study sample description
The genetic and environmental variables of the 8060 
participants from the CLSA Comprehensive Cohort 
are described in Table  1. The mean age of the cohort 
was 63 years (SD: 10.1) and 51.1% of the cohort were 
females. The mean IOP for the sample was 16.32 mmHg 
(SD: 3.95). The average number of servings of fruit con-
sumed per day was 1.81 (SD: 1.14) and of vegetables was 
1.91 (SD: 1.07). In the cohort, 46.3% of participants were 
never smokers, 44.7% were former smokers and 9.1% 
were current smokers. For alcohol consumption, 1.8% of 
participants were never drinkers, 39% were occasional 
drinkers, 42.7% were weekly drinkers and 16.5% were 
daily drinkers.

Single factor models
We examined each genetic, metabolic, and environmen-
tal factor in single factor models without interaction. Of 
the factors, total vegetable consumption, O-methylascor-
bate, and ascorbic acid 2-sulfate were statistically signifi-
cantly associated with IOP. None of the genetic factors 
were significantly associated with IOP. The coefficient 
estimates and 95% confidence intervals for each model 
are shown in Fig. 1.
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Variable N (%) or Mean (SD)
Intraocular Pressure 16.32 (3.95)
Self-reported Glaucoma 357 (4.4%)
IOP-lowering Treatment 166 (2.1%)
Female Sex 4120 (51.1%)
Age, Years 63 (10.1)
Low education Less than a Bachelor’s 1678 (20.8%)

Bachelor’s Degree 1855 (23.0%)
University Degree above Bachelor’s 4527 (56.2%)

Smoking Status Never Smoker 3728 (46.3%)
Former Smoker 3599 (44.7%)
Current Smoker 733 (9.1%)

Alcohol Frequency Never 147 (1.8%)
Occasionally 3141 (39.0%)
Weekly 3442 (42.7%)
Daily 1330 (16.5%)

Fruit Consumption, # servings per day 1.81 (1.14)
Vegetable Consumption, # servings per day 1.91 (1.07)
Province Alberta 801 (9.9%)

British Columbia 1650 (20.5%)
Manitoba 837 (10.4%)
Newfoundland and Labrador 585 (7.3%)
Nova Scotia 834 (10.3%)
Ontario 1758 (21.8%)
Quebec 1595 (19.8%)

Income <$20 000 385 (4.8%)
$20 000-$50 000 1718 (21.3%)
$50 000-$100 000 2680 (33.3%)
$100 000-$150 000 1546 (19.2%)
>$150 000 1256 (15.6%)
Missing/Refused/Don’t Know 475 (5.9%)

Hypertension 4530 (56.2%)
Diastolic Blood Pressure (mmHg) 74.23 (9.87)
Systolic Blood Pressure (mmHg) 121.61 (16.72)
Diabetes 1368 (17.0%)
Daily Caloric Intake 1516.5 (466.3)
BMI Underweight 219 (2.7%)

Normal Weight 2165 (26.9%)
Overweight 3289 (40.8%)
Obese 2387 (29.6%)

rs4680 AA 2143 (26.6%)
AG 4036 (50.1%)
GG 1871 (23.2%)

rs8050812 CC 4141 (53.5%)
CT 3033 (39.2%)
TT 570 (7.4%)

rs165879 GG 7212 (91.3%)
GA 664 (8.4%)
AA 19 (0.2%)

rs144009214 CC 7744 (96.6%)
CT 272 (3.4%)
TT 3 (0.0%)

Table 1 Descriptive characteristics of sample (N = 8060)
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Interaction results
Next, we examined the interactions between the meta-
bolic/genetic factors and the environmental variables. 
Results from all the models are detailed in Additional File 
1. Of the interactions evaluated, one was suggestively sig-
nificant (P-value < 0.1) after correction for multiple test-
ing, visualized in Fig.  2. This interaction was between 
alcohol consumption frequency and a genetic variant 
associated with ascorbic acid 2-sulfate: rs8050812.

The suggestive interaction between rs8050812 and alco-
hol consumption frequency (adjusted P-value = 0.094) is 
displayed in Fig. 2. The trend in Fig. 2 suggests that pre-
dicted values of IOP do not differ greatly by genotype in 
those that consume alcohol but are different among non-
drinkers. In those that have the TT genotype, the pre-
dicted IOP value is lower.

Discussion
In the present analysis, we identified one gene-environ-
ment interaction associated with IOP that was sugges-
tive after correcting for multiple testing. This interaction 
was between a genetic variant associated with ascor-
bic acid 2-sulfate (rs8050812) and alcohol consumption 
frequency.

To better understand how environmental variables 
are influenced by the genome and metabolome, we also 
looked more closely at the gene-environment interac-
tions themselves using interaction plots. For the interac-
tion between rs8050812 and alcohol consumption, those 
in the never drinker category had lower IOP predicted 
levels with an increasing number of minor alleles. This 
could suggest a protective effect of that genotype which 
could be inhibited by alcohol consumption.

While we were able to identify a suggestive gene-envi-
ronment interaction, and while both metabolites were 

Fig. 1 Simple linear regression coefficient estimates (beta) and 95% confidence intervals for each individual genetic, metabolic, and environmental 
variable

 

Variable N (%) or Mean (SD)
rs61484427 (TCT)2 5622 (72.0%)

(TCT)2/delTCT 2007 (25.7%)
delTCT/delTCT 179 (2.3%)

rs12414734 GG 3043 (38.5%)
GA 3776 (47.7%)
AA 1093 (13.8%)

Table 1 (continued) 
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associated with IOP in the single factor models, none of 
the metabolite-environment interactions were statisti-
cally significant. This casts doubt on whether the identi-
fied effect of the genetic variant on IOP is acting through 
the metabolite or whether the variant is acting through 
another pathway. Metabolite levels are influenced by 
many factors, which could make the identification of an 
interaction more difficult.

We considered pathways other than the vitamin C 
metabolic pathway through which the genetic variant 
may be interacting with the environmental variable. In 
our previous research, we identified genes which were 
mapped to genetic variants associated with ascorbic acid 
2-sulfate using the platform FUMA [18]. Some of the 
genes mapped included MAPK3 and PTEN. MAPK3, also 
known as extracellular signal-regulated kinase 1 (ERK1) is 
involved in the MAPK signaling pathway which has sev-
eral functions [43]. Some research has also investigated 

the effect of alcohol on this signaling pathway [44]. For 
example, one study noted that alcohol inhibited the 
MAPK signaling pathway during the differentiation of 
liver cells [45]. Phosphatase and tensin homolog (PTEN) 
is a tumor suppressor gene which has been implicated in 
glaucoma pathogenesis and other markers such as visual 
acuity [46–48]. Other research has discussed the effects 
of alcohol on PTEN activity in the context of other dis-
eases such as alcoholic liver disorder and ostopenia [49, 
50]. These genes may suggest other pathways for impact-
ing IOP that are not directly through the ascorbic acid 
2-sulfate metabolic pathway.

The current analysis has many strengths, including the 
use of a large, high quality data sample of environmental, 
genetic, and metabolic data. There are also some limita-
tions. One limitation is that only European-descent par-
ticipants were included in the analysis due to the small 
percentage of participants of non-European ancestry 

Fig. 2 Interaction plot for the suggestive interaction between rs8050812 and alcohol consumption frequency
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in the sample. Therefore, our findings would need to be 
investigated in other ancestry groups. Another limita-
tion is that for some of the genetic variables, the num-
ber of participants with certain genotypes were very 
low. For example, the number of homozygotes for the 
minor alleles were three and 19 for the rs144009214 and 
rs165879 variants, respectively. No significant gene-envi-
ronment interactions were detected with these variants, 
which could be due to a lack of power in these analyses. 
In addition, the number of participants who reported 
never drinking alcohol was low (n = 147, 1.8%), which 
affected our power to detect a statistically significant 
rather than suggestive interaction. Power limitations 
could thus explain the absence of significant findings.

Conclusions
In conclusion, we found suggestive evidence of gene-
alcohol consumption interaction effect on IOP involving 
a metabolite-associated variant. This analysis would need 
to be reproduced in other samples with larger sample 
sizes to confirm these findings and to better understand 
the effect of the interactions. As well, future studies are 
needed to understand the role that metabolites play in 
these interactions.
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