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nineteenth century, offering the advantage of resistance 
to the leaf rust disease caused by the fungus Hemileia 
vastatrix [3, 4]. Following further development, several 
genotypes of C. liberica were identified as being well 
adapted to peatlands. In 2015, the Indonesian Ministry of 
Agriculture released two superior varieties of C. liberica 
that are well-suited to cultivation in wetland, which are 
Liberoid Meranti 1 (Lim 1) and Liberoid Meranti 2 (Lim 
2) [5]. The estimated coffee production potential for 
these two varieties is 1.69 and 1.98 tons per hectare for 
Lim 1 and Lim 2, respectively [5].

Tropical peatlands represent a distinctive ecosystem, 
occurring across a vast expanse from Southeast Asia, 
Central and South America to Africa [6, 7]. Plants in 
peatlands must adapt to a number of challenges, includ-
ing lower nutrient levels and high water saturation [8]. 

Objective
The majority of coffee types cultivated globally is arabica 
(Coffea arabica), followed by robusta (Coffea canephora) 
[1, 2]. In addition to these two species, the genus Cof-
fea comprises several other species that produce coffee 
beans. Coffea liberica is a species from Liberia, which 
was then introduced to the rest of the world during the 

BMC Genomic Data

*Correspondence:
Tisha Melia
tisha.melia@lecturer.unri.ac.id
1Computer Science Department, Faculty of Mathematics and Natural 
Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
2Biology Department, Faculty of Mathematics and Natural Sciences, 
Universitas Riau, Pekanbaru, Riau, Indonesia
3Mathematics Department, Faculty of Mathematics and Natural Sciences, 
Universitas Riau, Pekanbaru, Riau, Indonesia

Abstract
Objectives Coffea liberica is one of the species within the Coffea genus known for its distinctive flavor and resistance 
to leaf rust disease. Through breeding approaches, two superior varieties of C. liberica, designated as Liberoid Meranti 
1 (Lim 1) and Liberoid Meranti 2 (Lim 2), were introduced in 2015. These varieties are known for their high adaptability 
in peatlands. The genetic basis of plant adaptability to peatlands remains largely unknown. It is therefore essential to 
identify genome-wide DNA polymorphisms in Lim 1 and 2 in order to gain insights into its capacity for adaptation in 
peatlands.

Data description Whole genome sequencing was performed on three plants from each variety (Lim 1 and 2), 
resulting in 430 million sequencing reads. The mean depth of sequencing for each sample was 36.90x. The reads were 
mapped to the Coffea canephora genome, with an average mapping rate of 96.34%. The sequencing data revealed 
the presence of 3,766,805 single-nucleotide polymorphisms (SNPs) and 1,123,683 insertion-deletions (indels) in all 
six plants. Among the SNPs, there was a notable prevalence of transitions, with a ratio of approximately twofold 
compared to transversions. The generated data offers invaluable genomic resources for marker development, with 
significant implications for understanding peatlands adaptability.
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Many plants can flourish naturally on peatlands, some 
of which have high economic value [9, 10]. The genetic 
underpinnings of this high adaptability in tropical peat-
lands have yet to be explored, which is essential for the 
development of other peat-adapted plant varieties. A 
genomic approach has been employed in a number of 
crops to identify DNA mutations associated with envi-
ronmental adaptations, including variations in flower 
color in Mimulus lewisii [11], flowering time in Arabi-
dopsis thaliana [12], and drought resistance in Cedrus 
atlantica [13]. In this study, we employed genomic 
approaches to identify DNA mutations in Lim 1 and Lim 
2 with the aim of gaining insight into its adaptability in 
peatlands.

Data description
Six young C. liberica plants were planted in the Botanical 
Garden of the Biology Department at Universitas Riau, 
Indonesia. The six plants were divided into two varieties: 
three Lim 1 and three Lim 2. These plants were obtained 
from a certified coffee breeding program on Meranti 
Island, overseen by the Indonesian Ministry of Agricul-
ture. The plants were propagated from seeds collected 
from select parent trees within their tree improvement 
program. Specimens from all six plants were depos-
ited in a herbarium (Herbarium Riauensis) and assigned 
the following voucher identifiers: CL-NNW-L1-202501 
for Lim 1 plant 1, CL-NNW-L1-202502 for Lim 2 plant 
2, CL-NNW-L1-202 503 for Lim 1 plant 3, CL-NNW-
L2-202504 for Lim 2 plant 1, CL-NNW-L2-202505 for 
Lim 2 plant 2, and CL-NNW-L2-202506 for Lim 2 plant 
3.

A sample of young leaves, comprising 50–100 mg, was 
taken from each of the six plants. The DNA was extracted 
using the Genomic DNA Mini Kit (Plant) Geneaid 
(catalog no. GP100), in accordance with the instruc-
tions provided in the kit. The quality of the extracted 
DNA was evaluated using a 1% agarose gel and a Nano-
drop 2000 (Thermo Scientific, MA, USA). Subsequently, 
the extracted DNA was sent to an external service pro-
vider for library preparation and Illumina sequencing. 
The sequencing process yielded 430,270,734 151-bp 
paired-end reads (Table 1), with an average of 71.71 mil-
lion paired-end reads per sample. In the absence of a 

sequenced genome for C. liberica, we assume that its 
genome size is similar to that of other diploid Coffea sp. 
genomes, which is approximately 600 Mb. Our assump-
tion is consistent with the estimated average total nuclear 
DNA content of C. liberica (1.59 picograms (pg)), 
which is similar to C. canephora at 1.46 pg, compared 
to the tetraploid C. arabica at 2.47 pg [14]. This allows 
us to conclude that the average depth of our sequenc-
ing per sample is 36.09, which is sufficient to discover 
DNA mutations [15]. Subsequently, all raw reads under-
went quality control analysis using FastQC v0.11.8 [16], 
wherein 96.16% of the reads exhibited an average per-
base quality score of at least Q30.

The raw sequencing reads from each sample were 
mapped to the C. canephora genome [1] using BWA-
MEM [21] with the default parameters. The mapping of 
sequencing reads to the C. canephora genome was suc-
cessful for an average of 96.34% of the reads per sam-
ple, which is indicative of the high degree of similarity 
between the genomes of C. canephora and C. liberica. 
Prior to utilizing the mapped reads for the identifica-
tion of DNA mutations, we employed the MarkDupli-
cates tool to remove duplicated reads that were likely the 
result of PCR [22]. Subsequently, we followed the rec-
ommended workflow to identify germline short variants 
using GATK [19]. Furthermore, low-quality SNPs were 
removed based on several criteria, specifically QD < 5, 
QUAL < 30, SOR > 3, FS > 10, and MQ < 50. For indels, 
those with QD < 2, QUAL < 30, FS > 200, and ReadPos-
RankSum < -20 were removed. Following the removal 
of SNPs and indels that were not present in all samples, 
a total of 3,766,805 SNPs and 1,123,683 indels were 
identified (Table  1). 1.02% (38,354) of SNPs and 10.10% 
(113,439) of indels are multiallelic, indicating the pres-
ence of at least three alleles at each position. Among 
the SNPs, there were almost twice as many transitions 
(2,503,452) as transversions (1,302,755), which is consis-
tent with the expectation that transitions require fewer 
changes to the DNA structure than transversions [23]. 
The number of transitions and transversions were cumu-
lative across all six samples, and therefore may exceed 
the total number of SNPs. A total of 22.6% of the SNPs 
(853,209) were found to be overlapping with genes, with 
5.5% (207,478) of the SNPs located within exon regions. 

Table 1 Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data set 1 Illumina Sequencing files for three Lim 1 and three 
Lim 2 samples.

Raw sequencing 
(fastq)

NCBI Sequence Read Archive ( h t t p  s : /  / i d e  n t  i fi   e r s  . o r g  / n  c b i  / i n  s 
d c .  s r  a : S R P 5 3 7 6 8 3 ) [17]

Data file 1 List of SNPs identified in Lim 1 and Lim 2 varieties. Vcf files (vcf ) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  7 2 0 1 3 0 3 . v 
3) [18]

Data file 2 List of indels identified in Lim 1 and Lim 2 varieties. Vcf files (vcf ) Figshare ( h t t p  s : /  / d o i  . o  r g /  1 0 .  6 0 8 4  / m  9 . fi   g s  h a r e  . 2  7 9 2 5 9 8 3 . v 
1) [19]

Data file 3 Pictures of plants used in this study Picture (png) Figshare ( h t t p s :   /  / d o  i .  o r  g  /  1 0  . 6 0   8 4   / m  9 . fi   g s h   a r  e . 2 8 1 9 2 6 7 0) [20]

https://identifiers.org/ncbi/insdc.sra:SRP537683
https://identifiers.org/ncbi/insdc.sra:SRP537683
https://doi.org/10.6084/m9.figshare.27201303.v3
https://doi.org/10.6084/m9.figshare.27201303.v3
https://doi.org/10.6084/m9.figshare.27925983.v1
https://doi.org/10.6084/m9.figshare.27925983.v1
https://doi.org/10.6084/m9.figshare.28192670
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A total of 223 and 428 SNPs were identified as overlap-
ping with the start and stop codons, respectively. The 
aforementioned overlapping statistics were calculated 
based on genome annotation with the NCBI accession 
number GCA_900059795.1, which was subsequently 
transferred to the GCA_036785865.1 genome using Lift-
off with the default parameters [24].

Limitations
The present dataset is limited to three samples for each 
variety (Lim 1 and Lim 2), resulting in a total of six sam-
ples (plants). This may be a relatively small number for 
the purpose of representing the genetic variations inher-
ent to a given variety. Our dataset was sequenced using 
the Illumina paired-end short reads technology (150 bp), 
and as a consequence, we anticipate that larger DNA 
mutations, such as those involving large DNA rearrange-
ments, may be undetected.

Abbreviations
bp  Base pair
DNA  Deoxyribonucleic acid
indel  Insertion deletion
Lim 1  Liberoid Meranti 1 variety
Lim 2  Liberoid Meranti 2 variety
Mb  Megabase
pg  Picogram
SNP  Single nucleotide polymorphism
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